JPS6137738B2 - - Google Patents

Info

Publication number
JPS6137738B2
JPS6137738B2 JP56101349A JP10134981A JPS6137738B2 JP S6137738 B2 JPS6137738 B2 JP S6137738B2 JP 56101349 A JP56101349 A JP 56101349A JP 10134981 A JP10134981 A JP 10134981A JP S6137738 B2 JPS6137738 B2 JP S6137738B2
Authority
JP
Japan
Prior art keywords
resin
treatment
electrolyte fuel
aqueous electrolyte
alkaline aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56101349A
Other languages
Japanese (ja)
Other versions
JPS585977A (en
Inventor
Tetsuo Arai
Kazuo Koseki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP56101349A priority Critical patent/JPS585977A/en
Publication of JPS585977A publication Critical patent/JPS585977A/en
Publication of JPS6137738B2 publication Critical patent/JPS6137738B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 本発明はアルカリ水溶液電解質型燃料電池に用
いる炭素バイポーラプレートの製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing carbon bipolar plates used in alkaline aqueous electrolyte fuel cells.

複数の単セルからなる燃料電池の構成におい
て、各単セルのガス室と電解質室とを区切るガス
セパレータ板が隣接するセル電極間を接続する導
電板を兼ねるいわゆるバイポーラプレートが用い
られる。このバイポーラプレートは、導電性が高
く、耐食性、機械的強度が十分にあるとともに、
プレートを通じてのガス漏れがないことが望まれ
る。バイポーラプレートは通常炭素からなり、黒
鉛粉末と結着剤とを混合し、成形金型に充てん
し、結着剤の硬化温度、あるいは溶融温度以上に
ホツトプレスすることによつて作られる。しかし
このような炭素バイポーラプレートはもつぱら酸
性電解質型燃料電池に用いられており、アルカリ
水溶液電解質型燃料電池用としては用いられなか
つた。耐アルカリ性炭素板としては、フラン樹
脂、ジビニルベンゼン樹脂を結着剤としたものが
あるが、これらのものは、例えば60℃以上の温度
で30%KCH水溶液の電解液と酸素ふん囲気に接
するアルカリ水溶液電解質型燃料電池の運転条件
においては、十分な耐食性を持たず、1000時間前
後で崩壊、あるいは亀裂が生じた。炭素バイポー
ラプレートにおいては、結着剤の量が多ければ導
電板が低く、結着剤の量が少なければ耐食性、機
械的強度およびガス漏れの点で劣る。従つてこれ
らの諸特性を満足するアルカリ水溶液電解質型燃
料電池用の炭素バイポーラプレートを得ることは
従来はできなかつた。
In the configuration of a fuel cell consisting of a plurality of single cells, a so-called bipolar plate is used in which a gas separator plate that separates the gas chamber and electrolyte chamber of each single cell also serves as a conductive plate that connects adjacent cell electrodes. This bipolar plate has high conductivity, corrosion resistance, and sufficient mechanical strength.
It is desired that there be no gas leakage through the plates. Bipolar plates are usually made of carbon and are made by mixing graphite powder and a binder, filling a mold, and hot pressing at a temperature above the hardening or melting temperature of the binder. However, such carbon bipolar plates have only been used for acidic electrolyte fuel cells, and have not been used for alkaline aqueous electrolyte fuel cells. Alkali-resistant carbon plates include those that use furan resin or divinylbenzene resin as a binder, but these sheets can be used for alkali-resistant carbon plates that are exposed to an electrolyte of 30% KCH aqueous solution and an oxygen atmosphere at a temperature of 60°C or higher. Under the operating conditions of an aqueous electrolyte fuel cell, it did not have sufficient corrosion resistance and collapsed or cracked after about 1000 hours. In carbon bipolar plates, if the amount of binder is large, the conductive plate will be low, and if the amount of binder is small, the corrosion resistance, mechanical strength and gas leakage will be poor. Therefore, it has heretofore been impossible to obtain a carbon bipolar plate for use in alkaline aqueous electrolyte fuel cells that satisfies these characteristics.

