JPS585977A - Manufacture of bipolar plate for alkali water solution electrolyte type fuel cell - Google Patents

Manufacture of bipolar plate for alkali water solution electrolyte type fuel cell

Info

Publication number
JPS585977A
JPS585977A JP56101349A JP10134981A JPS585977A JP S585977 A JPS585977 A JP S585977A JP 56101349 A JP56101349 A JP 56101349A JP 10134981 A JP10134981 A JP 10134981A JP S585977 A JPS585977 A JP S585977A
Authority
JP
Japan
Prior art keywords
resin
treatment
alkali
bipolar plate
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56101349A
Other languages
Japanese (ja)
Other versions
JPS6137738B2 (en
Inventor
Tetsuo Arai
荒井 哲夫
Kazuo Koseki
小関 和雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP56101349A priority Critical patent/JPS585977A/en
Publication of JPS585977A publication Critical patent/JPS585977A/en
Publication of JPS6137738B2 publication Critical patent/JPS6137738B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To manufacture a carbon bipolar plate excellent in corrosion resistance mechanical strength and gastightness inspite of high conductivity by using compound powder, wherein graphite powder is stuck to the surface of an alkali- resisting resin. CONSTITUTION:A carbon plate is obtained by a method, wherein graphite powder having a granular diameter under 180mum is given an affinity treatment, ''Gra-Compo'' complex powder stuck to polyphenylneoxide resin having a granular diameter under 280mum fills up a forming metal mold to be pressed at 880 deg.C. For an alkali-resisting regin, besides that said above, a polysulfonic ether resin polyallylether, and a polybutadiene resin are desirable, while a stearinic acid treatment, and a phenol resin treatment can be applied as an affinity treatment.

Description

【発明の詳細な説明】 本発明はアルカリ水溶液電解質灘燃料電池に用いる縦索
バイポーラプレートの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing longitudinal bipolar plates for use in alkaline aqueous electrolyte Nada fuel cells.

複数の単セルからなる燃料電池の構成において、各単セ
ルのガス室と電解質室とを区切るガスセパレータ板が隣
接するセルの電極間を接続する導電板を兼ねるいわゆる
バイポーラプレートが用いられる。このバイポーラプレ
ートは、導電性が高く、、J \ν 1食性1機械的強度が十分にあるとともにプレートを通
じてのガス漏れがないことが望まれる。バイポーラプレ
ートは通常炭素からなり、黒鉛粉末と結着剤とを混合し
、成形金製に充てんし、結着剤の硬化温度、あるいは溶
融温度以上にホットプレスするととKよって作られる。
In the configuration of a fuel cell consisting of a plurality of single cells, a so-called bipolar plate is used in which a gas separator plate that separates the gas chamber and electrolyte chamber of each single cell also serves as a conductive plate that connects the electrodes of adjacent cells. This bipolar plate is desired to have high electrical conductivity, sufficient mechanical strength, and no gas leakage through the plate. Bipolar plates are usually made of carbon, and are made by mixing graphite powder and a binder, filling a molded metal, and hot pressing at a temperature above the curing temperature or melting temperature of the binder.

しかしこのような炭素バイポーラプレートはもっばら酸
性電解質層燃料電池に用いられており、アルカリ水溶液
電解質層燃料電池用としては用いられなかった。耐アル
カリ性炭素板としては、フラン樹脂、ジビニルベンゼン
樹Nを結着剤とじ九ものがあるが、これらのものは、例
えば60℃以上の温度で80’1lKOH水溶液の電解
液と酸素ふん囲気に接するアルカリ水fl/液電解’t
m燃料電池の運転条件においては、十分な耐食性を持た
ず、1000時間前後で崩壊、あるいは電装が生じた。
However, such carbon bipolar plates are mostly used in acidic electrolyte layer fuel cells, and have not been used for alkaline aqueous electrolyte layer fuel cells. There are nine types of alkali-resistant carbon plates that are made of furan resin or divinylbenzene resin N as a binder. Alkaline water fl/liquid electrolysis't
Under the operating conditions of the M fuel cell, it did not have sufficient corrosion resistance, and collapsed or electrical components occurred after about 1000 hours.

