JPS6137297B2 - - Google Patents

Info

Publication number
JPS6137297B2
JPS6137297B2 JP52018452A JP1845277A JPS6137297B2 JP S6137297 B2 JPS6137297 B2 JP S6137297B2 JP 52018452 A JP52018452 A JP 52018452A JP 1845277 A JP1845277 A JP 1845277A JP S6137297 B2 JPS6137297 B2 JP S6137297B2
Authority
JP
Japan
Prior art keywords
polypropylene
glass fiber
acrylic acid
maleic anhydride
phr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52018452A
Other languages
Japanese (ja)
Other versions
JPS53102948A (en
Inventor
Taisuke Okita
Kanemitsu Ooishi
Yoshiteru Tokawa
Shuji Yoshimi
Junichi Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP1845277A priority Critical patent/JPS53102948A/en
Publication of JPS53102948A publication Critical patent/JPS53102948A/en
Publication of JPS6137297B2 publication Critical patent/JPS6137297B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は優れた物性を有するガラス繊維強化ポ
リプロピレン成形材料に関する。 一般にポリプロピレンは優れた物理的、化学的
特性を有し、汎用の成形材料として広く用いられ
ている。しかしながらその耐熱性、剛性の改良を
主目的としてガラス繊維などの補強材で強化する
場合、他の熱可塑性樹脂、例えばナイロン、ポリ
カーボネート、スチレン系樹脂等に比較して補強
効果が小さく単純に混合するだけでは実用上満足
すべき複合材料は得られない。これは基本的には
ポリプロピレンが反応性の官能基を有しておらず
ガラス繊維との接着性が悪いことに基因している
が、この欠点を補うためシラン系カツプリング剤
などを用いてガラス繊維の表面処理をおこなうこ
とは通常やられており、ある程度の効果は得られ
ているが、満足すべき結果は得られない。 また、シラン系カツプリング剤でガラス繊維の
表面処理を行いそのカツプリング剤と反応性の官
能基を有し、かつポリプロピレンとの相溶性に優
れた適当な化合物を第三成分として添加する方法
もあり、実際におこなわれている例もあるが、こ
の場合も又充分満足すべき結果は得られない。 又、別な方法としてアクリル酸、無水マレイン
酸に代表される不飽和カルボン酸をポリプロピレ
ンと共重合させり、あるいはグラフト重合させた
変性ポリプロピレンを用いることも報告されてお
り、かなりの効果をあげてはいるが、いまだ充分
とはいいがたい。しかしながら、この方法によれ
ばカルボキシル基とガラス繊維の処理剤であるシ
ラン系カツプリング剤との間に強固な化学結合が
形成され、これによりポリプロピレンとガラス繊
維の間に優れた接着性があらわれ、変性ポリプロ
ピレンを使用した系では、シラン系カツプリング
剤のみ使用した系とか、第三成分を添加した系よ
りは、はるかに耐熱性、機械的強度の向上がみら
れるが、その効果とともに変性ポリプロピレンの
使用は種々の問題を発生させた。特に変性ポリプ
ロピレンはベース樹脂であるポリプロピレンに比
較して、はるかに吸湿性であるため、押出加工時
に発泡等の問題を発生させて、操業の安定性を悪
くし、又物性面においても発泡にともない気泡を
含むことからガラス繊維とマトリツクス樹脂の界
面にボイドを発生させることにもなり、変性ポリ
プロピレンを用いて接着性を向上させた効果も結
果的には充分にあらわれないという場合が多かつ
た。 本発明はポリプロピレンをガラス繊維にて補強
する場合に変性ポリプロピレンを用い、かつ前述
した如き問題も解消し、従来のものに比較して物
性面に飛躍的に向上したガラス繊維強化ポリプロ
ピレン成形材料に関する。 本発明はポリプロピレン(A)95〜70wt%および
ガラス繊維に対して0.02〜0.2PHRのアミノシラ
ン系カツプリング剤および0.2〜1.2PHRのエポキ
シ樹脂で処理したガラス繊維(B)5〜30wt%から
なる混合物(A+B)に対して、ガラス繊維(B)に
対してのアクリル酸又は無水マレイン酸の重量比
率が0.01〜0.06の範囲になるようにアクリル酸又
は無水マレイン酸を含む変性ポリプロピレン(C)を
添加した混合物(A+B+C)をベント型押出機
で減圧度500mmHg以上の減圧状態で押圧加工し
て得られる強じんなガラス繊維強化ポリプロピレ
ン成形材料に関するものであり、具体的な検討結
果については実施例に示す。 本発明に用いられるポリプロピレンは一般的に
ポリプロピレンの名称でいわれる結晶性ポリプロ
ピレンのことであり、プロピレンの単独重合体お
よびプロピレンの共重合体中の含有率が15wt%
以下の他のα−オレフイン、例えばエチレンとの
本質的に結晶性である共重合体を意味するもので
ある。又、ガラス繊維の処理剤としてはカツプリ
ング剤としてアミノシランを0.02〜0.2PHR、集
束剤として0.2〜1.2PHRのエポキシ樹脂を添加し
たものがよく、カツプリング剤としては他にビニ
ルシラン、アクリルシラン、エポキシシラン等
又、集束剤としては酸ビ等について検討をおこな
つたが、上述した処理剤を用いる場合に並びうる
ような結果は得られなかつた。又、添加量につい
てはカツプリング剤の場合はガラス繊維に対して
0.02PHR以上、好ましくは0.04PHR以上がよく、
上限は、0.2PHRまでが実用的であり、それ以上
添加しても機械的物性、耐熱性等の物性面で向上
はみられない。又、集束剤の場合は0.2PHR以
上、好ましくは0.3PHR以上がよく上限は1.2PHR
までが実用的であり、それ以上添加しても物性面
での向上はあまみられず、逆に熱安定性の点で着
色等の問題が発生してくる。又、混合物中のガラ
ス繊維濃度はガラス繊維の補強効果が顕著になる
5wt%以上30wt%までが実際的であり、それ以上
になると物性面でのバランスが悪くなり、製造面
でも難しくなる。 又、本発明に用いられる変性ポリプロピレンは
所定量のポリプロピレンに無水マレイン酸又はア
クリル酸を有機過酸化物とともに添加し、一般に
用いられる押出機中で溶融混練し、製造される。
変性ポリプロピレン中の無水マレイン酸又はアク
リル酸の濃度は任意でよいが、変性ポリプロピレ
ンの熱安定性、グラフト率等から2.0〜6.0wt%ぐ
らいが適当であり、又混合物中の無水マレイン酸
又はアクリル酸の濃度は混合物中のガラス繊維濃
度(処理剤の量)により決定され、ガラス繊維に
対して前述した処理剤濃度であればガラス繊維と
アクリル酸又は無水マレイン酸の比率が0.01〜
0.16が適当であり、0.01以下では変性効果が不充
分であり、0.06以上であれば特に熱安定性の点で
実用上問題が発生する。 又、本発明では前述したポリプロピレン、ガラ
