JPH0157140B2 - - Google Patents

Info

Publication number
JPH0157140B2
JPH0157140B2 JP57197332A JP19733282A JPH0157140B2 JP H0157140 B2 JPH0157140 B2 JP H0157140B2 JP 57197332 A JP57197332 A JP 57197332A JP 19733282 A JP19733282 A JP 19733282A JP H0157140 B2 JPH0157140 B2 JP H0157140B2
Authority
JP
Japan
Prior art keywords
styrene
weight
glass fiber
present
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57197332A
Other languages
Japanese (ja)
Other versions
JPS5986649A (en
Inventor
Masuo Kawasawa
Zenichi Maruo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP19733282A priority Critical patent/JPS5986649A/en
Publication of JPS5986649A publication Critical patent/JPS5986649A/en
Publication of JPH0157140B2 publication Critical patent/JPH0157140B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は機械的強度、耐熱性に優れ、且つ耐衝
撃性の改良されたガラス繊維強化スチレン系樹脂
組成物に関する。 従来、熱可塑性樹脂の機械的強度、耐熱性及び
寸法安定性を改良するために、熱可塑性樹脂にガ
ラス繊維を配合することは良く知られている。し
かし、これまでのスチレン系樹脂を基体とした、
ガラス繊維強化樹脂例えば、スチレン−アクリロ
ニトリル共重合物を用いたものでは、機械的強度
はある程度改良されるが、耐熱性はまだ不満足で
あり、更に耐衝撃性の向上も望まれている。 本発明者等は、スチレン系樹脂として耐熱性の
向上した不飽和ジカルボン酸無水物変性スチレン
系樹脂を使用して通常スチレン系樹脂に使用され
ているガラス繊維との組合せにおいて検討を行な
つたが、耐熱性の向上はいく分かは見られるが機
械的強度、及び耐衝撃性についてはまだ不満足で
あつた。 本発明はかかる欠点を改良することを目的とし
て不飽和ジカルボン酸無水物変性スチレン系樹脂
のガラス繊維による補強について鋭意研究した結
果、意外にも通常スチレン系樹脂には使われない
エポキシ系の集束剤で処理されたガラス繊維を混
合することによりガラス繊維の分散性が良く、耐
熱性及び機械的強度に優れ、且つ耐衝撃性が著し
く向上した物性的にバランスの取れた組成物が得
られることを見いだし本発明を完成した。 即ち、本発明は不飽和ジカルボン酸無水物を5
〜35重量%含有するスチレン系樹脂と、シランカ
ツプリング剤で表面処理し、更にエポキシ樹脂を
主成分とする集束剤で集束処理されたガラス繊維
とからなることを特徴とするガラス繊維強化スチ
レン系樹脂組成物である。 本発明の不飽和ジカルボン酸無水物としては、
無水マレイン酸、無水シトラコン酸等が挙げられ
る。また、本発明のスチレン系樹脂とはスチレ
ン、α−メチルスチレン、o,m,p−メチルス
チレン等のビニル芳香族化合物と、上記不飽和ジ
カルボン酸無水物と、必要に応じて上記のビニル
芳香族化合物と共重合可能なビニルモノマー及
び/またはゴム状物質とからなるもので、上記の
ビニル芳香族化合物が不飽和ジカルボン酸無水物
をのぞいた物の50%以上しめるものである。共重
合可能なビニルモノマーとしては、アクリルニト
リル、メタクリロニトリル、アクリル酸及びその
エステル類、メタクリル酸及びそのエステル類が
挙げられる。 本発明の組成物において不飽和ジカルボン酸無
水物の含有率は5〜35重量%であり、好ましくは
5〜30重量%である。不飽和ジカルボン酸無水物
の含有量が5重量%より少ないと最終的に得られ
る樹脂組成物の耐熱性の向上が小さく、逆に35重
量%より多くなると最終的に得られる樹脂組成物
の耐衝撃性が余り向上しない。 本発明において使用されるガラス繊維としては
直径9〜13μのフアイバーが適当であり、シラン
カツプリング剤で表面処理したものが好ましい。
特に本発明においては、かかるグラスフアイバー
をエポキシ系の集束剤で処理することにより数百
本集束されたストランドを1mm〜25mmにカツトし
たチヨツプドストランドが適当である。 本発明のエポキシ系の集束剤とは、ビスフエノ
ール・エピクロルヒドリン型エポキシ樹脂、グリ
シジルエーテル型エポキシ樹脂、テトラエポキ
シ、ノボラツク型エポキシ樹脂、グリシジルアミ
ン、エポキシアルキルエステル、エポキシ化不飽
和化合物等、エポキシ樹脂を主成分とするもので
ある。 本発明の組成分において配合されるガラス繊維
の量は、特に規定されるものではなが通常は5〜
60%であり、好ましくは10〜40重量%である。ま
た、ガラス繊維の混合方法も、押出による溶融混
練、ドライブレンドによる直接成形などいずれの
方法をもちいてもよい。 本発明の組成物は、通常のプラスチツク成形機
例えば、射出成形機、押出成形機等によて所望の
形状に容易に成形することができ、耐衝撃性、耐
熱性、機械的強度に優れ、ガラス繊維の分散性の
良い成形品が得られる。 例えば基体樹脂として本発明の無水マレイン酸
変性スチレン系樹脂を用い、通常スチレン系樹脂
に使用されているガラス繊維を20重量%配合する
ことにより、その衝撃強さは1.0Kgcm/cmから5.1
Kgcm/cmに向上するが本発明のエポキシ系集束剤
で処理されたガラス繊維を同様に20重量%配合す
ることにより、その衝撃強さは7.0Kgcm/cmまで
向上するという顕著な耐衝撃性の改良効果が現わ
れている。 さらに、基体樹脂として無水マレイン酸変性ゴ
ム強化スチレン樹脂を用いた場合、一般によくら
れているABS樹脂(ブタジエン−スチレン−ア
クリロニトリル共重合体)がガラス繊維を配合す
るとその衝撃強さが著しく低下するのに対して、
無水マレイン酸変性ゴム強化スチレン系樹脂は前
述の共役ジエン系重合体を含むにもかかわらず、
エポキシ系集束剤で処理されたガラス繊維を20重
量%配合することにより、その衝撃強さは4.0Kg
cm/cmから11.0Kgcm/cmに向上するという、おど
ろくべき耐衝撃性の改良効果が得られた。 又、本発明の組成物は、一般のスチレン系樹脂
では耐えられない120℃附近の温度で成形品に変
形を生じない高い耐熱変形を有しており、高温で
の剛性の保持率及びクリープ特性に優れている。 以下、実施例を挙げて本発明を更に詳細に説明
する。 実施例 1及び2 スチレン85wt%、無水マレイン酸15wt%より
なる共重合体80wt%に、カツプリング剤として
アミノシランまたはエポキシシラン、集束剤とし
てビスフエノール型エポキシ樹脂を用いて処理さ
れた直径13μ繊維長3mmのガラス繊維20wt%を配
合した。この配合物を40mm押出機で溶融混練して
ベレツト化し、スクリユータイプの射出成形機に
