JPS5986649A - Glass fiber-reinforced styrene resin composition - Google Patents

Glass fiber-reinforced styrene resin composition

Info

Publication number
JPS5986649A
JPS5986649A JP19733282A JP19733282A JPS5986649A JP S5986649 A JPS5986649 A JP S5986649A JP 19733282 A JP19733282 A JP 19733282A JP 19733282 A JP19733282 A JP 19733282A JP S5986649 A JPS5986649 A JP S5986649A
Authority
JP
Japan
Prior art keywords
glass fiber
resin
epoxy
unsaturated dicarboxylic
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19733282A
Other languages
Japanese (ja)
Other versions
JPH0157140B2 (en
Inventor
Masuo Kawasawa
川澤 真寿雄
Zenichi Maruo
丸尾 善一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP19733282A priority Critical patent/JPS5986649A/en
Publication of JPS5986649A publication Critical patent/JPS5986649A/en
Publication of JPH0157140B2 publication Critical patent/JPH0157140B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide the titled resin compsn. having excellent mechanical strength and heat resistance and improved impact resistance, consisting of a styrene resin contg. an unsaturated dicarboxylic acid anhydride and glass fiber treated with an epoxy greige goods. CONSTITUTION:A compsn. consists of a styrene resin contg. 5-35wt% unsaturated dicarboxylic acid anhydride and glass fiber treated with an epoxy greige goods. When the content of the unsaturated dicarboxylic acid anhydride is less than 5wt%, the heat resistance of the finally obtd. resin compsn. is not so improved, while when the content exceeds 35wt%, the impact resistance of the final resin compsn. is not so improved. As the glass fiber, those having a diameter of 9-13mu are suitable and those which are surface-treated with a silane coupling agent are preferred. Examples of the epoxy greige goods are those mainly composed of an epoxy resin such as bisphenol/epichlorohydrin epoxy resin or epoxyalkyl ester.

Description

【発明の詳細な説明】 本発明は機械的強度、耐熱性に優れ、且つ耐衝撃性の改
良されたガラス繊維強化スチレン系樹脂組成物に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a glass fiber-reinforced styrenic resin composition that has excellent mechanical strength, heat resistance, and improved impact resistance.

従来、熱可塑性樹脂の機械的強度、耐熱性及び寸法安定
性を改良するために、熱可塑性樹脂にガラス繊維を配合
することは良く知られている。しかし、これまでのスチ
レン系樹脂を基体とした、ガラス繊維強化樹脂例えば、
スチレン−アクリロニトリル共重合物を用いたものでは
、機械的強度はある程度改良されるが、耐熱性はまだ不
満足であシ、更に耐衝撃性の向上も望まれている。
BACKGROUND ART Conventionally, it has been well known to blend glass fibers into thermoplastic resins in order to improve the mechanical strength, heat resistance, and dimensional stability of thermoplastic resins. However, conventional glass fiber reinforced resins based on styrene resins, for example,
Those using styrene-acrylonitrile copolymers have improved mechanical strength to some extent, but heat resistance is still unsatisfactory, and further improvement in impact resistance is desired.

本発明者等は、スチレン系樹脂として耐熱性の向上した
不飽和ジカルボン酸無水物変性スチレン系樹脂を使用し
て通常スチレン系樹脂に使用されているガラス繊維との
組合せにおいて検討を行なったが、耐熱性の向上はいく
分かは見られるが機械的強度、及び耐衝撃性については
まだ不満足であった。
The present inventors used an unsaturated dicarboxylic anhydride-modified styrenic resin with improved heat resistance as a styrenic resin, and investigated its combination with glass fiber, which is normally used in styrenic resins. Although some improvement in heat resistance was observed, mechanical strength and impact resistance were still unsatisfactory.

