JPS6137622A - Material transporting device using air stream - Google Patents

Material transporting device using air stream

Info

Publication number
JPS6137622A
JPS6137622A JP16142784A JP16142784A JPS6137622A JP S6137622 A JPS6137622 A JP S6137622A JP 16142784 A JP16142784 A JP 16142784A JP 16142784 A JP16142784 A JP 16142784A JP S6137622 A JPS6137622 A JP S6137622A
Authority
JP
Japan
Prior art keywords
sample
gas
transport
wafer
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16142784A
Other languages
Japanese (ja)
Other versions
JPH0620938B2 (en
Inventor
Shigeo Ikeda
池田 重男
Haruhiko Makino
晴彦 牧野
Takeyoshi Uchiyama
内山 武吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP16142784A priority Critical patent/JPH0620938B2/en
Publication of JPS6137622A publication Critical patent/JPS6137622A/en
Publication of JPH0620938B2 publication Critical patent/JPH0620938B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G51/00Conveying articles through pipes or tubes by fluid flow or pressure; Conveying articles over a flat surface, e.g. the base of a trough, by jets located in the surface
    • B65G51/02Directly conveying the articles, e.g. slips, sheets, stockings, containers or workpieces, by flowing gases
    • B65G51/03Directly conveying the articles, e.g. slips, sheets, stockings, containers or workpieces, by flowing gases over a flat surface or in troughs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/90Devices for picking-up and depositing articles or materials
    • B65G47/91Devices for picking-up and depositing articles or materials incorporating pneumatic, e.g. suction, grippers
    • B65G47/911Devices for picking-up and depositing articles or materials incorporating pneumatic, e.g. suction, grippers with air blasts producing partial vacuum

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)

Abstract

PURPOSE:To transport plate material without causing damage by allowing the high pressure gas, introduced from a gas feed line, to jet out of a plurality of discharge ports formed in a guide passage partition wall, leading it from the side face of the plate to its rear surface, putting the plate afloat and by inclining the other discharge ports to the transport direction. CONSTITUTION:The body of this transport device is divided into an upper chamber as gas feed line 11 and a lower chamber as material transport guide passage 12 by parting the inside of the exterior wall in flat rectangular parallelepiped into havlves with a partition wall 10. Gas is allowed to jet out of at least one of the gas discharge ports 20 in said partition wall 10, which is situated in the neighborhood of a material carry-in opening 21, and is led from the side face of the material 2 to its rear surface, and an inclination is provided so that the material 2 gets afloat. The rest of the transport discharge ports 20b are inclined to an angle theta so as to form the gas stream in the A direction. As a result, the material 2 is put afloat by the negative pressure on the front face of material, produced by the air stream jetting out of the ports 20b, and the air stream led from the port 20a to the inclined surface of the material 2, and is transported at a high speed in contactless state.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、気流による試料搬送装置に関し、特に5半導
体ウェハを気相成長装置のサセプタ等より外部に覗り出
すのに適した気流による試料搬送装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a sample transport device using an air current, and in particular to a sample transport device using an air current suitable for transporting five semiconductor wafers to the outside from a susceptor or the like of a vapor phase growth device. Regarding a conveyance device.

〔従来の技術〕[Conventional technology]

半導体テバイスの高密度化、高集積化技術の進歩に伴っ
て、テハイス製造中の半導体ウェハに対する損傷や汚染
を極力抑えることが歩留の低下を防止する上で極めて重
要となっている。このため、半導体ウェハを搬送する場
合には、ウェハが損傷したり汚染されたりしないような
搬送装置が必要とされる。
With the advancement of high-density and high-integration technology for semiconductor devices, it has become extremely important to minimize damage and contamination to semiconductor wafers during THS manufacturing in order to prevent yields from decreasing. Therefore, when transporting semiconductor wafers, a transport device that does not damage or contaminate the wafers is required.

このような半導体ウェハ等の試料を搬送するための試料
搬送装置には、従来より種々のものが知られているか、
例えば気相成長装置のウェハ載置台、いわゆるサセプタ
上に載置された半導体ウェハを取り上げ、これを外部の
所定位置にまで搬送するのに適した装置はあまり知られ
ていない。
Various types of sample transport devices for transporting samples such as semiconductor wafers have been known in the past.
For example, a device suitable for picking up a semiconductor wafer placed on a wafer mounting table, so-called a susceptor, of a vapor phase growth apparatus and transporting it to a predetermined position outside is not well known.