て成形して試験片を作成して物性を測定した。結
果を表1に示す。 比較例 1〜7 スチレン85wt%、無水マレイン酸15wt%より
なる共重合体80wt%に表1に記したカツプリン
グ剤と集束剤で処理された直径13μ、繊維長3mm
のガラス繊維20wt%を配合し、上記と同様の方
法で試験片を作成し物性を測定した。結果を表1
に示す。 比較例 8 スチレン74wt%、アクリロニトリル26wt%よ
りなる共重合体80wt%にカツプリング剤として
アミノシラン、集束剤として酢酸ビニルを用いて
処理されたガラス繊維20wt%を配合し上記と同
様の方法で試験片を作成し物性を測定した。結果
を表1に示す。 実施例 3及び4 スチレン85wt%と無水マレイン酸15wt%より
なるビニル単量体100重量部を15重量部のジエン
系エラストマー主鎖にグラフトした共重合体
80wt%に実施例1及び2で使つたガラス繊維
20wt%を配合し同様の方法で試験片を作成し、
物性を測定した。結果を表1に示す。 比較例 9〜15 スチレン85wt%と無水マレイン酸15wt%より
なるビニル単量体100重量部を15重量部のジエン
系エラストマー主鎖なグラフトした共重合体
80wt%に表1に記した処理をしたガラス繊維
20wt%を配合し同様の方法で試験片を作成し、
物性を測定した。結果を表1に示す。 比較例 16 スチレン75wt%とアクリロナトリル25wt%よ
りなるビニル単量体100重量部を15重量部のジエ
ン系エラストマー主鎖にグラフトした共重合体に
カツプリング剤としてアミノシラン、集束剤とし
て酢酸ビニルを用いて処理されたガラス繊維
20wt%を配合し、同様の方法で試験片を作成し
物性を測定した。結果を表1に示す。
The present invention relates to a glass fiber-reinforced styrenic resin composition that has excellent mechanical strength, heat resistance, and improved impact resistance. BACKGROUND ART Conventionally, it has been well known to blend glass fibers into thermoplastic resins in order to improve the mechanical strength, heat resistance, and dimensional stability of thermoplastic resins. However, conventional styrene-based resin-based
Glass fiber reinforced resins, such as those using styrene-acrylonitrile copolymer, have improved mechanical strength to some extent, but are still unsatisfactory in heat resistance, and further improvement in impact resistance is desired. The present inventors used an unsaturated dicarboxylic anhydride-modified styrenic resin with improved heat resistance as a styrene resin, and investigated its combination with glass fiber, which is normally used in styrene resins. Although some improvement in heat resistance was observed, mechanical strength and impact resistance were still unsatisfactory. The present invention was developed as a result of extensive research into reinforcing unsaturated dicarboxylic anhydride-modified styrene resins with glass fibers with the aim of improving these drawbacks. By mixing glass fibers treated by This discovery was made and the present invention was completed. That is, in the present invention, unsaturated dicarboxylic acid anhydride is
A glass fiber-reinforced styrene system characterized by comprising a styrene resin containing ~35% by weight, and glass fibers that have been surface-treated with a silane coupling agent and further bundled with a binding agent mainly composed of an epoxy resin. It is a resin composition. The unsaturated dicarboxylic acid anhydride of the present invention includes:
Examples include maleic anhydride and citraconic anhydride. In addition, the styrene resin of the present invention includes a vinyl aromatic compound such as styrene, α-methylstyrene, o, m, p-methylstyrene, the above unsaturated dicarboxylic acid anhydride, and optionally the above vinyl aromatic compound. It consists of a vinyl monomer and/or a rubbery substance copolymerizable with a group compound, and the vinyl aromatic compound accounts for 50% or more of the total amount excluding unsaturated dicarboxylic acid anhydride. Copolymerizable vinyl monomers include acrylonitrile, methacrylonitrile, acrylic acid and its esters, and methacrylic acid and its esters. In the composition of the present invention, the content of