JPS6136777B2 - - Google Patents

Info

Publication number
JPS6136777B2
JPS6136777B2 JP6573879A JP6573879A JPS6136777B2 JP S6136777 B2 JPS6136777 B2 JP S6136777B2 JP 6573879 A JP6573879 A JP 6573879A JP 6573879 A JP6573879 A JP 6573879A JP S6136777 B2 JPS6136777 B2 JP S6136777B2
Authority
JP
Japan
Prior art keywords
acid
amount
oligomer
sulfonic acid
glycol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6573879A
Other languages
Japanese (ja)
Other versions
JPS55157625A (en
Inventor
Yasuhiro Tokyama
Nobuhiro Matsunaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP6573879A priority Critical patent/JPS55157625A/en
Publication of JPS55157625A publication Critical patent/JPS55157625A/en
Publication of JPS6136777B2 publication Critical patent/JPS6136777B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は透明性・色調が優れ、ポリマー中のジ
エチレングリコール成分量の少ないポリエステル
の製法に関するものである。 ポリエステル、なかでもポリエチレンテレフタ
レートは繊維、産業用資材等として広く用いられ
ており、工業的にはテレフタル酸またはジメチル
テレフタレートとエチレングリコールとから直接
エステル化法またはエステル交換法によりビス
(β−ヒドロキシエチル)テレフタレート(その
低重合体を含む)を得、これを触媒存在下に高温
高減圧下で重縮合して高重合体となす方法により
製造されている。 重縮合触媒としてはアンチモン、チタン、ゲル
マニウム、スズ、亜鉛など金属化合物がよく知ら
れている。これらの化合物のうちアンチモン化合
物は生成ポリエステルの透明性が悪く、黒ずんだ
くすみのある黄緑味のかかつた色調となり、チタ
ン、スズ、亜鉛化合物はポリエステルの黄色味が
著しいという欠点がある。ゲルマニウム化合物を
用いれば比較的良好な色調のポリエステルが得ら
れるが、高価であることや重合中に反応系外へ留
出しやすく触媒濃度が変化するので重合のコント
ロールがむづかしいという問題がある。 また金属化合物を触媒として用いる場合の共通
の問題点として金属化合物がポリエステル生成反
応中に不溶解物として折出し、反応釜や配管類の
内壁に付着してそれが剥離し、ポリエステル中に
混入して品質を下げるということがある。かくの
如き現象は金属を含まない触媒であれば生じる恐
れがないので、そのような触媒を用いて製造され
たポリエテルは、たとえば異物混入が致命的な欠
陥となる透明性フイルムやボトルのような成型品
の原料として特に好ましい。もちろん酸化チタン
などの顔料を添加したり、繊維用として使用する
場合にも大きな利点がある。 ポリエステル製造時の直接エステル化、エステ
ル交換、重縮合反応の触媒として金属イオンの如
きルイス酸が用いられることはよく知られてい
る。一方、低分子のカルボン酸のアルコールとの
エステル化反応触媒としてしばしば用いられる塩
酸、硫酸あるいはテレフタル酸とグリコールとの
直接エステル化触媒として公知のP−トルエンス
ルホン酸、スルホン酸樟脳(特公昭28−4640号)
のようなブレンステツド酸は確かにエステル化反
応を促進するが重縮合反応の活性は小さく、高重
合度のポリエステルを得るための触媒としては不
適当であつた。 ところが、本発明者等の検討したところによる
と他に置換基を有しない、あるいは特定の核置換
基を有する芳香族スルホン酸化合物は著しい重縮
合活性を有するうえ、色調の良好なポリマーを与
えることがわかつた。 しかしこのような芳香族スルホン酸化合物は他
の公知の金属化合物触媒にくらべて生成するポリ
マー中のジエチレングリコール成分量が多く、ポ
リマーの軟化点が低くなるという欠点がある。そ
こで更に検討を加えた結果反応率が高くグリコー
ル末端基の少ない、言い換えれば平均重合度の比
較的高い直接エステル化あるいはエステル交換生
成物(以下、オリゴマーと称する)を用い、本発
明でいう芳香族スルホン酸化合物を触媒として重
縮合反応を行うとポリマー中のジエチレングリコ
ール成分量が著しく少なくなり、公知の金属化合
物を用いた場合と同程度のジエチレングリコール
成分量のポリマーが得られることを見出した。 すなわち本発明はテレフタル酸を主成分とする
二官能性カルボン酸またはそのエステル形成性誘
導体とエチレングリコールを主成分とするグリコ
ールとの反応で得られたオリゴマーでその反応率
が96%以上であり、かつオリゴマー1g当りのグ
リコール末端基の量が1.5ミリ当量以下であるよ
うな生成物に次式で示されるスルホン酸化合物
を、スルホン酸基がポリエステルを構成する酸成
分1モルに対し1×10-4〜10×10-4当量モルとな
る量添加し、重縮合反応を行うことを特徴とする
ポリエステルの製法を要旨とするものである。 式 (X)−or(−SO3H)n m:1〜3、n:0〜3 Ar:芳香族基 X:OR1、COOR2、ハロゲン ただしR1、R2は水素または低級アルキル基で