ここで、搬送距離が短かい場合には、真空ピンセット装
置やメカ・チャック装置等により上記すセプタ上の半導
体ウェハを保持して取り上げ(いわゆるピンクアップし
)、上記真空ピンセットやメカ・チャック等のピンクア
ップ・ヘッド部の移動範囲内でウェハを移送させること
が従来より行われているが、上記サセプタにウェハ収納
用の凹部(いわゆる座ぐり穴)が形成されて、この凹部
内に車導体ウェハが僅かの間隙を残して嵌り込んでいる
場合には、上記真空ピンセットの先端部やメカ・チャッ
クの爪等が上記間隙に入らず、半導体ウェハのピックア
ップができなくなることかある。また、このときの挿入
角度や先端に加わる力等の原因によりウェハに損傷が生
じたり割れたりすることも生じ、破片がウェハ表面に付
着する等の汚染も生じ易い。
If the conveyance distance is short, the semiconductor wafer on the above-mentioned septum is held and picked up by a vacuum tweezers or mechanical chuck device (so-called pink-up), and then Conventionally, wafers are transferred within the movement range of the pink-up head, but a recess (so-called counterbore) for storing the wafer is formed in the susceptor, and the conductor wafer is placed in the recess. If the semiconductor wafer is inserted with a small gap left, the tip of the vacuum tweezers, the claw of the mechanical chuck, etc. will not fit into the gap, and the semiconductor wafer may not be able to be picked up. Furthermore, the wafer may be damaged or cracked due to factors such as the insertion angle and the force applied to the tip, and contamination such as adhesion of fragments to the wafer surface is likely to occur.

この他、半導体ウェハ全面を覆うような浅い球面凹部を
有する真空チャック装置等を用いた場合には、間隙が少
しでもあるとウェハ吸引が有効に行えなくなるため、上
記サセプタに凹部が形成されているとウェハをピックア
ップすることができなくなるおそれがある。
In addition, when a vacuum chuck device or the like having a shallow spherical recess that covers the entire surface of a semiconductor wafer is used, the susceptor is formed with a recess because wafer suction cannot be performed effectively if there is even a slight gap. There is a possibility that the wafer cannot be picked up.

なお、これらの真空ピンセット装置、メカ・チャック装
置、真空チャック装置等は、装置のピンクアップ・ヘッ
ド部の一部が半導体ウェハに接触することから、汚染防
止を図るために比較的頻繁にピックアップ・ヘッド部を
洗浄する必要がある。
Note that these vacuum tweezers, mechanical chuck devices, vacuum chuck devices, etc., have a part of their pink-up head that comes into contact with the semiconductor wafer, so they are picked up and removed relatively frequently to prevent contamination. The head needs to be cleaned.

これに対して、ノズルから空気流を噴出させてウェハ等
の試料を浮上させるようないわゆるベルヌイ・ピンセッ
ト等の場合には、ピンクアップ・ヘッド部とウェハとが
無接触状態のままウェハを取り上げる(ピックアップす
る)ことが可能であるが、周囲のウェハにごみ等を撒き
散らすおそれがある。
On the other hand, in the case of so-called Bernoulli tweezers, which levitate a sample such as a wafer by ejecting airflow from a nozzle, the wafer is picked up with the pink-up head section and the wafer in a non-contact state ( However, there is a risk of scattering dust etc. on surrounding wafers.

さらに、比較的長距離にわたって半導体ウェハを搬送す
る場合には、ベルト・コンベアやエヤー・コンベア等が
使用されるが、上記サセプタ等に載置さ・′れたウェハ
を取り上げる操作(ピックアップ操作)は5サセプタ等
に搬送路を加工形成しない限り行うことができず、ベル
ト・コンベアの場合にはウェハと搬送ベルトとが接触す
るため汚染され易く、エアー・コンベアの場合には周囲
にごみ等を撒き散らすおそれがある。
Furthermore, when conveying semiconductor wafers over relatively long distances, belt conveyors, air conveyors, etc. are used, but the operation of picking up the wafers placed on the susceptor etc. 5 This cannot be done unless a conveyance path is formed on the susceptor, etc.; in the case of a belt conveyor, the wafer and the conveyor belt come into contact with each other, which tends to cause contamination; and in the case of an air conveyor, dust etc. are scattered around the area. There is a risk of scattering.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