本発明はかかる欠点を改良することを目的として不飽和
ジカルボン酸無水物変性スチレン系樹脂のガラス繊維に
よる補強について鋭意研究した結果、意外にも通常スチ
レン系樹脂には使われないエポキシ系の集束剤で処理さ
れたガラ的にバランスの取れた組成物が得られることを
見いだし本発明を完成した。
The present invention was developed as a result of extensive research into reinforcing unsaturated dicarboxylic anhydride-modified styrene resins with glass fibers with the aim of improving these drawbacks. The present invention was completed by discovering that a composition with a good balance of glass can be obtained by treating the same.

即ち、本発明は不飽和ジカルボン酸無水物を5〜35重
量%含有するスチレン系樹脂と、エポキシ系の集束剤で
処理されたガラス繊維とからなることを特徴とするガラ
ス繊維強化スチレン系樹脂組成物である。
That is, the present invention provides a glass fiber reinforced styrenic resin composition comprising a styrene resin containing 5 to 35% by weight of unsaturated dicarboxylic anhydride and glass fibers treated with an epoxy sizing agent. It is a thing.

本発明の不飽和ジカルボン酸無水物としては、無水マレ
イン酸、無水シトラコン酸等が挙げられる。また、本発
明のスチレン系樹脂とはスチレン、α−メチチルチレン
J O’、m、p −) チルスチレン等のビニル芳香
族化合物と、上記不飽和ジカルボン酸無水物と、必要に
応じて上記のビニル芳香族化合物と共重合可能なビニル
モノマー及び/またはゴム状物質とからなるもので、上
記のビニル芳香族化合物が不飽和ジカルボン醗無水物を
のぞいた物の50チ以上をしめるものである。共重合可
能なビニルモノマーとしては、アクリロニトリル、メタ
クリロニトリル、アクリル酸及びそのエステル類、メタ
クリル酸及びそのエステル類が挙げられる。
Examples of the unsaturated dicarboxylic anhydride of the present invention include maleic anhydride, citraconic anhydride, and the like. In addition, the styrene resin of the present invention includes a vinyl aromatic compound such as styrene, α-methyltyrene J O', m, p -) tyrstyrene, the above-mentioned unsaturated dicarboxylic acid anhydride, and, if necessary, the above-mentioned vinyl aromatic compound. It consists of a vinyl monomer and/or a rubber-like substance copolymerizable with a group compound, and the vinyl aromatic compound accounts for 50 or more of the above-mentioned vinyl aromatic compounds excluding unsaturated dicarbonate anhydride. Copolymerizable vinyl monomers include acrylonitrile, methacrylonitrile, acrylic acid and its esters, and methacrylic acid and its esters.

本発明の組成物において不飽和ジカルボン酸無水物の含
有率は5〜35重量%であ)、好ましくは5〜30重量
%である。不飽和ジカルボン醗無水物の含有量が5重量
%よシ少ないと最終的に得られる樹脂組成物の耐熱性の
向上が小さく、逆に35重量%よシ多くなると最終的に
得られる樹脂組成物の耐衝撃性が余シ向上しない0 本発明おいて使用されるガラス繊維としては直径9〜1
3μのファイバーが適当であシ、シランカップリング剤
で表面処理したものが好ましい。特に本発明においては
、かかるグラスファイバーをエポキシ系の集束剤で処理
することによシ数百本集束されたストランドを1朋〜ド 25朋にカットしたチョップストランドが適当△ である。
In the composition of the present invention, the content of unsaturated dicarboxylic acid anhydride is 5 to 35% by weight), preferably 5 to 30% by weight. When the content of unsaturated dicarbon anhydride is less than 5% by weight, the improvement in heat resistance of the final resin composition is small; on the other hand, when the content is more than 35% by weight, the resulting resin composition The glass fiber used in the present invention has a diameter of 9 to 1.
A 3μ fiber is suitable, preferably one whose surface has been treated with a silane coupling agent. Particularly, in the present invention, chopped strands, which are obtained by treating such glass fibers with an epoxy-based sizing agent to bundle several hundred strands and cutting them into 1 to 25 sized strands, are suitable.