ある。 n=0はスルホン酸基以外に全く核置換基を有
しないことを示す。 n≧2のとき、Xは同じであつても異なつてい
てもよい。 反応率が高くグリコール末端基量の少ないオリ
ゴマーを用いればジエチレングリコール成分量の
少ないポリマーが得られるのは予想されることで
ある。 しかしながら公知の金属化合物を触媒とした場
合に較べ本発明のスルホン酸化合物を触媒とした
時の方がポリマー中のジエチレングリコール成分
量におよぼすオリゴマーのグリコール末端基量の
影響が大であり、グリコール末端基量の少ないオ
リゴマーを用いれば公知の金属化合物を用いた場
合の挙動からは想像できないほど低いジエチレン
グリコール成分量のポリマーを得ることができ
る。 たとえば、低重合度のオリゴマーを無触媒で予
備重縮合してグリコール末端基量の異なる種々の
オリゴマーを調製し、三酸化アンチモン(2×
10-4モル/酸成分モル)、酢酸コバルト(4×
10-4モル/酸成分モル)または後に述べる実施例
に記述したスルホン酸化合物(4×10-4モル/酸
成分モル)を触媒として、275℃で2時間重縮合
した場合のオリゴマーのグリコール末端基の量
〔OH〕と生成ポリマーのジエチレングリコール
の成分量DEG%の関係を第1図に示す。 スルホン酸化合物を触媒として重縮合する場合
オリゴマー1g当りのグリコール末端基量が1.5
ミリ当量を越えるようなオリゴマーを用いるとポ
リマー中のジエチレングリコール成分量が多くな
るので好ましくない。 また反応率が96%に満たない場合には高重合度
のポリマーが得られない場合がある。 添加する芳香族スルホン酸化合物のスルホン酸
基の量が1×10-4当量モル/酸成分モルに満たな
い場合には重縮合活性が不充分であり、高重合度
のポリマーが得難く、また反応が長時間に及ぶの
で黄色味を帯びる。添加する芳香族スルホン酸化
合物中のスルホン酸基の量が10×10-4当量モル/
酸成分モルを越える場合にはポリマーが黄色に着
色するうえ、ジエチレングリコール成分量が多く
なるので好ましくない。 なお、エステル形成性基を有する芳香族スルホ
ン酸化合物の金属塩(たとえば5−ナトリウムス
ルホイソフタル酸あるいはこれのエステル形成性
誘導体)を共重合してカチオン染料易染性ポリエ
ステルを製造する技術はよく知られている。しか
しながらこのようなスルホン酸の金属塩は重縮合
活性を全く有しないうえ、充分な染色性を発現さ
せるにはポリマーを構成する酸成分1モル当り5
×10-3モル程度以上の添加が必要であることか
ら、本発明の方法とは全く異なるものである。 本発明において使用される芳香族スルホン酸化
合物としてはベンゼンスルホン酸、m−またはp
−ベンゼンジスルホン酸、1・3・5−ベンゼン
トリスルホン酸、o−、m−またはp−スルホ安
息香酸、アニソール−o−スルホン酸、1・5−
ナフタレンジスルホン酸、o−、m−またはp−
クロロベンゼンスルホン酸、o−、m−またはp
−ブロモベンゼンスルホン酸、o−、m−または
p−フルオロベンゼンスルホン酸、4−クロロ−
3−メチルベンゼンスルホン酸、クロロベンゼン
−1・4−ジスルホン酸、1−クロロナフタリン
−4−スルホン酸、2−クロロ−4−スルホ安息
香酸、5−スルホサリチル酸などがあげられる。 本発明の方法はポリエチレンテレフタレートの
みならず、これを主体とし、イソフタル酸、p−
オキシ安息香酸、5−ナトリウムスルホイソフタ
ル酸、アジピン酸、プロピレングリコール、1・
4−シクロヘキサンジメタノール、トリメリト
酸、ペンタエリスリトールなどを共重合成分とす
るポリエステルの製造にも適用することができ
る。 また、モノマー合成時の触媒やリン化合物のよ
うな安定剤、コバルト化合物や蛍光剤のような色
調改良剤、二酸化チタンのような顔料等の添加物
が共存していてもさしつかえない。 次に実施例をあげて本発明の方法を記述するが
本発明はこれらによつて限定されるものではない なお実施例において反応率は次式に基づいて計
算したものである。 反応率=〔COO〕−〔A〕/〔COO〕×100(%) ここで〔COO〕はオリゴマーに過剰のアルコ
ール性水酸化カリウム溶液を加えてケン化を行い
過順のアルカリ酸で逆滴定してオリゴマー1g当
りに消費された水酸化カリウムのミリモル数とし
て求めたもので、エステル結合性のカルボン酸残
基および遊離のカルボキシル基の量の総和を表わ
す。 〔A〕は直接エステル化オリゴマーの場合には
オリゴマー1g当りの遊離のカルボキシル基のミ
リ当量数を中和滴定により求めた値であり、また
エステル交換オリゴマーの場合には同じくメチル
エステル末端基のミリ当量数を、加水分解後ガス
クロマトグラフ法によりメタノールを定量する方
法により測定した値である。 さらにグリコール末端基の濃度は次式に基づい
て計算したものである。 〔OH〕=32.21−3.09〔COO〕+0.420〔A〕{ここ
で〔OH〕はオリゴマー1g当りのグリコール末
端基のミリ当量数を表わす。} ポリマーの極限粘度〔η〕はフエノール−四塩
化エタン等重量混合物を溶媒として温度20℃で測
定した値である。 ポリマー中のジエチレングリコール成分量はポ
リマーをアルカリ加水分解後、ガスクロマトグラ
フ法によりエチレングリコールとジエチレングリ
コールを定量し、全グリコールに対するジエチレ
ングリコールのモル%(DEG%と記す)で示し
たものである。 色調については得られたポリエステルを粒状に
成型して150℃±2℃で1時間結晶化後、色差計
を用いてL、a、b値を求めた、L値は明度(値
が大きいほど明るい)、a値は赤−緑系の色相
(+は赤味、−は緑味)、b値は黄−青系の色相
(+は黄味、−は青味)を表わす。ポリマーの色調
としてはL値が大きいほど、a値が0に近いほ
ど、また極端に小さくならない限りb値が小さい
ほど良好である。 実施例1〜8および比較例1〜4 ビス(β−ヒドロキシエチル)テレフタレート
およびそのオリゴマーの存在するエステル化反応