本発明はこれに対して要求される前述の諸特性
が共に満足されるようなアルカリ水溶液電解質型
燃料電池用炭素バイポーラプレートの製造方法を
提供することを目的とする。
An object of the present invention is to provide a method for manufacturing a carbon bipolar plate for an alkaline aqueous electrolyte fuel cell, which satisfies all of the above-mentioned characteristics required therefor.

この目的は、耐アルカリ性樹脂の表面に親和性
処理により樹脂との表面親和力を高めた黒鉛粉末
を付着させてなる複合粉末を熱成形加工すること
によつて達成される。
This object is achieved by thermoforming a composite powder obtained by adhering graphite powder whose surface affinity with the resin has been increased by affinity treatment to the surface of an alkali-resistant resin.

耐アルカリ性樹脂としては、ポリスルホン樹
脂、ポリフエニレンオキサイド樹脂、ポリアリル
エーテル樹脂、ポリブタジエン樹脂、エポキシ樹
脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポ
リ塩化ビニール樹脂、ポリ四弗化エチレン樹脂、
ポリ四弗化エチレン―六弗化プロピレン樹脂など
を用いることができる。また親和性処理として
は、ステアリン酸処理、フエノール樹脂処理、ポ
リエステル処理、プロセスオイル処理、ナフテン
系オイル処理、脂肪酸処理、水ガラス処理などが
適用される。このような親和性処理を利用してつ
くられた樹脂と黒鉛の複合粉末は、例えば商品名
「グラコンポ」(日本黒鉛工業株式会社)で市販さ
れている。
Examples of alkali-resistant resins include polysulfone resin, polyphenylene oxide resin, polyallyl ether resin, polybutadiene resin, epoxy resin, polyethylene resin, polypropylene resin, polyvinyl chloride resin, polytetrafluoroethylene resin,
Polytetrafluoroethylene-hexafluoropropylene resin or the like can be used. Further, as the affinity treatment, stearic acid treatment, phenol resin treatment, polyester treatment, process oil treatment, naphthenic oil treatment, fatty acid treatment, water glass treatment, etc. are applied. A composite powder of resin and graphite produced using such affinity treatment is commercially available, for example, under the trade name "Guracompo" (Nippon Graphite Industries Co., Ltd.).

以下試験例と図を引用して本発明について説明
する。
The present invention will be described below with reference to test examples and figures.

試験例 1: 粒径180μm以下の黒鉛粉末に親和性処理を施
し、粒径230以下のポリフエニレンオキサイド樹
脂に付着させた「グラコンポ」複合粉末を成形金
型に充てんし、330℃でプレスして炭素板試料を
得た。第1図は黒鉛粉末として60μm以下の粒径
の粉末を60%程度含むものを用い、樹脂含量を変
えた場合の特性の変化を比抵抗については線11
で、ガス漏れ量については線12で、また曲げ強
度については線13で示す。ガス漏れ量は圧力2
Kgf/cm2の水素の5mm厚の試料の板厚方向における
透過量である。これより樹脂含量10%未満はガス
漏れがあり、20%以上では比抵抗が増加するの
で、樹脂含量10〜20%の範囲が適当であることが
分かつた。第2図は樹脂含量を15%とし、60μm
以下の粒径の黒鉛粉末の含量を変化させた場合の
比抵抗の変化を線21で、曲げ弾性率の変化を線
22で示す。これより60μm以下の黒鉛の含量が
30%未満では曲げ弾性率が急激に増加し、脆くな
つて使用できず、80%以上では比抵抗が増大する
ので30〜80%が適当であることが分かつた。
Test Example 1: Graphite powder with a particle size of 180μm or less was subjected to affinity treatment, and "Guracompo" composite powder was attached to polyphenylene oxide resin with a particle size of 230 or less, filled in a mold and pressed at 330℃. A carbon plate sample was obtained. Figure 1 shows the change in characteristics when the resin content is changed using graphite powder containing approximately 60% of powder with a particle size of 60 μm or less, and the graphite curve 11 shows the specific resistance.
The amount of gas leakage is shown by line 12, and the bending strength is shown by line 13. Gas leakage amount is pressure 2
This is the amount of permeation of hydrogen of Kgf/cm 2 in the thickness direction of a 5 mm thick sample. From this, it was found that a resin content of less than 10% causes gas leakage, and a resin content of 20% or more causes an increase in specific resistance, so a resin content in the range of 10 to 20% is appropriate. Figure 2 shows a resin content of 15% and a thickness of 60 μm.
Line 21 shows the change in specific resistance and line 22 shows the change in flexural modulus when the content of graphite powder with the following particle size is changed. From this, the content of graphite below 60μm is
If it is less than 30%, the bending elastic modulus increases rapidly and becomes brittle, making it unusable. If it exceeds 80%, the specific resistance increases, so it was found that 30 to 80% is appropriate.