本発明のエポキシ系の集束剤とは、ビスフェノール・エ
ピクロルヒドリン型エポキシ樹脂、グリシジルエーテル
型エポキシ樹脂、テトラエポキシ、ノボラック型エポキ
シ樹脂、グリシジルアミン、エポキシアルキルエステル
、エポキシ化不飽和化合物等、エポキシ樹脂を主成分と
するものである。
The epoxy-based sizing agent of the present invention mainly includes epoxy resins such as bisphenol/epichlorohydrin type epoxy resin, glycidyl ether type epoxy resin, tetraepoxy, novolac type epoxy resin, glycidylamine, epoxy alkyl ester, and epoxidized unsaturated compound. It is an ingredient.

本発明の組成物において配合されるガラス繊維の量は、
特に規定されるものでないが通常は5〜60重量%であ
シ、好ましくは10〜40重量%である。また、ガラス
繊維の混合方法も、押出による溶融混線、トライブレン
ドによる直接成形などいずれの方法をもちいてもよい。
The amount of glass fiber blended in the composition of the present invention is
Although not particularly specified, it is usually 5 to 60% by weight, preferably 10 to 40% by weight. Further, as for the mixing method of the glass fibers, any method such as melt mixing by extrusion or direct molding by triblending may be used.

本発明の組成物は、通常のプラスチック成形機例えば、
射出成形機、押出成形機等によって所望の形状に容易に
成形することができ、耐衝撃性、耐熱性、機械的強度に
優れ、ガラス繊維の分散性の良い成形品が得られる。
The composition of the present invention can be applied to a conventional plastic molding machine such as
It can be easily molded into a desired shape using an injection molding machine, an extrusion molding machine, etc., and a molded product with excellent impact resistance, heat resistance, mechanical strength, and good dispersibility of glass fibers can be obtained.

例えば基体樹脂として本発明の無水マレイン酸変性スチ
レン樹脂を用い、通常スチレン系樹脂に使用されている
ガラス繊維を20重量優配合することによシ、その衝撃
強さは1 、0 klIcm/cmから5・1 kgt
m/cmに向上するが本発明のエポキシ系集束剤で処理
されたガラス繊維を同様に20重量%配合することによ
シ、その衝撃強さは7.0顯■らまで向上するという顕
著な耐衝撃性の改良効果が現われている。
For example, by using the maleic anhydride-modified styrene resin of the present invention as the base resin and adding at least 20% by weight of glass fiber, which is normally used in styrene resins, the impact strength can be increased from 1.0 klIcm/cm. 5.1 kgt
m/cm, but by similarly blending 20% by weight of glass fiber treated with the epoxy sizing agent of the present invention, the impact strength is significantly improved to 7.0 m/cm. The effect of improving impact resistance has appeared.

さらに、基体樹脂として無水マレイン酸変性 5− ゴム強化スチレン樹脂を用いた場合、一般によく知うし
ているAB8樹脂(ブタジェン−スチレン−アクリロニ
トリル共重合体)がガラス繊維を配合するとその衝撃強
さが著しく低下するのに対して、無水マレイン酸変性ゴ
ム強化スチレン樹脂は前述の共役ジエン系重合体を含む
にもかかわらず、エポキシ系集束剤で処理されたガラス
繊維を20重量%配合することによシ、その衝撃強さは
4.0 k4cmyらから11. Okcgcm/cm
に向上するという、おど堕くべき耐衝撃性の改良効果が
得られた。
Furthermore, when a maleic anhydride-modified 5-rubber reinforced styrene resin is used as the base resin, the impact strength of the well-known AB8 resin (butadiene-styrene-acrylonitrile copolymer) increases significantly when glass fiber is blended. On the other hand, maleic anhydride-modified rubber-reinforced styrene resin, despite containing the above-mentioned conjugated diene polymer, has a sizing effect of 20% by weight of glass fiber treated with an epoxy sizing agent. , its impact strength is 4.0 k4cmy and 11. Okcgcm/cm
The effect of improving impact resistance, which should have been surprising, was obtained.