装置にテレフタル酸とエチレングリコールのスラ
リー(エチレングリコール/テレフタル酸モル比
1.5)を連続的に供給し、245℃、常圧下で滞留時
間6時間にてエステル化反応を行い、反応率95.0
%、〔0H〕が2.84ミリ当量、ポリマーの場合と同
様の方法で測定したDEG%が1.0%の直接エステ
ル化オリゴマーを連続的に得た。 このオリゴマーをガラス製重合管に入れ、275
℃で時間、減圧度を変えて予備重縮合反応を行つ
た。反応後一部のオリゴマーをサンプリングし、
反応率および〔OH〕の測定試料とした。 この反応物に種々の芳香族スルホン酸化合物を
添加量を変えて加え、減圧にして最終的に0.1mm
Hg、275℃にて所定時間重縮合を行つた結果を表
1に示す。 表1によると反応率が96%に満たない、あるい
は〔OH〕が1.5ミリ当量を越えるようなオリゴマ
ーを用いた場合にはポリマーのDEG%が高くな
り、またスルホン酸化合物の添加量が少なすぎる
と重合活性が不充分であり、多すぎると色調が悪
く、DEG%が多くなることがわかる。
The present invention relates to a method for producing polyester that has excellent transparency and color tone and has a small amount of diethylene glycol component in the polymer. Polyesters, especially polyethylene terephthalate, are widely used as fibers, industrial materials, etc., and industrially, bis(β-hydroxyethyl) is produced by direct esterification or transesterification from terephthalic acid or dimethyl terephthalate and ethylene glycol. It is produced by a method in which terephthalate (including its low polymers) is obtained and polycondensed in the presence of a catalyst at high temperature and high vacuum to form a high polymer. Metal compounds such as antimony, titanium, germanium, tin, and zinc are well known as polycondensation catalysts. Among these compounds, antimony compounds have the disadvantage that the resulting polyester has poor transparency and a dark, dull, yellowish-greenish color tone, while titanium, tin, and zinc compounds have the disadvantage that the polyester has a marked yellowish tinge. If a germanium compound is used, a polyester with a relatively good color tone can be obtained, but there are problems in that it is expensive, and it is difficult to control the polymerization because it tends to distill out of the reaction system during polymerization and the catalyst concentration changes. In addition, a common problem when using metal compounds as catalysts is that the metal compounds are precipitated as insoluble substances during the polyester production reaction, adhere to the inner walls of the reaction vessel and piping, peel off, and get mixed into the polyester. There are times when the quality is lowered. Such a phenomenon is unlikely to occur with catalysts that do not contain metals, so polyether produced using such catalysts is suitable for use in transparent films and bottles, for example, where contamination by foreign matter can be a fatal defect. It is particularly preferred as a raw material for molded products. Of course, there are also great advantages when adding pigments such as titanium oxide or when