試験例 2: 粒径180μm以下で60μm以下を約60%含む黒
鉛粉末を総量に対し15重量%の230μm以下の粒
径のポリフエニレンオキサイド樹脂およびポリス
ルホン樹脂にそれぞれ付着させた「グラコンポ」
粉末を成形金型に充てんし、330℃でプレスして
炭素板試料を作成した。これらと従来のフラン樹
脂、ジビニルベンゼン樹脂をそれぞれ15重量%だ
け結着剤として用いた炭素試料とを、酸素でバブ
リングされた80℃、30%KOH水溶液中に長時間
浸漬し、曲げ強度の変化を測定した結果を第3図
に示す。図中、線31が樹脂としてポリフエニレ
ンオキサイド、線32が樹脂としてポリスルホン
をそれぞれ用いた本発明に基づく方法で作られた
試料であり、線33はフラン樹脂、線34はジビ
ニルベンゼン樹脂を用いた従来の耐アルカリ性炭
素板の試料である。すなわち、従来の炭素板は初
期は良いが、500〜1000時間でクラツクが発生し
曲げ強度が0となる。一方、本発明による炭素板
は2000時間経過しても劣化がない。
Test Example 2: "Guracompo", in which graphite powder containing about 60% of particles with a particle size of 180 μm or less and 60 μm or less was attached to polyphenylene oxide resin and polysulfone resin, each with a particle size of 230 μm or less, at 15% by weight based on the total amount.
The powder was filled into a mold and pressed at 330°C to create a carbon plate sample. These and a carbon sample using 15% by weight of each of conventional furan resin and divinylbenzene resin as binders were immersed for a long time in a 30% KOH aqueous solution bubbled with oxygen at 80°C, and the changes in bending strength were measured. The measurement results are shown in Figure 3. In the figure, line 31 is a sample made by the method based on the present invention using polyphenylene oxide as a resin, line 32 is a sample made using a method based on the present invention using polysulfone as a resin, line 33 is a sample made using furan resin, and line 34 is a sample using divinylbenzene resin. This is a sample of a conventional alkali-resistant carbon plate. That is, conventional carbon plates are good initially, but cracks occur after 500 to 1000 hours and the bending strength becomes zero. On the other hand, the carbon plate according to the present invention does not deteriorate even after 2000 hours.

従来の耐アルカリ性炭素板は、樹脂自身が燃料
電池を運転するような条件においては十分な耐ア
ルカリ性を持つておらず、また単に機械的に黒鉛
と樹脂とを混合したものであるため混合むらがあ
り、アルカリ液中の浸漬時間が長くなると比較的
樹脂の少い部分が膨潤し、クラツクの発生に至る
ものと考えられる。これに対し本発明による炭素
板は、非常に均一に樹脂と黒鉛粉末とが混り合つ
ている結果、部分的に品質にむらが生じるような
ことがなく、従つて少量の樹脂量で機械的強度を
満足し、ガス漏れのないものが得られるものと思
われる。
In conventional alkali-resistant carbon plates, the resin itself does not have sufficient alkali resistance under the conditions in which fuel cells are operated, and since graphite and resin are simply mixed mechanically, the mixture is uneven. It is thought that if the immersion time in the alkaline solution becomes longer, the parts with relatively less resin will swell, leading to the occurrence of cracks. On the other hand, in the carbon plate according to the present invention, the resin and graphite powder are mixed very uniformly, so there is no local unevenness in quality, and therefore the mechanical strength is improved even with a small amount of resin. It is believed that a product with satisfactory strength and no gas leakage can be obtained.