試 以上述べたように、従来の資料搬送装置として例えば真
空ピンセット装置やメカ・チャック装置等を用いる場合
には、気相成長装置のサセプタ上に載置された半導体ウ
ェハ等を取り上げる際に損傷や割れ等を生じ易く、ピッ
クアップ・ヘッド部とウェハ等とが接触することにより
汚染が生じ易く、これを防止するためには頻繁に洗浄を
行う必要がある。また、これらの真空ピンセット装置や
メカ・チャック装置、あるいは真空チャック装置等はい
わゆる試料のピンクアップ操作を主として行うためのも
のであり、搬送距離が比較的短いという欠点がある。さ
らに、搬送距離を比較的長くとれるベルト・コンベアや
エアー・コンベアの場合には、ウェハ等のピックアンプ
が容易に行えないという欠点がある。
Test As mentioned above, when using a vacuum tweezers device, mechanical chuck device, etc. as a conventional material transport device, there is a risk of damage or damage when picking up a semiconductor wafer etc. placed on the susceptor of a vapor phase growth device. Cracks are likely to occur, and contamination is likely to occur due to contact between the pickup head and the wafer, and frequent cleaning is required to prevent this. Further, these vacuum tweezers, mechanical chuck devices, vacuum chuck devices, etc. are mainly used to perform so-called sample pink-up operations, and have the disadvantage that the transport distance is relatively short. Furthermore, in the case of a belt conveyor or an air conveyor, which allows a relatively long conveyance distance, there is a drawback that pick-amplification of wafers, etc. cannot be easily performed.

そこで、本発明は、上述の実情に鑑み、比較的簡単な構
成によりサセプタ等に載置された半導体ウェハ等の試料
を無接触で浮上させることができるのみならず、周囲に
ごみ等を撒き散らすことなく、ウェハ等が損傷したり汚
染されることもなく、所望の位置にまでウェハ等を搬送
し得るような気流による試料搬送装置の提供を目的とす
る。
Therefore, in view of the above-mentioned circumstances, the present invention not only makes it possible to levitate a sample such as a semiconductor wafer placed on a susceptor etc. without contact with a relatively simple structure, but also prevents the scattering of dust etc. in the surrounding area. It is an object of the present invention to provide a sample transport device using an air current that can transport a wafer or the like to a desired position without damaging or contaminating the wafer or the like.

〔問題点を解決するための手段] すなわち、本発明に係る気流による試料搬送装置の特徴
は、高圧気体が導入される気体供給路とこの気体供給路
の下部に配される半導体ウェハ等の試料板搬送用の案内
通路との間に設けられた隔壁に、試料板の搬送方向に沿
って複数の気体吐出孔を穿設し、上記案内通路の上記試
料搬送方向の上流および下流位置にそれぞれ試料板搬入
用の開口部および試料板搬出用の開口部を開設して成り
、上記複数の気体吐出孔のうち少くとも1個は上記試料
搬入口の位置に静置された試料板の側面より試料裏面に
気体を導いて試料板を浮上させるためのピックアップ用
吐出孔として形成され、他の複数の上記気体吐出孔は少
く古も上記試料搬送方向に傾斜させることにより同方向
の気流を形成する搬送用吐出孔として形成されることで
ある。
[Means for Solving the Problems] In other words, the characteristics of the sample transport device using airflow according to the present invention are that a gas supply path into which high-pressure gas is introduced and a sample such as a semiconductor wafer placed under the gas supply path. A plurality of gas discharge holes are bored along the transport direction of the sample plate in the partition wall provided between the guide passage for transporting the plate, and the gas discharge holes are provided at upstream and downstream positions of the guide passage in the sample transport direction, respectively. An opening for carrying in the plate and an opening for carrying out the sample plate are opened, and at least one of the plurality of gas discharge holes is used to discharge the sample from the side of the sample plate placed at the position of the sample carrying inlet. It is formed as a pick-up discharge hole for guiding gas to the back surface to levitate the sample plate, and the other plurality of gas discharge holes have also been used in transportation to form an airflow in the same direction by tilting the sample in the same direction. It is to be formed as a discharge hole for use.