unsaturated dicarboxylic acid anhydride is 5 to 35% by weight, preferably 5 to 30% by weight. If the content of unsaturated dicarboxylic acid anhydride is less than 5% by weight, the heat resistance of the final resin composition will be little improved, and if it exceeds 35% by weight, the resistance of the final resin composition will be reduced. Impact resistance does not improve much. The glass fibers used in the present invention are suitably fibers with a diameter of 9 to 13 microns, preferably those whose surface has been treated with a silane coupling agent.
In particular, in the present invention, chopped strands, which are obtained by treating such glass fibers with an epoxy-based sizing agent and cutting several hundred strands into a bundle of 1 mm to 25 mm, are suitable. The epoxy-based sizing agent of the present invention refers to epoxy resins such as bisphenol epichlorohydrin type epoxy resin, glycidyl ether type epoxy resin, tetraepoxy, novolak type epoxy resin, glycidylamine, epoxy alkyl ester, and epoxidized unsaturated compound. It is the main ingredient. The amount of glass fiber blended in the composition of the present invention is not particularly specified, but is usually 5 to 5.
60%, preferably 10 to 40% by weight. Furthermore, the glass fibers may be mixed by any method such as melt kneading by extrusion or direct molding by dry blending. The composition of the present invention can be easily molded into a desired shape using a conventional plastic molding machine, such as an injection molding machine or an extrusion molding machine, and has excellent impact resistance, heat resistance, and mechanical strength. A molded article with good glass fiber dispersibility can be obtained. For example, by using the maleic anhydride-modified styrene resin of the present invention as the base resin and adding 20% by weight of glass fiber, which is normally used in styrene resins, the impact strength can be increased from 1.0 Kgcm/cm to 5.1 kg/cm.
However, by incorporating 20% by weight of glass fibers treated with the epoxy sizing agent of the present invention, the impact strength is improved to 7.0 Kgcm/cm. Improvement effects are appearing. Furthermore, when a maleic anhydride-modified rubber-reinforced styrene resin is used as the base resin, the impact strength of the commonly used ABS resin (butadiene-styrene-acrylonitrile copolymer) decreases significantly when glass fiber is added. For,
Although the maleic anhydride-modified rubber-reinforced styrene resin contains the aforementioned conjugated diene polymer,
By blending 20% by weight of glass fiber treated with epoxy sizing agent, its impact strength is 4.0Kg.
A surprising improvement in impact resistance was achieved, increasing from cm/cm to 11.0Kgcm/cm. In addition, the composition of the present invention has high heat deformation resistance that does not cause deformation in molded products at temperatures around 120°C, which cannot withstand general styrene resins, and has excellent rigidity retention and creep properties at high temperatures. Excellent. Hereinafter, the present invention will be explained in more detail with reference to Examples. Examples 1 and 2 13μ diameter fibers were treated with 80wt% copolymer consisting of 