ス繊維、変性ポリプロピレンを混合する場合にベ
ント型押出機を用いてベント部分より真空ポンプ
等の設備にて減圧状態で押出加工し、製品のVM
(揮発分)を0.1wt%以下にすることを特徴として
いる。変性ポリプロピレンは吸湿性であるため減
圧ではない一般の条件(大気解放下)で押出加工
をおこなうと成形品が発泡し、操業の安定性を悪
くし、物性面でもマトリツクスポリマーとガラス
繊維の接着状態を不良にするため、期待した程の
効果が得られない。そのため従来までは変性ポリ
プロピレンの予備乾燥等がおこなわれてきたが、
予備乾燥では表面付着水分を若干取り除くという
程度の効果しかなくはなはだ不充分である。 又、VM(揮発分)については実施例にも示す
が、0.1wt%以下にすることが必要であり、減圧
状態で加工すればある程度の物性を有するものは
得られるが、0.1wt%のVM(揮発分)を含んで
おれば満足すべき物性のものは得られない。 なお、VM(揮発分)は試料約10grを105℃恒
温乾燥器内で5時間加熱乾燥した後の揮発分を重
量%であらわしたものを意味する。 又、本発明の成形材料に一般的に各種の酸化防
止剤、紫外線吸収剤等の安定剤および一般的な顔
料、無機充填剤等の添加は任意になし得る。
The present invention relates to a glass fiber reinforced polypropylene molding material having excellent physical properties. Generally, polypropylene has excellent physical and chemical properties and is widely used as a general-purpose molding material. However, when reinforcing it with a reinforcing material such as glass fiber with the main purpose of improving its heat resistance and rigidity, the reinforcing effect is small compared to other thermoplastic resins such as nylon, polycarbonate, styrene resin, etc., and it is difficult to mix easily. A practically satisfactory composite material cannot be obtained by using only this method. This is basically due to the fact that polypropylene does not have reactive functional groups and has poor adhesion to glass fibers, but to compensate for this drawback, silane-based coupling agents etc. are used to bond the fibers to glass fibers. Surface treatment is commonly used, and although some effects have been obtained, satisfactory results have not been obtained. There is also a method in which the surface of glass fibers is treated with a silane coupling agent, and a suitable compound that has a functional group reactive with the coupling agent and has excellent compatibility with polypropylene is added as a third component. Although there are some examples where this has actually been done, in these cases too, fully satisfactory results have not been obtained. In addition, as another method, it has been reported to use modified polypropylene obtained by copolymerizing or graft polymerizing unsaturated carboxylic acids such as acrylic acid and maleic anhydride with polypropylene, and this method has been reported to be quite effective. There are, but it is still far from sufficient. However, according to this method, a strong chemical bond is formed between the carboxyl group and the silane coupling agent, which is a treatment agent for glass fibers, resulting in excellent adhesion between polypropylene and glass fibers. Systems using polypropylene show much better heat resistance and mechanical strength than systems using only a silane coupling agent or systems with the addition of a third component, but along with these effects, the use of modified polypropylene This caused various problems. In particular, modified polypropylene is much more hygroscopic than the base resin polypropylene, so it can cause problems such as foaming during extrusion processing, worsening operational stability, and also has physical properties that are affected by foaming. Since it contains air bubbles, voids are generated at the interface between the glass fiber and the matrix resin, and the effect of improving adhesion using modified polypropylene is often not