〔作用〕[Effect]

このような構成を有する気流による試料搬送装置によれ
ば、上記試料搬入口に静置された試料板は、上記ピンク
アンプ用吐出孔より噴射された気体のジェット流(どよ
り浮上されて無接触でピックアップされるとともに、上
記複数の搬送用吐出孔から噴射された気体により上記試
料搬送方向の気流が形成され、この気流のベルヌイ効果
により上記試料板は浮上した無接触状態のまま上記案内
通路中を上記試料搬出口まで搬送される。
According to the airflow sample transport device having such a configuration, the sample plate placed stationary at the sample loading port is floated by the jet stream of gas injected from the pink amplifier discharge hole and is floated in a non-contact manner. At the same time, the gas injected from the plurality of transport discharge holes forms an air current in the sample transport direction, and due to the Bernoulli effect of this air flow, the sample plate remains in a floating non-contact state in the guide path. is transported to the sample export port.

したかって、構成が簡単であるにもかかわらず、例えば
気相成長装置のサセプタ上に載置された半導体ウェハ等
の試料板を無接触でピンクアップでき、無接触状態のま
ま所望の位置まで搬送することができ、しかも周囲にご
み等を撒き散らすことなく、ウェハ等の試料板に対して
損傷を与えることもなく、汚染が生ずるおそれもなくな
る。
Therefore, despite the simple configuration, a sample plate such as a semiconductor wafer placed on the susceptor of a vapor phase growth apparatus can be pinked up without contact, and transported to the desired position without contact. Furthermore, there is no need to scatter dust or the like in the surrounding area, no damage to sample plates such as wafers, and no risk of contamination.

〔実施例〕〔Example〕

第1図は本発明の第1の実施例を示す概略縦断面図であ
り、この第1図においては、例えば半導体気相成長装置
のウェハ載置台いわゆるサセプタ1上に載置された半導
体ウェハ2を搬送するような気流による試料搬送装置の
例を示している。また、第2図は第1図の■−■線断面
図を、第3図は第1図のIIT−111線断面図をそれ
ぞれ示している。
FIG. 1 is a schematic vertical cross-sectional view showing a first embodiment of the present invention. In FIG. An example of a sample transport device using airflow is shown. Further, FIG. 2 shows a sectional view taken along the line ■--■ in FIG. 1, and FIG. 3 shows a sectional view taken along the line IIT-111 in FIG. 1.

これらの第1図ないし第3図において、試料搬送装置本
体は、全体として偏平な直方体形状の外筐内部を隔壁1
0により上下に2分し、上部室を気体供給路11、下部
室を試料搬送用の案内通路12としている。すなわち、
石英ガラス等により作られる外筺は、試料搬送方向に長
い長方形の上板13と底板14とが互いに平行に水平に
配置され、側面板15.16および端面板17.18に
より略偏平な直方体形状となるように構成されており、
上板13と底板14との間に仕切板となる隔壁10を水
平に配置することによって、上板13と隔壁10との間
に気体供給路11を、また隔壁10と底板14との間;
こ案内通路12をそれぞれ形成している。気体供給路1
1に対しては、上板13に覗り付けられた継手管19を
介して高圧気体か導入され、この高圧気体は隔壁10に
穿設された複数の気体吐出孔20を介して案内通路12
内に噴出するようになっている。案内通路12の試料搬
送方向(矢印入方向)の上流位置には、底板14の一部
が切欠除去されて、試料搬入用の開口部21が形成され
ており、また下流位置にも、底板14の一部が切欠除去
されることにより、試す 料搬遂用の開口部22が形成されている。
In FIGS. 1 to 3, the main body of the sample transporting device has a flat rectangular parallelepiped-shaped outer casing with a partition wall 1.
The upper chamber is divided into upper and lower halves by 0, with the upper chamber serving as a gas supply path 11 and the lower chamber serving as a guide path 12 for transporting the sample. That is,
The outer casing made of quartz glass or the like has a rectangular top plate 13 and a bottom plate 14 that are long in the sample transport direction and are horizontally arranged parallel to each other, and has a substantially flat rectangular parallelepiped shape with side plates 15.16 and end plates 17.18. It is configured so that
By horizontally arranging the partition wall 10 serving as a partition plate between the top plate 13 and the bottom plate 14, a gas supply path 11 is formed between the top plate 13 and the partition wall 10, and between the partition wall 10 and the bottom plate 14;
This guide passage 12 is formed respectively. Gas supply path 1
1, high-pressure gas is introduced through a joint pipe 19 peering into the upper plate 13, and this high-pressure gas flows into the guide passage 12 through a plurality of gas discharge holes 20 formed in the partition wall 10.
It seems to gush inside. A portion of the bottom plate 14 is cut out to form an opening 21 for carrying in the sample at an upstream position in the sample transport direction (direction of the arrow) of the guide passage 12, and an opening 21 for carrying in the sample is formed at the downstream position as well. By removing a portion of the notch, an opening 22 for carrying the sample material is formed.