炭素バイポーラグレートにおいては、結着剤の量が多け
れば導電性が低く、結着剤の量が少なければ耐食性2機
械的強度およびガス漏れの点で劣る・従ってこれらの緒
特性を満足するアルカリ水溶液電解質臘燃料電池用の炭
素バイポーラプレートを得る仁とは従来はできなかっ九
〇 本発明はこれに対して要求される前述の緒特性が共に満
足されるようなアルカリ水溶液電解質層燃料電池用炭素
バイポーラプレー)O1m造方法を提供することを目的
とする。
In carbon bipolar grades, if the amount of binder is large, the conductivity will be low, and if the amount of binder is small, the corrosion resistance will be inferior in terms of mechanical strength and gas leakage. Therefore, an alkaline aqueous solution that satisfies these characteristics It has not been possible to obtain carbon bipolar plates for electrolyte fuel cells in the past, but the present invention provides a carbon bipolar plate for use in alkaline aqueous electrolyte fuel cells that satisfies both of the above-mentioned properties required for this purpose. The purpose of the present invention is to provide an O1m manufacturing method.

この目的は、耐アルカリ性樹脂の表面に親和性処理によ
シ樹脂との表面親和力を高め良悪鉛物末を付着させてな
る複合役末を熱成形加工することKよって達成される。
This objective is achieved by thermoforming a composite powder made by attaching good and bad lead powder to the surface of an alkali-resistant resin to increase its surface affinity with the resin through affinity treatment.

耐アルカリ性樹脂としては、ポリスルホン1111゜ポ
リフェニレンオキサイド樹脂、ポリアリルエーテ1ル樹
脂、ポリブタジェン樹脂、エポキシ樹脂。
Examples of alkali-resistant resins include polysulfone 1111° polyphenylene oxide resin, polyallyl ether resin, polybutadiene resin, and epoxy resin.

ポ・リエチレン樹脂、ポリプロピレン樹脂、ポリ塩J’
ビニール樹脂、ポリ四−化エチレン樹脂、ポリ四弗化エ
チレン−六弗化プロピレン樹l[rlにとを用いること
ができる。壕九親和性処理としては、ステアリン酸処I
1.フェノール樹脂処塩、ポリエステル処理、プロセス
オイル処理、ナフテン系オイール処理、脂肪酸処理、水
ガラス処l11にどが適用される◎このような親和性処
理を利用してつくられ九樹脂と黒鉛の壷金粉末は、例え
ば商品名「グラコンポ」(日本黒鉛工業株式会社)で市
販されている。
Polyethylene resin, polypropylene resin, polysalt J'
Vinyl resin, polytetrafluoroethylene resin, polytetrafluoroethylene-hexafluoropropylene resin can be used. Stearic acid treatment I
1. It is applied to phenolic resin treatment, polyester treatment, process oil treatment, naphthenic oil treatment, fatty acid treatment, water glass treatment. The powder is commercially available, for example, under the trade name "Guracompo" (Nippon Graphite Industries Co., Ltd.).

以下試験例と図を引用して本発明について説明する。The present invention will be described below with reference to test examples and figures.

充てんし、880℃でプレスして炭素板試料を得た。It was filled and pressed at 880°C to obtain a carbon plate sample.