sufficiently achieved. The present invention relates to a glass fiber-reinforced polypropylene molding material that uses modified polypropylene when reinforcing polypropylene with glass fibers, solves the above-mentioned problems, and has dramatically improved physical properties compared to conventional ones. The present invention is a mixture consisting of 95 to 70 wt% of polypropylene (A) and 5 to 30 wt% of glass fiber (B) treated with an aminosilane coupling agent of 0.02 to 0.2 PHR and an epoxy resin of 0.2 to 1.2 PHR based on the glass fiber. To A+B), modified polypropylene (C) containing acrylic acid or maleic anhydride was added such that the weight ratio of acrylic acid or maleic anhydride to glass fiber (B) was in the range of 0.01 to 0.06. This article relates to a strong glass fiber-reinforced polypropylene molding material obtained by pressing the mixture (A+B+C) in a vented extruder at a reduced pressure of 500 mmHg or more, and specific study results are shown in Examples. The polypropylene used in the present invention is a crystalline polypropylene commonly referred to as polypropylene, and the content in the propylene homopolymer and propylene copolymer is 15 wt%.
By this we mean essentially crystalline copolymers with other α-olefins, such as ethylene. In addition, as a treatment agent for glass fibers, it is best to add aminosilane at 0.02 to 0.2 PHR as a coupling agent and epoxy resin at 0.2 to 1.2 PHR as a sizing agent.Other coupling agents include vinyl silane, acrylic silane, epoxy silane, etc. Further, as a sizing agent, vinyl oxide and the like were investigated, but results comparable to those obtained when using the above-mentioned processing agent were not obtained. In addition, in the case of coupling agents, the amount added is based on glass fiber.
0.02PHR or more, preferably 0.04PHR or more,
The practical upper limit is 0.2 PHR, and adding more than that will not improve physical properties such as mechanical properties and heat resistance. In addition, in the case of a sizing agent, it should be 0.2PHR or more, preferably 0.3PHR or more, and the upper limit is 1.2PHR.
Up to this point is practical, and even if more than that is added, no improvement in physical properties is observed, and on the contrary, problems such as coloring occur in terms of thermal stability. In addition, the reinforcing effect of glass fiber becomes noticeable as the concentration of glass fiber in the mixture increases.
A range of 5 wt% or more to 30 wt% is practical; if it exceeds this, the balance in terms of physical properties will be poor and manufacturing will also become difficult. The modified polypropylene used in the present invention is produced by adding maleic anhydride or acrylic acid together with an organic peroxide to a predetermined amount of polypropylene, and melt-kneading the mixture in a commonly used extruder.
The concentration of maleic anhydride or acrylic acid in the modified polypropylene may be arbitrary, but from the viewpoint of the thermal stability of the modified polypropylene, the grafting rate, etc., it is appropriate to range from 2.0 to 6.0 wt%. The concentration of is determined by the concentration of glass fibers (amount of treatment agent) in the mixture, and if the concentration of treatment agent for glass fibers is as described above, the ratio of glass fibers to acrylic acid or maleic anhydride is 0.01 to 0.01.