このような試料搬送装置本体は、案内通路12の上流側
の上記試料搬入用の開口部21が上記サセプタ1上に載
置された半導体ウニ/X2の一枚を覆うように設置され
る。このとき上記筐体の開口部21の周縁部とサセプタ
1との間に大きな間隙が生しないように、すなわち案内
通路12に噴出された気体が開口部21の周縁部の間隙
を介して外部に漏れることを極力抑えるように、−リー
セブク1の外形形状に対応した開口部21の周縁部形状
とすることか望ましい。また、案内通路12の下流側の
上記試料搬送用の開口部22には、例えばベルトコンベ
ア23等を設置している。
Such a sample transport device main body is installed so that the opening 21 for carrying in the sample on the upstream side of the guide path 12 covers one of the semiconductor urchins/X2 placed on the susceptor 1. At this time, a large gap should not be created between the periphery of the opening 21 of the casing and the susceptor 1, so that the gas ejected into the guide passage 12 can flow outside through the gap of the periphery of the opening 21. In order to suppress leakage as much as possible, it is desirable that the shape of the peripheral edge of the opening 21 corresponds to the external shape of the reese book 1. Furthermore, a belt conveyor 23 or the like, for example, is installed in the sample transport opening 22 on the downstream side of the guide passage 12.

ところで、上記仕切板となる隔壁10に穿設された複数
個の気体吐出孔20のうち、上記試料搬入用の開口部2
1近傍に設けられた少くとも1個については、試料板で
ある半導体ウニ/’2の側面に上記気体を噴射させて、
第4図の矢印に示すようにウェハ2の裏面に気体を導く
ことによりウェハ2を浮上させるためのピックアップ用
吐出孔ンOaとして形成されている。また、他の気体吐
出孔については、上記試料搬送方向(矢印入方向)に所
定角度θだけ傾け、同矢印へ方向の気流を形成するため
の搬送用吐出孔20bとして形成されている。ここで、
吐出口20の径は例えば0.8〜1、0 mmとし上記
傾き角度θは例えば20Q−300とすればよく、搬送
用吐出孔20bは試料搬送方向(矢印入方向)に沿って
複数列設けられている。
By the way, among the plurality of gas discharge holes 20 formed in the partition wall 10 serving as the partition plate, the opening 2 for carrying in the sample
For at least one piece provided in the vicinity of 1, the above gas is injected onto the side surface of the semiconductor sea urchin/'2 which is the sample plate,
As shown by the arrow in FIG. 4, the discharge hole Oa is formed as a pick-up discharge hole Oa for floating the wafer 2 by introducing gas to the back surface of the wafer 2. The other gas discharge holes are tilted by a predetermined angle θ in the sample conveyance direction (the direction of the arrow), and are formed as conveyance discharge holes 20b for forming an air flow in the direction of the arrow. here,
The diameter of the discharge port 20 may be, for example, 0.8 to 1.0 mm, and the above-mentioned inclination angle θ may be, for example, 20Q-300, and the discharge holes 20b for conveyance may be provided in multiple rows along the sample conveyance direction (arrow entry direction). It is being

さらに、第2図に示す試料搬送方向とは垂直な断面にお
いて、複数(例えば3個)の搬送用吐出孔20bを、そ
れぞれ案内通路12の幅方向(矢印B方向)の中央に向
かうような傾きをもたせて形成してもよい。このような
幅方向(矢印B方向)についての傾斜を搬送用吐出孔2
0bにもたぜることにより、案内通路12内を搬送され
る試料板(半導体ウェハ2)の幅方向(矢印B方向)の
動きが規制され、案内通路12内の略中央位置を試料板
か円滑に搬送される。
Furthermore, in the cross section perpendicular to the sample transport direction shown in FIG. It may also be formed with Such an inclination in the width direction (direction of arrow B) is
0b, the movement of the sample plate (semiconductor wafer 2) in the width direction (direction of arrow B) being conveyed within the guide passage 12 is restricted, and the approximately central position within the guide passage 12 is held close to the sample plate. Transported smoothly.