85wt% styrene and 15wt% maleic anhydride using aminosilane or epoxysilane as a coupling agent and bisphenol type epoxy resin as a sizing agent. Contains 20wt% of glass fiber. This compound was melt-kneaded using a 40 mm extruder to form a pellet, which was then molded using a screw-type injection molding machine to prepare a test piece and its physical properties were measured. The results are shown in Table 1. Comparative Examples 1 to 7 80wt% copolymer consisting of 85wt% styrene and 15wt% maleic anhydride treated with coupling agent and sizing agent listed in Table 1. Diameter 13μ, fiber length 3mm.
20wt% of glass fiber was blended, test pieces were prepared in the same manner as above, and the physical properties were measured. Table 1 shows the results.
Shown below. Comparative Example 8 80 wt% of a copolymer consisting of 74 wt% of styrene and 26 wt% of acrylonitrile was mixed with 20 wt% of glass fibers treated with aminosilane as a coupling agent and vinyl acetate as a sizing agent, and a test piece was prepared in the same manner as above. The material was prepared and its physical properties were measured. The results are shown in Table 1. Examples 3 and 4 A copolymer in which 100 parts by weight of a vinyl monomer consisting of 85 wt% styrene and 15 wt% maleic anhydride was grafted onto 15 parts by weight of a diene elastomer main chain.
80wt% glass fiber used in Examples 1 and 2
A test piece was prepared in the same manner by blending 20wt%,
Physical properties were measured. The results are shown in Table 1. Comparative Examples 9 to 15 A copolymer in which 100 parts by weight of a vinyl monomer consisting of 85 wt% styrene and 15 wt% maleic anhydride was grafted onto 15 parts by weight of a diene elastomer main chain.
Glass fiber with 80wt% treated as shown in Table 1
A test piece was prepared in the same manner by blending 20wt%,
Physical properties were measured. The results are shown in Table 1. Comparative Example 16 A copolymer in which 100 parts by weight of a vinyl monomer consisting of 75 wt% styrene and 25 wt% acrylonatrile was grafted onto 15 parts by weight of a diene elastomer main chain, aminosilane was used as a coupling agent, and vinyl acetate was used as a sizing agent. treated glass fiber
20 wt% was mixed, test pieces were prepared in the same manner, and the physical properties were measured. The results are shown in Table 1.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 不飽和ジカルボン酸無水物を5〜35重量%含
有するスチレン系樹脂と、シランカツプリング剤
で表面処理し、更にエポキシ樹脂を主成分とする
集束剤で集束処理されたガラス繊維とからなるこ
とを特徴とするガラス繊維強化スチレン系樹脂組
成物。
1 Consisting of a styrene resin containing 5 to 35% by weight of unsaturated dicarboxylic acid anhydride, and glass fibers that have been surface-treated with a silane coupling agent and further bundled with a binding agent whose main component is an epoxy resin. A glass fiber-reinforced styrenic resin composition.
JP19733282A 1982-11-10 1982-11-10 Glass fiber-reinforced styrene resin composition Granted JPS5986649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19733282A JPS5986649A (en) 1982-11-10 1982-11-10 Glass fiber-reinforced styrene resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19733282A JPS5986649A (en) 1982-11-10 1982-11-10 Glass fiber-reinforced styrene resin composition