以上述べたように本発明は耐アルカリ性樹脂の
表面に黒鉛粉末を付着された複合粉末を原料とす
ることにより、導電板が高いものにも拘らず耐食
性、機械的強度、耐ガス漏れ性の良好な炭素バイ
ポーラプレートを製造可能にするものであり、ア
ルカリ水溶液電解質型燃料電池用のバイポーラプ
レートに対して極めて有効に適用できる。
As described above, the present invention uses a composite powder with graphite powder attached to the surface of an alkali-resistant resin as a raw material, so that it has good corrosion resistance, mechanical strength, and gas leakage resistance despite having a high conductive plate. This makes it possible to manufacture a carbon bipolar plate with a high degree of stability, and it can be extremely effectively applied to bipolar plates for alkaline aqueous electrolyte fuel cells.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による方法に用いるバイポーラ
プレート材料中の樹脂含量と炭素板の特性との関
係を示す線図、第2図は同じく60μm以下の粒径
の黒鉛粉末含量と炭素板との関係を示す線図、第
3図は本発明の二つの実施例による炭素板と従来
の耐食性炭素板KOH水溶液中の浸漬による曲げ
強度の変化を示す線図である。 31…ポリフエニレンオキサイド樹脂使用試
料、32…ポリスルホ樹脂使用試料。
Fig. 1 is a diagram showing the relationship between the resin content in the bipolar plate material used in the method of the present invention and the characteristics of the carbon plate, and Fig. 2 is a diagram showing the relationship between the content of graphite powder with a particle size of 60 μm or less and the carbon plate. FIG. 3 is a diagram showing changes in bending strength of carbon plates according to two embodiments of the present invention and a conventional corrosion-resistant carbon plate due to immersion in a KOH aqueous solution. 31...Sample using polyphenylene oxide resin, 32...Sample using polysulfo resin.

Claims (1)

【特許請求の範囲】 1 耐アルカリ性樹脂の表面に親和性処理により
樹脂との表面親和力を高めた黒鉛粉末を付着させ
てなる複合粉末を熱成形加工することを特徴とす
るアルカリ水溶液電解質型燃料電池用バイポーラ
プレートの製造方法。 2 特許請求の範囲第1項に記載の方法におい
て、耐アルカリ性樹脂として、ポリスルホン樹
脂、ポリフエニレンオキサイド樹脂、ポリアリル
エーテル樹脂、ポリブタジエン樹脂、エポキシ樹
脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポ
リ塩化ビニール樹脂、ポリ四弗化エチレン樹脂、
ポリ四弗化エチレン―六弗化プロピレン樹脂のい
ずれかを用いることを特徴とするアルカリ水溶液
電解質型燃料電池用バイポーラプレートの製造方
法。 3 特許請求の範囲第1項または第2項に記載の
方法において、親和性処理として、ステアリン酸
処理、フエノール樹脂処理、ポリエステル処理、
プロセスオイル処理、ナフテン系オイル処理、脂
肪酸処理、水ガラス処理のいずれかを行うことを
特徴とするアルカリ水溶液電解質型燃料電池用バ
イポーラプレートの製造方法。 4 特許請求の範囲第1項ないし第3項のいずれ
かに記載の方法において、粒径180μm以下で60
μm以下の分量が30〜80%である黒鉛粉末を粒径
230μm以下の耐アルカリ性樹脂に樹脂合量が10
〜20%であるように付着させた複合粉末を用いる
ことを特徴とするアルカリ水溶液電解質型燃料電
池用バイポーラプレートの製造方法。
[Scope of Claims] 1. An alkaline aqueous electrolyte fuel cell characterized by thermoforming a composite powder obtained by adhering graphite powder whose surface affinity with the resin is increased by affinity treatment to the surface of an alkali-resistant resin. Method of manufacturing bipolar plates for use. 2. In the method according to claim 1, the alkali-resistant resin includes polysulfone resin, polyphenylene oxide resin, polyallyl ether resin, polybutadiene resin, epoxy resin, polyethylene resin, polypropylene resin, polyvinyl chloride resin, polytetrafluoroethylene resin,
A method for producing a bipolar plate for an alkaline aqueous electrolyte fuel cell, characterized by using either polytetrafluoroethylene or hexafluoropropylene resin. 3. In the method according to claim 1 or 2, the affinity treatment includes stearic acid treatment, phenol resin treatment, polyester treatment,
A method for producing a bipolar plate for an alkaline aqueous electrolyte fuel cell, which comprises performing any one of process oil treatment, naphthenic oil treatment, fatty acid treatment, and water glass treatment. 4. In the method according to any one of claims 1 to 3, particles with a particle size of 180 μm or less
Graphite powder with a particle size of 30 to 80% below μm
Alkali-resistant resin with a diameter of 230 μm or less with a total resin content of 10
A method for producing a bipolar plate for an alkaline aqueous electrolyte fuel cell, characterized by using a composite powder attached so as to have a concentration of ~20%.
JP56101349A 1981-07-01 1981-07-01 Manufacture of bipolar plate for alkali water solution electrolyte type fuel cell Granted JPS585977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56101349A JPS585977A (en) 1981-07-01 1981-07-01 Manufacture of bipolar plate for alkali water solution electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56101349A JPS585977A (en) 1981-07-01 1981-07-01 Manufacture of bipolar plate for alkali water solution electrolyte type fuel cell