又、本発明の組成物は、一般のスチレン系樹脂では耐え
られない120c附近の温度で成形品に変形を生じない
高い耐熱変形性を有しておル、高温での剛性の保持率及
びクリープ特性に優れている。
In addition, the composition of the present invention has high heat deformation resistance that does not cause deformation in molded products at temperatures around 120°C, which cannot withstand general styrene resins, and has low rigidity retention and creep at high temperatures. Excellent characteristics.

以下、実施例を挙げて本発明を更に詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1及び2 スチレン85wt%1無水マレイン酸15wt% 6− よシなる共重合体80wt%に、カップリング剤トシて
アミノシランまたはエポキシシラン、集束剤トしてビス
フェノール型エポキシ樹脂を用いて処理された直径13
μ繊維長311Nのガラス繊維20wt%を配合した。
Examples 1 and 2 85 wt% of styrene, 15 wt% of maleic anhydride, 6-80 wt% of other copolymers were treated with aminosilane or epoxysilane as a coupling agent and bisphenol type epoxy resin as a sizing agent. diameter 13
20 wt % of glass fibers with a μ fiber length of 311 N were blended.

この配合物を40龍押出機で溶融混練してペレット化し
、スクリュータイプの射出成形機にて成形して試験片を
作成して物性を測定した。結果を表1に示す。
This compound was melt-kneaded using a 40 Dragon extruder to form pellets, molded using a screw-type injection molding machine to prepare test pieces, and their physical properties were measured. The results are shown in Table 1.

比較例1〜7 スチレン85wt%、無水マレイン酸15wt%よシな
る共重合体80wt%に表1に記したカップリング剤と
集束剤で処理された直径13μ、繊維長3朋のガラス繊
維20wt%を配合し、上記と同様の方法で試験片を作
成し物性を測定した。結果を表1に示す。
Comparative Examples 1 to 7 80 wt% of a copolymer consisting of 85 wt% of styrene and 15 wt% of maleic anhydride was treated with a coupling agent and a sizing agent listed in Table 1. 20 wt% of glass fibers having a diameter of 13 μm and a fiber length of 3 mm were treated. were mixed, test pieces were prepared in the same manner as above, and the physical properties were measured. The results are shown in Table 1.

比較例8 スチレン74wt%、アクリロニトリル26wtチよυ
カる共重合体80wt%にカップリング剤としてアミノ
シラン、集束剤として酢酸ビニル矛 を用いて処理されたガラス繊維20wtを配合しΔ 上記と同様の方法で試験片を作成し物性を測定した。結
果を表1に示す○ 実施例3及び4 スチレン85wt%と無水マレイン酸15wt%よシな
るビニル単量体100重量部を15重量部のジエン系エ
ラストマー主鎖にグラフトした共重合体80wt%に実
施例1及び2で使ったガラス繊維20wt%を配合し同
様の方法で試験片を作成し、物性を測定した。結果を表
1に示す。
Comparative Example 8 Styrene 74wt%, acrylonitrile 26wt%
20 wt % of glass fibers treated with aminosilane as a coupling agent and vinyl acetate as a sizing agent were blended with 80 wt % of the glass copolymer.Δ A test piece was prepared in the same manner as above and the physical properties were measured. The results are shown in Table 1 ○ Examples 3 and 4 80 wt % of a copolymer in which 100 parts by weight of a vinyl monomer consisting of 85 wt % styrene and 15 wt % maleic anhydride was grafted onto 15 parts by weight of a diene elastomer main chain. A test piece was prepared in the same manner using 20 wt% of the glass fiber used in Examples 1 and 2, and its physical properties were measured. The results are shown in Table 1.