Publications (2)

Publication Number Publication Date
JPS5986649A JPS5986649A (en) 1984-05-18
JPH0157140B2 true JPH0157140B2 (en) 1989-12-04

Family

ID=16372700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19733282A Granted JPS5986649A (en) 1982-11-10 1982-11-10 Glass fiber-reinforced styrene resin composition

Country Status (1)

Country Link
JP (1) JPS5986649A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044535A (en) * 1983-08-23 1985-03-09 Asahi Fiber Glass Co Ltd Reinforced thermoplastic resin
JPS61148257A (en) * 1984-12-21 1986-07-05 Idemitsu Petrochem Co Ltd Resin composition
JPS6248755A (en) * 1985-08-28 1987-03-03 Idemitsu Petrochem Co Ltd Glass fiber reinforced styrenic resin composition
JP2727710B2 (en) * 1989-12-08 1998-03-18 住友化学工業株式会社 Heat and impact resistant polystyrene composite composition
JPH09227740A (en) * 1996-02-21 1997-09-02 Daicel Chem Ind Ltd Glass fiber-reinforced polystyrene-based resin composition
WO2014119360A1 (en) * 2013-01-29 2014-08-07 電気化学工業株式会社 Glass-reinforced resin composition
JP6121794B2 (en) * 2013-05-15 2017-04-26 デンカ株式会社 Glass reinforced resin composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4888134A (en) * 1972-02-25 1973-11-19
JPS5673649A (en) * 1979-11-13 1981-06-18 Nitto Boseki Co Ltd Glass fiber bundling agent
JPS5698251A (en) * 1980-01-08 1981-08-07 Asahi Chem Ind Co Ltd Glass fiber reinforced thermoplastic resin composition having transparency

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4888134A (en) * 1972-02-25 1973-11-19
JPS5673649A (en) * 1979-11-13 1981-06-18 Nitto Boseki Co Ltd Glass fiber bundling agent
JPS5698251A (en) * 1980-01-08 1981-08-07 Asahi Chem Ind Co Ltd Glass fiber reinforced thermoplastic resin composition having transparency

Also Published As

Publication number Publication date
JPS5986649A (en) 1984-05-18

Similar Documents

Publication Publication Date Title
CA1105181A (en) Impact modified high melt flow polycarbonamide
EP1527134A1 (en) Thermoplastic composition having low gloss appearance
US3766135A (en) Reinforced polypropylene composition and its production
US4530965A (en) Polymeric molding composition containing styrenic copolymer, polycarbonate and MBS polymer
JP3058557B2 (en) Glass-reinforced PC / ABS composition with toughness
JPH0157140B2 (en)
JPH0341104B2 (en)
KR100437536B1 (en) Glass Reinforced Styrenic Thermoplastic Composition
DE69824700T2 (en) SHOCK ACCESSORIES POLYESTER INJECTION PARTS
JPS6013837A (en) Treated product of impact-resistant resin
JPS6063250A (en) Molding resin composition
US4963618A (en) Polycarbonate resin composition with dienic impact modifiers
JPS63154759A (en) Molding composition
JPS6017451B2 (en) Glass fiber reinforced styrenic resin composition
JP3487035B2 (en) PET resin molding material
KR910003257B1 (en) Thermoplastic resin composition
JP2887810B2 (en) Reinforced thermoplastic resin composition
JPS6011979B2 (en) Heat-resistant and impact-resistant resin composition
JPS63183947A (en) Styrenic resin composition
KR100367828B1 (en) Styrene-based thermoplastic composite material having improved impact strength
JP3115933B2 (en) Glass fiber reinforced styrene resin composition
JPH01308451A (en) Reinforced resin composition
JPH0613583B2 (en) Method for producing copolymer
JPS6028861B2 (en) resin composition
JP3199856B2 (en) Glass fiber reinforced thermoplastic ABS composition