lm18で示す。ガス漏れ量は圧力2に9f/ldの水
素の5關厚の試料の板厚方向における透過量である。こ
れより樹脂含量l〇−未満はガス漏れがあり一201以
上では比抵抗が増加するので、樹脂含量10〜20%の
範囲が適当であることが分かった。第2図は樹脂含量を
15−とし、60μm以下の粒径の黒鉛粉末の含量を変
化させ九場合の比抵抗の変化を線21で、曲は弾性率の
変化を[22で示す0これよ)60μm以下の黒鉛の含
量が80−未満では曲げ弾性率が急激に増加し、跪くな
って使用で龜ず、80qk以上では比抵抗が増大するの
で80〜80−が適当であることが分車な総量に対し1
5重量−の!sOμm以下の粒径のポリフェニレンオキ
サイド樹脂およびポリスルホン樹脂にそれぞれ付着させ
九「グラコンポ」粉末を成形金型に充てんし、880℃
でプレスして炭素板試料を作成した。これらと従来のフ
ラン樹脂、ジビニルベンゼン樹脂をそれぞれ15重量−
だけ結着剤として用いた炭素試料とを、酸素でバブリン
グ壜れ九り0℃、80%KOH水溶液中に長時間浸漬し
、曲は強度の変化を測定した結果を第3図に示す。図中
、@81が樹脂としてポリフェニレンオキサイド、線8
2が樹脂としてポリスルホンをそれぞれ用い九本発明に
基づく方法で作られ九試料でめり、線88はフラン樹脂
、[84はジビニルベンゼン樹脂を用い九従来の耐アル
カリ性炭素板の試料である。すなわち、従来の炭素板は
初期は良いが、500−1000時間でクラックが発生
し曲げ強度が0となる。一方、本発明に、よる炭素板は
2000時間経過しても劣化がない。
Indicated by lm18. The gas leakage amount is the amount of hydrogen permeated in the thickness direction of a 5-inch thick sample at a pressure of 2 and 9 f/ld. From this, it was found that a resin content of less than 10 - causes gas leakage, and a resin content of 1201 or more causes an increase in specific resistance, so a resin content in the range of 10 to 20% is appropriate. Figure 2 shows the change in resistivity when the resin content is 15 - and the content of graphite powder with a particle size of 60 μm or less is changed. Line 21 shows the change in elastic modulus. ) If the content of graphite with a diameter of 60 μm or less is less than 80, the flexural modulus increases rapidly, making it difficult to use, and if it exceeds 80 qk, the specific resistance increases, so it has been found that 80 to 80 is appropriate. 1 for the total amount
5 weight-of! A mold was filled with ``Guracompo'' powder, which was adhered to polyphenylene oxide resin and polysulfone resin with a particle size of sOμm or less, and heated at 880°C.
A carbon plate sample was prepared by pressing the carbon plate. These and conventional furan resin and divinylbenzene resin were each added by weight of 15%.
A carbon sample used as a binder was immersed in an 80% KOH aqueous solution at 0°C for a long time in an oxygen bubbling bottle, and the change in strength was measured. The results are shown in Figure 3. In the figure, @81 is polyphenylene oxide as the resin, line 8
Line 88 is a sample of a conventional alkali-resistant carbon plate made using a furan resin and line 84 is a sample of a conventional alkali-resistant carbon plate using a divinylbenzene resin. That is, conventional carbon plates are good at the initial stage, but cracks occur after 500 to 1000 hours and the bending strength becomes zero. On the other hand, the carbon plate according to the present invention does not deteriorate even after 2000 hours.

従来の耐アルカリ性炭素板は、樹脂自身が燃料電池を運
転するような条件においては十分な耐アルカリ性を持っ
ておらず、また単1c機械的に黒鉛と樹脂とを混合した
ものであるため混合むらがお〕、アルカリ液中の浸漬時
間が長くなると比較的樹脂の少い部分が膨潤し、クラッ
クの発生に至るものと考えられる。これに対し本発明に
よる炭素板は、非常に均一に樹脂と黒鉛粉末とが混9合
っている結果、部分的に品質にむらが生じるようなこと
がなく、従って少量の樹脂量で機械的強11−満足し1
ガス漏れのないものが得られるものと思われる。
In conventional alkali-resistant carbon plates, the resin itself does not have sufficient alkali resistance under the conditions in which fuel cells are operated, and since graphite and resin are mechanically mixed, the mixture may be uneven. However, it is thought that when the immersion time in the alkaline solution becomes longer, the parts with relatively less resin swell, leading to the occurrence of cracks. On the other hand, in the carbon plate according to the present invention, the resin and graphite powder are mixed very uniformly, so there is no local unevenness in quality, and therefore the carbon plate has mechanical strength even with a small amount of resin. 11- Satisfied 1
It seems that something without gas leakage can be obtained.

以上述べたように本発明は耐アルカリ性樹脂の表面KM
鉛粉末を付着され九壷金粉末を原料とすることによシ、
導電性が高いにも拘らず耐食性、機械的側し耐ガス漏れ
性の良好な炭素バイポーラプレートを製造可能にするも
のでToや、アルカリ水溶液電解質型燃料電池用のバイ
ポーラプレートに対して極めて有効に適用できる。
As described above, the present invention provides surface KM of alkali-resistant resin.
By using gold powder as raw material with lead powder attached,
This makes it possible to manufacture carbon bipolar plates that have good corrosion resistance, mechanical side gas leakage resistance, and high electrical conductivity, and is extremely effective for To and bipolar plates for alkaline aqueous electrolyte fuel cells. Applicable.