比較例9〜15 スチレン85wt%ト無水マL/ イン酸15wt%よ
シなるビニル単量体100重量部を15重量部のジエン
系エラストマー主鎖にグラフトした共重合体80wt%
に表1に記した処理をしたガラス繊維20wt%を配合
し同様の方法で試験片を作成し、物性を測定した。結果
を表1に示す0比較例16 スチレン75wt%とアクリロニトリル25wt−よシ
なるビニル単量体100重量部を15重量部のジエン系
エラストマー主鎖にグラフトした共重合体にカップリン
グ剤としてアミノシラン、集束剤として酢酸ビニルを用
いて処理されたガラス繊維2owtJを配合し、同様の
方法で試験片を作成し物性を測定した。結果を表1に示
す〇  9− 注水1曲げ強さ A8TM−D790の方法に基づいて
測定した。
Comparative Examples 9 to 15 80 wt% copolymer in which 100 parts by weight of a vinyl monomer consisting of 85 wt% styrene and 15 wt% inic acid was grafted onto 15 parts by weight of a diene elastomer main chain.
20 wt % of glass fibers treated as shown in Table 1 were blended into the sample, a test piece was prepared in the same manner, and the physical properties were measured. The results are shown in Table 1.0 Comparative Example 16 A copolymer in which 100 parts by weight of a vinyl monomer consisting of 75 wt% styrene and 25 wt% acrylonitrile was grafted onto 15 parts by weight of a diene elastomer main chain, aminosilane was added as a coupling agent, and aminosilane was added as a coupling agent. 2 owtJ of glass fiber treated with vinyl acetate as a sizing agent was blended, a test piece was prepared in the same manner, and the physical properties were measured. The results are shown in Table 1. 〇 9- Water injection 1 bending strength Measured based on the method of A8TM-D790.

−11− 384−-11- 384-

Claims (1)

【特許請求の範囲】[Claims] 不飽和ジカルボン酸無水物を5〜35重量%含有するス
チレン系樹脂と、エポキシ系の集束剤で処理されたガラ
ス繊維とからなることを特徴とするガラス繊維強化スチ
レン系樹脂組成物。
A glass fiber reinforced styrenic resin composition comprising a styrene resin containing 5 to 35% by weight of an unsaturated dicarboxylic anhydride and glass fibers treated with an epoxy sizing agent.
JP19733282A 1982-11-10 1982-11-10 Glass fiber-reinforced styrene resin composition Granted JPS5986649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19733282A JPS5986649A (en) 1982-11-10 1982-11-10 Glass fiber-reinforced styrene resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19733282A JPS5986649A (en) 1982-11-10 1982-11-10 Glass fiber-reinforced styrene resin composition

Publications (2)

Publication Number Publication Date
JPS5986649A true JPS5986649A (en) 1984-05-18
JPH0157140B2 JPH0157140B2 (en) 1989-12-04

Family

ID=16372700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19733282A Granted JPS5986649A (en) 1982-11-10 1982-11-10 Glass fiber-reinforced styrene resin composition

Country Status (1)

Country Link
JP (1) JPS5986649A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044535A (en) * 1983-08-23 1985-03-09 Asahi Fiber Glass Co Ltd Reinforced thermoplastic resin
JPS61148257A (en) * 1984-12-21 1986-07-05 Idemitsu Petrochem Co Ltd Resin composition
JPS6248755A (en) * 1985-08-28 1987-03-03 Idemitsu Petrochem Co Ltd Glass fiber reinforced styrenic resin composition
US5179137A (en) * 1989-12-08 1993-01-12 Sumitomo Chemical Co., Ltd. Heat-resistant high-impact polystyrene composition
US5844035A (en) * 1996-02-21 1998-12-01 Daicel Chemical Industries, Ltd. Glass fiber-reinforced polystyrene resin composition
WO2014119360A1 (en) * 2013-01-29 2014-08-07 電気化学工業株式会社 Glass-reinforced resin composition
JP2014224163A (en) * 2013-05-15 2014-12-04 電気化学工業株式会社 Glass-reinforced resin composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4888134A (en) * 1972-02-25 1973-11-19
JPS5673649A (en) * 1979-11-13 1981-06-18 Nitto Boseki Co Ltd Glass fiber bundling agent
JPS5698251A (en) * 1980-01-08 1981-08-07 Asahi Chem Ind Co Ltd Glass fiber reinforced thermoplastic resin composition having transparency