次に、このような気流による試料搬送装置の動作につい
て説明する。先ず、基本的な動作原理としてはいわゆる
ヘルヌイ効果を利用しており、第5図に示すように、案
内通路12内に上記複数の搬送用吐出孔20bから噴出
された気体によって試料搬送方向(矢印入方向)の気流
あるいはジェット流が形′成されることにより、試料板
である半導体ウェハ2の表面側が負圧となってウニ六′
2が浮上するとともに、ウェハ2の裏面にも上記噴出さ
れた気体が回り込んで同矢印へ方向の流れが生じ、これ
らの表面側と裏面側の気流のバランスにのって、ウェハ
2は無接触状態のまま矢印入方向に高速に移動する。こ
のように、ウェハ2が一旦浮上すれば円滑に矢印入方向
に搬送されるわけであるが、すてブタ1上に載置されて
いるウエノ12を浮上させる場合、特に、サセプタ1に
ウェハ収納用の凹部(いわゆる座ぐり穴)3が形成され
て、この凹部3内にウェハ2が嵌り込んでいる場合には
、上記矢印入方向の気流(ジェット流)のみではウェハ
2が浮上しないこともある。このため、本発明において
は、静置状態にあるウェハ2の側面に上記ピンクアップ
用吐出孔20aより気体を吹き付け、ウェハ2の裏面に
強制的に気体を回り込ませることによって確実にウェハ
2を浮上させている。このピックアップ用吐出孔20a
を設けたことにより、静置状態にあるウェハ2の浮上が
円滑かつ確実に行える。また、案内通路12内を無接触
状態で搬送されたウェハ2は、上記試料搬出用の開口部
22まで送られ、この開口部22を介して外部に取り出
され、例えばベルトコンベア23上に載置されてこのベ
ルトコンベア23によりウェハ収納カセソl−(図示せ
ず)等に運ばれる。
Next, the operation of the sample transport device using such an airflow will be explained. First, as a basic operating principle, the so-called Herny effect is utilized, and as shown in FIG. As a result of the formation of an air flow or jet flow in the direction of inflow, negative pressure is created on the surface side of the semiconductor wafer 2, which is the sample plate, and the sea urchin 6'
As the wafer 2 floats up, the ejected gas flows around the back side of the wafer 2, creating a flow in the direction of the arrow, and with the balance of these airflows on the front side and the back side, the wafer 2 becomes empty. Move at high speed in the direction of the arrow while in contact. In this way, once the wafer 2 floats, it is smoothly transported in the direction indicated by the arrow. However, when floating the wafer 12 placed on the susceptor 1, it is especially important to If a recess (so-called counterbore hole) 3 is formed and the wafer 2 fits into the recess 3, the wafer 2 may not float only with the air flow (jet flow) in the direction of the arrow. be. Therefore, in the present invention, the wafer 2 is reliably levitated by blowing gas from the pink-up discharge hole 20a onto the side surface of the wafer 2 in a stationary state and forcing the gas to flow around the back surface of the wafer 2. I'm letting you do it. This pickup discharge hole 20a
By providing this, it is possible to smoothly and reliably levitate the wafer 2 which is in a stationary state. Further, the wafer 2 that has been conveyed in a non-contact state within the guide path 12 is sent to the sample carrying out opening 22, taken out to the outside through this opening 22, and placed on, for example, a belt conveyor 23. The wafers are then transported by the belt conveyor 23 to a wafer storage cassette l- (not shown) or the like.

次に、上記気体供給路11は、例えば第6図に示す本発
明の第2の実施例のように、管体31を用い、て形成し
てもよく、この管体31と隔壁10とを貫通するように
複数の気体吐出孔20を穿設し、管体31内の気体供給
路11に導入された高圧気体を、上記気体吐出孔20を
介して試料搬送のための案内通路12内に噴射させれば
よい。イの構成は前述した第1の実施例と同様であるた
め、図中対応する部分に同じ指示符号を付し、説明を省
略する。
Next, the gas supply path 11 may be formed using a tube 31, for example as in the second embodiment of the present invention shown in FIG. A plurality of gas discharge holes 20 are drilled through the pipe body 31, and the high-pressure gas introduced into the gas supply path 11 in the tube body 31 is passed through the gas discharge holes 20 into the guide path 12 for transporting the sample. All you have to do is spray it. Since the configuration of the second embodiment is the same as that of the first embodiment described above, corresponding parts in the drawings are denoted by the same reference numerals and the explanation thereof will be omitted.