【図面の簡単な説明】[Brief explanation of the drawing]

11図は本発明による方法に用いるバイポーラプレート
材料中の樹脂含量と炭素板の特性との関係を示す線図、
第2図は同じ<60μm以下の粒径の黒鉛粉末含量と炭
素板との関係を示す線図、第8図は本発明の二つの1!
施例による炭素板と従来の耐食性炭素板KOH水溶液中
の浸漬による曲げ強度の変化を示す線図でめるQ 81・・・ポリフェニレンオキサイドw脂使用試料。 82・・・ポリスルホン樹脂使用試料。 對脂合f (%) 浄lタ昏l六汚1soンノm1人下 n合!(%)*3
図 :受漬吟向(h)
FIG. 11 is a diagram showing the relationship between the resin content in the bipolar plate material used in the method according to the present invention and the characteristics of the carbon plate;
FIG. 2 is a diagram showing the relationship between the graphite powder content and carbon plate with the same particle size of <60 μm or less, and FIG.
A diagram showing the change in bending strength of the carbon plate according to the example and the conventional corrosion-resistant carbon plate due to immersion in a KOH aqueous solution Q81...Sample using polyphenylene oxide w fat. 82...Sample using polysulfone resin.對聚合f (%) Pure and dirty, 1 son, 1, and 1 people! (%) *3
Figure: Ukezuke Ginko (h)

Claims (1)

【特許請求の範囲】 1)耐アルカリ性樹脂の表面に親和性処理により樹脂と
の表面親和力を高めた黒鉛粉末を付着させてなる複合粉
末を熱成形加工することを特徴とするアルカリ水溶液電
解質型燃料電池用バイポーラプレートの製造方法。 2、特許請求の範囲第1項に記載の方法において、耐ア
ルカリ性樹脂として、ポリスルホン樹脂、ポリフェニレ
ンオキサイド樹脂、ポリアリルエーテル樹脂、ポリブタ
ジェン樹脂、エポキシ樹脂、ポリエチレン樹脂、ポリプ
ロピレン樹脂、ポリ塩化ビニール樹脂、ポリ四弗化エチ
レン樹脂、ポリ四弗化エチレン−六弗化プロピレン樹脂
のいずれかを用いることを%黴とするアルカリ水溶液電
解質製燃料電池用バイポーラプレートの製造方法。 8)特許請求の範囲第1項または第2項に記載の方法に
おいて、親和性処理として、ステアリン酸1理、フェノ
ール樹脂処理、ポリエステル処理。 プロセスオイル処理、ナフテン系オイル処理、脂肪酸処
理、水ガラス処理のいずれかを行うことを、1 丁Jり  41許請求の範囲第1項ないし第8項のいず
れかに記載の方法において、粒1K180μ電以下で6
0μ講以下の分量が80〜80−である黒鉛粉末を粒径
!80μ属以下の耐アルカリ性樹脂に樹脂合量がICj
−20−であるように付着させた検音粉末を用いること
を特徴とするアルカリ水溶液電解質層燃料電池用バイポ
ーラプレートの製造方法。
[Claims] 1) An alkaline aqueous electrolyte fuel characterized by thermoforming a composite powder obtained by adhering graphite powder whose surface affinity with the resin is increased by affinity treatment to the surface of an alkali-resistant resin. A method for manufacturing bipolar plates for batteries. 2. In the method according to claim 1, the alkali-resistant resin may include polysulfone resin, polyphenylene oxide resin, polyallyl ether resin, polybutadiene resin, epoxy resin, polyethylene resin, polypropylene resin, polyvinyl chloride resin, polyvinyl chloride resin, A method for manufacturing a bipolar plate for a fuel cell made of an alkaline aqueous electrolyte, which uses either a tetrafluoroethylene resin or a polytetrafluoroethylene-hexafluoropropylene resin. 8) In the method according to claim 1 or 2, the affinity treatment includes stearic acid treatment, phenol resin treatment, and polyester treatment. In the method according to any one of claims 1 to 8, the method according to any one of claims 1 to 8, in which the process oil treatment, naphthenic oil treatment, fatty acid treatment, or water glass treatment is performed. 6 below electric
Graphite powder with a particle size of 80 to 80 - less than 0μ! The total amount of resin is ICj for alkali-resistant resin of 80 μ group or less.
-20- A method for producing a bipolar plate for a fuel cell with an alkaline aqueous electrolyte layer, the method comprising using a sound detection powder adhered as shown in FIG.
JP56101349A 1981-07-01 1981-07-01 Manufacture of bipolar plate for alkali water solution electrolyte type fuel cell Granted JPS585977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56101349A JPS585977A (en) 1981-07-01 1981-07-01 Manufacture of bipolar plate for alkali water solution electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56101349A JPS585977A (en) 1981-07-01 1981-07-01 Manufacture of bipolar plate for alkali water solution electrolyte type fuel cell