Publications (2)

Publication Number Publication Date
JPS585977A JPS585977A (en) 1983-01-13
JPS6137738B2 true JPS6137738B2 (en) 1986-08-26

Family

ID=14298352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56101349A Granted JPS585977A (en) 1981-07-01 1981-07-01 Manufacture of bipolar plate for alkali water solution electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPS585977A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1324411A3 (en) * 2001-12-26 2004-12-22 Mitsubishi Chemical Corporation Composite material for fuel cell separator molding and production method thereof, and fuel cell separator which uses the composite material and production method thereof
NL1023776C2 (en) 2003-06-30 2005-01-03 Roboxis B V Robot.

Also Published As

Publication number Publication date
JPS585977A (en) 1983-01-13

Similar Documents

Publication Publication Date Title
US4301222A (en) Separator plate for electrochemical cells
US4360485A (en) Method for making improved separator plates for electrochemical cells
US4737421A (en) Method for producing a carbon sheet and a fuel cell separator
KR101041697B1 (en) Molding material for fuel cell separator and fuel cell separator prepared therefrom
JP2004134373A (en) Separator plate for pem fuel cell
JPH08222241A (en) Manufacture of graphite member for solid high polymer fuel cell
EP1217675B1 (en) Separator for fuel cell and manufacture method for the same
US10693151B2 (en) Bipolar plate for fuel cell having controlled structure of carbon materials and method of manufacturing the same
CN114784307B (en) Graphene reinforced expanded graphite/polyimide-polyether-ether-ketone composite bipolar plate and preparation method thereof
US7727422B2 (en) Electrically-conductive resin composition for porous fuel cell bipolar plate and method for the production thereof
US4643956A (en) Coke filled separator plate for electrochemical cells
US4627944A (en) Method for producing a carbon sheet and a fuel cell separator
US20020127390A1 (en) Acrylic resin-impregnated bodies formed of expanded graphite, process for producing such bodies and sealing elements, fuel cell components and heat-conducting elements formed of the bodies
JPS6137738B2 (en)
JPS60246568A (en) Manufacture of ribbed and grooved separator for fuel cell
US3859138A (en) Novel composite fuel cell electrode
JP2002231263A (en) Separator of fuel cell and its manufacturing method
RU2187578C2 (en) Bipolar plate for electrolyzer of filter-press type
GB2135334A (en) Composite carbon electrode
JPS62287570A (en) Material for gas diffusion electrode
US4849086A (en) Electrode for electrochemical processes
JPS59195514A (en) Molded impermeable carbon body and its manufacture
JP2003217605A (en) Molding material for fuel cell separator, and fuel cell separator molded of the same
JPS58119161A (en) Manufacture of electrode for fused salt fuel battery
JP2006252905A (en) Separator material for fuel cell, and manufacturing method of the same