この他、上記気体供給路を、第7図に示す第3の実施例
のように断面三角形状の筒体41で形成したり、第8図
に示す第4の実施例のように断面四角形状の筒体51で
形成してもよく、これらの断面形状(三角形あるいは四
角形)の−辺を隔壁10により形成して、谷気体供給路
11に導入された高圧気体が隔壁10に穿設された気体
吐出孔20を介して案内通路12内に噴射されるように
構成すればよい。
In addition, the gas supply path may be formed of a cylindrical body 41 having a triangular cross section as in the third embodiment shown in FIG. 7, or a square cross section as in the fourth embodiment shown in FIG. The cylindrical body 51 may be formed with a cylindrical body 51, and the − side of these cross-sectional shapes (triangular or quadrangular) is formed by the partition wall 10, and the high pressure gas introduced into the valley gas supply path 11 is perforated in the partition wall 10. The configuration may be such that the gas is injected into the guide passage 12 through the gas discharge hole 20.

な−j6.本発明は上記実施例のみに限定されるもので
はなく、例えば上記試料搬出用の開口部は、底板14を
一部切欠して形成する代りに、下流側の端面板18を切
欠除去して形成してもよい。また、気体吐出孔20の配
列パターンや孔径、傾き角等は実施例のものに限定され
ないことは勿論である。
Na-j6. The present invention is not limited to the above-described embodiments; for example, instead of forming the opening for carrying out the sample by cutting out a portion of the bottom plate 14, the opening is formed by removing a cut from the end plate 18 on the downstream side. You may. Further, it goes without saying that the arrangement pattern, hole diameter, inclination angle, etc. of the gas discharge holes 20 are not limited to those of the embodiment.

〔発明の効果〕〔Effect of the invention〕

本発明に係る気流による試料搬送装置によれば、簡単な
構造にもかかわらず、例えばサセプタ上に載置された半
導体ウェハ等の試料板を無接触で浮上させ、無接触状態
を保ったまま搬送移動させることができ、ウェハ等の試
料板を損傷することなく、かつウェハ等を汚染すること
なくピックアップおよび搬送することかできる。また、
案内通路を長く形成することにより、搬送距離を長くと
ることができ、静置されたウェハ等の試料板を所望の位
置にまで容易に搬送することが可能となる。
According to the sample transport device using air current according to the present invention, despite the simple structure, a sample plate such as a semiconductor wafer placed on a susceptor can be levitated without contact and transported while maintaining a contact-free state. It can be moved, and it can be picked up and transported without damaging the sample plate such as a wafer or contaminating the wafer. Also,
By forming a long guide path, the transport distance can be increased, and a sample plate such as a wafer placed still can be easily transported to a desired position.

さらに、従来のメカチャック装置等のようにウェハ等の
試料板を直接ピンクアンプする必要がないため、ピック
アップ部分での位置精度に高精度を要求されることがな
く、また、ウェハ寸法等が変。
Furthermore, unlike conventional mechanical chuck devices, there is no need to directly pink-amplify the sample plate such as a wafer, so there is no need for high positional accuracy at the pick-up section, and there is no need to change the wafer dimensions. .

更になってもピックアップ可能であり、汎用性に高く自
動化に容易な構成となっている。丈た、機械的動作機構
か無く、摩耗部分が無いため、長寿命であり保守も容易
であるのみならず、単純な構造より低価格化が図れる。
Furthermore, it can be picked up even if it grows, and has a configuration that is highly versatile and easy to automate. Since it is long, has no mechanical movement mechanism, and has no wear parts, it not only has a long life and is easy to maintain, but also can be cheaper than a simple structure.

さらに、試料搬入口と→J−セプク等の試料載置台との
間の気密性を改善することにより、他のウェハ等への汚
染も最小限に止めることができる。
Furthermore, by improving the airtightness between the sample loading port and the sample mounting table such as the →J-Sepuku, contamination of other wafers, etc. can be minimized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示す概略縦断面図、第
2図は第1図の■−■線断面を示す概略横断面図、第3
図は第1図の■−■線断面を概略的に示す断面図、第4
図は上記第1の実施例におけるウェハのピックアップ動
作を説明するための概略断面図、第5図は該実施例のウ
ェハ搬送動作を説明するための概略断面図であり、第6
図は本発明の第2の実施例を示す概略横断面図、第7図
は本発明の第3の実施例を示す概略横断面図、第8図は
本発明の第4の実施例を示す概略横断面図である。
FIG. 1 is a schematic vertical cross-sectional view showing a first embodiment of the present invention, FIG. 2 is a schematic cross-sectional view taken along the line ■-■ in FIG. 1, and FIG.
The figure is a cross-sectional view schematically showing the section taken along the line ■-■ in Figure 1.
FIG. 5 is a schematic sectional view for explaining the wafer pickup operation in the first embodiment, FIG. 5 is a schematic sectional view for explaining the wafer transport operation in the first embodiment,
The figure is a schematic cross-sectional view showing a second embodiment of the invention, FIG. 7 is a schematic cross-sectional view showing a third embodiment of the invention, and FIG. 8 is a schematic cross-sectional view showing a fourth embodiment of the invention. It is a schematic cross-sectional view.