A value of 0.16 is appropriate; if it is less than 0.01, the modification effect is insufficient, and if it is more than 0.06, practical problems will occur, especially in terms of thermal stability. In addition, in the present invention, when mixing polypropylene, glass fiber, and modified polypropylene, the vented extruder is used to extrude from the vent part under reduced pressure with equipment such as a vacuum pump, and the VM of the product is
It is characterized by having (volatile content) less than 0.1wt%. Modified polypropylene is hygroscopic, so if it is extruded under normal conditions (open to the atmosphere) without reduced pressure, the molded product will foam, worsening operational stability, and in terms of physical properties, adhesion between the matrix polymer and glass fibers will occur. Because the condition deteriorates, the expected effect cannot be obtained. For this reason, in the past, pre-drying of modified polypropylene was carried out, but
Pre-drying only has the effect of slightly removing moisture adhering to the surface, which is extremely insufficient. In addition, as shown in the examples, VM (volatile content) must be kept at 0.1wt% or less, and if processed under reduced pressure, products with certain physical properties can be obtained, but 0.1wt% VM (volatile matter), satisfactory physical properties cannot be obtained. Note that VM (volatile content) means the volatile content expressed in weight % after heating and drying about 10g of a sample in a constant temperature dryer at 105°C for 5 hours. Furthermore, generally various antioxidants, stabilizers such as ultraviolet absorbers, general pigments, inorganic fillers, etc. may be optionally added to the molding material of the present invention.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ポリプロピレン(A)95〜70wt%およびガラス
繊維に対して0.02〜0.2PHRのアミノシラン系カ
ツプリング剤および0.2〜1.2PHRのエポキシ樹脂
で処理したガラス繊維(B)5〜30wt%からなる混
合物(A+B)に対して、ガラス繊維(B)に対して
のアクリル酸又は無水マレイン酸の重量比率が
0.01〜0.06の範囲になるようにアクリル酸又は無
水マレイン酸を含む変性ポリプロピレン(C)を添加
した混合物(A+B+C)をベント型押出機で減
圧状態で押出加工して得られるVM(揮発分)
0.1wt%以下の強じんなポリプロピレン成形材
料。
1. A mixture consisting of 95 to 70 wt% of polypropylene (A) and 5 to 30 wt% of glass fiber (B) treated with 0.02 to 0.2 PHR of an aminosilane coupling agent and 0.2 to 1.2 PHR of epoxy resin based on the glass fiber (A+B) In contrast, the weight ratio of acrylic acid or maleic anhydride to glass fiber (B) is
VM (volatile content) obtained by extruding a mixture (A+B+C) in which modified polypropylene (C) containing acrylic acid or maleic anhydride is added to the range of 0.01 to 0.06 under reduced pressure using a vented extruder.
Tough polypropylene molding material less than 0.1wt%.
JP1845277A 1977-02-21 1977-02-21 Polypropylene molding material Granted JPS53102948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1845277A JPS53102948A (en) 1977-02-21 1977-02-21 Polypropylene molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1845277A JPS53102948A (en) 1977-02-21 1977-02-21 Polypropylene molding material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP14735087A Division JPS62295940A (en) 1987-06-12 1987-06-12 Polypropylene molding material