Publications (2)

Publication Number Publication Date
JPS585977A true JPS585977A (en) 1983-01-13
JPS6137738B2 JPS6137738B2 (en) 1986-08-26

Family

ID=14298352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56101349A Granted JPS585977A (en) 1981-07-01 1981-07-01 Manufacture of bipolar plate for alkali water solution electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPS585977A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1324411A3 (en) * 2001-12-26 2004-12-22 Mitsubishi Chemical Corporation Composite material for fuel cell separator molding and production method thereof, and fuel cell separator which uses the composite material and production method thereof
US7563067B2 (en) 2003-06-30 2009-07-21 Roboxis B.V. Robot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1324411A3 (en) * 2001-12-26 2004-12-22 Mitsubishi Chemical Corporation Composite material for fuel cell separator molding and production method thereof, and fuel cell separator which uses the composite material and production method thereof
US7563067B2 (en) 2003-06-30 2009-07-21 Roboxis B.V. Robot

Also Published As

Publication number Publication date
JPS6137738B2 (en) 1986-08-26

Similar Documents

Publication Publication Date Title
US6180275B1 (en) Fuel cell collector plate and method of fabrication
KR101041697B1 (en) Molding material for fuel cell separator and fuel cell separator prepared therefrom
EP1287573B1 (en) Nanocomposite for fuel cell bipolar plate
US4339322A (en) Carbon fiber reinforced fluorocarbon-graphite bipolar current collector-separator
US4301222A (en) Separator plate for electrochemical cells
US10693151B2 (en) Bipolar plate for fuel cell having controlled structure of carbon materials and method of manufacturing the same
GB2045804A (en) Method of preparing a membrane consisting of polyantimonic acid powder and an organic binder
JPH08222241A (en) Manufacture of graphite member for solid high polymer fuel cell
Caglar et al. Conductive polymer composites and coated metals as alternative bipolar plate materials for all-vanadium redox-flow batteries
DE102009000544A1 (en) Metallic bipolar plate for a fuel cell and method of forming the surface layer thereof
US5037520A (en) Container for corrosive material
JPS585977A (en) Manufacture of bipolar plate for alkali water solution electrolyte type fuel cell
KR100895941B1 (en) Negative electrode active material for battery, anode can for battery, zinc negative plate for battery, manganese dry battery and method for manufacturing same
KR20050020380A (en) Materials for bipolar plate and other metal parts for fuel cell
CN111180649B (en) Integrated high-temperature decomposition connector and lithium ion battery comprising same
WO2011010689A1 (en) Fuel cell separator
US3859138A (en) Novel composite fuel cell electrode
CN109081671A (en) A kind of ceramic base fuel battery pole board and preparation method
RU2187578C2 (en) Bipolar plate for electrolyzer of filter-press type
JP2002231263A (en) Separator of fuel cell and its manufacturing method
CN113839061A (en) Composite material for preparing fuel cell bipolar plate and application thereof
JPS62287570A (en) Material for gas diffusion electrode
US3361595A (en) Process of making an improved fuel cell electrode
US3210218A (en) Process of manufacturing battery separators
JP4802368B2 (en) Method for producing highly conductive molded product