Claims (1)

【特許請求の範囲】[Claims] 高圧気体が導入される気体供給路とこの気体供給路の下
部に配される試料搬送用の案内通路との間に設けられた
隔壁に、試料搬送方向に沿って複数の気体吐出孔を穿設
し、上記案内通路の上記試料搬送方向の上流および下流
位置にそれぞれ試料搬入口および試料搬出口を開設して
成り、上記複数の気体吐出孔のうち少くとも1個は上記
試料搬入口の位置に静置された試料の側面より試料裏面
に気体を導いて試料を浮上させるためのピックアップ用
吐出孔として形成され、他の上記気体吐出孔は少なくと
も上記試料搬送方向に傾斜させることにより同方向の気
流を形成する搬送用吐出孔として形成されることを特徴
とする気流による試料搬送装置。
Multiple gas discharge holes are drilled along the sample transport direction in the partition wall provided between the gas supply path into which high-pressure gas is introduced and the guide path for sample transport located at the bottom of this gas supply path. A sample inlet and a sample outlet are provided at upstream and downstream positions of the guide passage in the sample transport direction, respectively, and at least one of the plurality of gas discharge holes is located at the position of the sample inlet. It is formed as a pick-up discharge hole for guiding gas from the side surface of a stationary sample to the back surface of the sample to levitate the sample, and the other gas discharge holes are tilted at least in the sample transport direction to prevent airflow in the same direction. 1. A sample transport device using an air current, characterized in that it is formed as a transport discharge hole that forms a transport discharge hole.
JP16142784A 1984-07-31 1984-07-31 Air sample transport device Expired - Lifetime JPH0620938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16142784A JPH0620938B2 (en) 1984-07-31 1984-07-31 Air sample transport device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16142784A JPH0620938B2 (en) 1984-07-31 1984-07-31 Air sample transport device

Publications (2)

Publication Number Publication Date
JPS6137622A true JPS6137622A (en) 1986-02-22
JPH0620938B2 JPH0620938B2 (en) 1994-03-23

Family

ID=15734897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16142784A Expired - Lifetime JPH0620938B2 (en) 1984-07-31 1984-07-31 Air sample transport device

Country Status (1)

Country Link
JP (1) JPH0620938B2 (en)

Also Published As

Publication number Publication date
JPH0620938B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
KR100675408B1 (en) Carrying unit
KR20050083540A (en) Film removing apparatus, film removing method and substrate processing system
JP2006128153A (en) System and method for opening and closing lid of enclosed container
TW417150B (en) Substrate moving device and the operating method thereof
CN109318285A (en) Dust suction unit
JPH0717628A (en) Method and device for conveying thin plate
JP2000100896A (en) Method and device for carrying wafer
KR102315301B1 (en) Conveying pad and method for conveying wafer
JP2007216329A (en) Robotic hand
JPS6137622A (en) Material transporting device using air stream
JPS5943819B2 (en) exposure equipment
JP2016030234A (en) Discharger for molding inspection machine
JP3718014B2 (en) Plate-shaped material transfer device and non-contact transfer line
JP7002315B2 (en) Handling arm, transport device and local cleaning device
KR100805278B1 (en) Wafer transfer robot and cluster tool having the same
US4087133A (en) Transport system for disc-shaped work-pieces
JP3964361B2 (en) Purge apparatus and purge method
WO1998030480A1 (en) Article conveyor
JP2004115273A (en) Chip automatic separation and conveyance device
CN210573186U (en) Photomask detection device
KR100379052B1 (en) Apparatus for automatically feeding works
JPS62128539A (en) Conveyor for wafer
JPS59121226A (en) Air bearing
JP6182996B2 (en) Conveying device and conveying rotor
JP4893481B2 (en) Silicon wafer transfer device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term