Publications (2)

Publication Number Publication Date
JPS53102948A JPS53102948A (en) 1978-09-07
JPS6137297B2 true JPS6137297B2 (en) 1986-08-22

Family

ID=11972010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1845277A Granted JPS53102948A (en) 1977-02-21 1977-02-21 Polypropylene molding material

Country Status (1)

Country Link
JP (1) JPS53102948A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147850A (en) * 1980-04-18 1981-11-17 Karupu Kogyo Kk Resin composition with improved mechanical strength and coating property
US4387188A (en) * 1981-02-23 1983-06-07 E. I. Du Pont De Nemours And Company Molding resins based on blends of acid copolymer/linear polyolefin/reinforcing fiber
JPS581738A (en) * 1981-06-29 1983-01-07 Tokuyama Soda Co Ltd Polyolefin composition
JPS5852335A (en) * 1981-09-21 1983-03-28 Tokuyama Soda Co Ltd Polypropylene composition
JPS6043381B2 (en) * 1983-09-12 1985-09-27 カルプ工業株式会社 composite resin composition
JPS60170643A (en) * 1984-02-15 1985-09-04 Asahi Chem Ind Co Ltd Production of polyolefin resin composition
FR2579133B1 (en) * 1985-03-25 1987-09-25 Atochem FIBER REINFORCED THERMOPLASTIC POLYMER COMPOSITE MATERIAL, MANUFACTURING METHOD THEREOF
MY123914A (en) * 1997-01-17 2006-06-30 Kisco Ltd Glass fiber reinforced polypropylene composition and method for manufacturing the same
CN111685415A (en) * 2020-05-26 2020-09-22 界首市圣通无纺布有限公司 High-efficiency antiviral protective mask produced by using modified PP (polypropylene) non-woven fabric

Also Published As

Publication number Publication date
JPS53102948A (en) 1978-09-07

Similar Documents

Publication Publication Date Title
EP1551924B1 (en) Natural fiber-filled polyolefin composites
US3691257A (en) Organic polymers containing siloxane-organic block copolymers
US5010122A (en) Plastic-rubber composites
US4003874A (en) Producing glass-reinforced polyolefin compositions
DE3150547A1 (en) SHAPING MATERIALS CONTAINING FLAX FIBER BASED ON THERMOPLASTIC RESIN
CN107722448B (en) Composite composition for automotive interior material using natural fiber
KR950018225A (en) Mixture for melt molding of glass filament polypropylene and polypropylene
US3988287A (en) Polyamide compositions
US3766135A (en) Reinforced polypropylene composition and its production
JPS6137297B2 (en)
EP0313003B1 (en) Glass fiber reinforced poly(vinyl chloride) blend with improved heat distortion and tensile strength
US5008145A (en) Glass fiber reinforced poly(vinyl chloride) blend with improved heat distortion and tensile strength
JP5058960B2 (en) Glass sizing composition
CN109021583A (en) Three component tear-proof silicon rubber of one kind and preparation method
JPS6352051B2 (en)
JPS6013837A (en) Treated product of impact-resistant resin
JPS5986649A (en) Glass fiber-reinforced styrene resin composition
US2614092A (en) Infusible copolymeric vinylidene chloride composition
BE591575A (en)
US2855374A (en) Crotonic acid modified polyvinyl emulsions and process for preparing same
JPS5817137A (en) Thermoplastic elastomer composition
US4975487A (en) Polymeric polyblend composition
JPS5971364A (en) Crosslinkable composition based on alkoxysilane
KR940011408B1 (en) Glass fiber-reinforced polypropylene resin composition
JPH0326220B2 (en)