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4888134A (en) * 1972-02-25 1973-11-19
JPS5673649A (en) * 1979-11-13 1981-06-18 Nitto Boseki Co Ltd Glass fiber bundling agent
JPS5698251A (en) * 1980-01-08 1981-08-07 Asahi Chem Ind Co Ltd Glass fiber reinforced thermoplastic resin composition having transparency

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044535A (en) * 1983-08-23 1985-03-09 Asahi Fiber Glass Co Ltd Reinforced thermoplastic resin
JPS6137308B2 (en) * 1983-08-23 1986-08-22 Asahi Fibreglass Co
JPS61148257A (en) * 1984-12-21 1986-07-05 Idemitsu Petrochem Co Ltd Resin composition
JPS6248755A (en) * 1985-08-28 1987-03-03 Idemitsu Petrochem Co Ltd Glass fiber reinforced styrenic resin composition
US5179137A (en) * 1989-12-08 1993-01-12 Sumitomo Chemical Co., Ltd. Heat-resistant high-impact polystyrene composition
US5844035A (en) * 1996-02-21 1998-12-01 Daicel Chemical Industries, Ltd. Glass fiber-reinforced polystyrene resin composition
WO2014119360A1 (en) * 2013-01-29 2014-08-07 電気化学工業株式会社 Glass-reinforced resin composition
JPWO2014119360A1 (en) * 2013-01-29 2017-01-26 デンカ株式会社 Glass reinforced resin composition
JP2014224163A (en) * 2013-05-15 2014-12-04 電気化学工業株式会社 Glass-reinforced resin composition

Also Published As

Publication number Publication date
JPH0157140B2 (en) 1989-12-04

Similar Documents

Publication Publication Date Title
US4157428A (en) Ethylene carbon monoxide copolymers containing epoxy side groups
EP0003126B1 (en) A process for preparing impact-resistant, high melt flow polycarbonamides and a process for producing articles from these polycarbonamides
US5087663A (en) Molding compositions with methyl (meth)acrylate-butadiene-styrene graft copolymers
KR101905939B1 (en) Thermoplastic resin composition and method for preparing the same
JPS63117025A (en) Core-shell type impact resistance modifier for styrenic resin
CA1218779A (en) Composition
US4894416A (en) Low gloss thermoplastic blends
US4530965A (en) Polymeric molding composition containing styrenic copolymer, polycarbonate and MBS polymer
US3766135A (en) Reinforced polypropylene composition and its production
JP3058557B2 (en) Glass-reinforced PC / ABS composition with toughness
US4696972A (en) Polymeric molding composition containing styrenic copolymer, polycarbonate and MBS polymer
JPS5986649A (en) Glass fiber-reinforced styrene resin composition
EP0033393A2 (en) Polyester molding composition and product
WO1992007022A1 (en) Process for the preparation of cellulosic fibre-reinforced thermoplastic composite materials
JPH0341104B2 (en)
JP3124860B2 (en) PC / ABS blend showing reduced gloss
CA1230190A (en) Impact improvement of reinforced polycarbonate/abs blends
JP2935893B2 (en) Long fiber-containing resin composition and method for producing the same
JP2002201323A (en) Glassfiber-reinforced styrene-based thermoplastic composite material
US5080968A (en) Composites of vinyl resins and elastomer-coated fibers
DE69824700T2 (en) SHOCK ACCESSORIES POLYESTER INJECTION PARTS
JPS58145756A (en) Acrylate core shell polymer, polycarbonate composition containing abs and olefin-acrylate copolymer
JPH06287399A (en) Improved combination of polyglutarimide/glass fiber
JPS6340218B2 (en)
JPS58204020A (en) Reinforced polyolefin resin composition