using it for textiles. It is well known that Lewis acids such as metal ions are used as catalysts for direct esterification, transesterification, and polycondensation reactions during polyester production. On the other hand, P-toluenesulfonic acid and sulfonic acid camphor (Japanese Patent Publication No. 1983-1999) are known as catalysts for the direct esterification of glycol with hydrochloric acid, sulfuric acid, or terephthalic acid, which are often used as catalysts for the esterification reaction of low-molecular-weight carboxylic acids with alcohols. No. 4640)
Although Bronsted acids such as Brønsted acids do promote the esterification reaction, their activity in the polycondensation reaction is low, making them unsuitable as catalysts for obtaining polyesters with a high degree of polymerization. However, according to studies conducted by the present inventors, aromatic sulfonic acid compounds having no other substituents or having a specific nuclear substituent not only have remarkable polycondensation activity but also produce polymers with good color tone. I understood. However, such aromatic sulfonic acid compounds have the drawback that the amount of diethylene glycol component in the produced polymer is larger than that of other known metal compound catalysts, resulting in a lower softening point of the polymer. Therefore, as a result of further investigation, we used direct esterification or transesterification products (hereinafter referred to as oligomers) with a high reaction rate and few glycol end groups, in other words, a relatively high average degree of polymerization, to achieve the aromatic We have found that when a polycondensation reaction is carried out using a sulfonic acid compound as a catalyst, the amount of diethylene glycol in the polymer is significantly reduced, and a polymer with the same amount of diethylene glycol as in the case of using a known metal compound can be obtained. That is, the present invention is an oligomer obtained by reacting a difunctional carboxylic acid containing terephthalic acid as a main component or an ester-forming derivative thereof with a glycol containing ethylene glycol as a main component, the reaction rate of which is 96% or more, And to a product in which the amount of glycol end groups is 1.5 milliequivalent or less per gram of oligomer, a sulfonic acid compound represented by the following formula is added at 1×10 - The gist of this invention is a method for producing polyester, which is characterized in that the polyester is added in an amount of 4 to 10 x 10 -4 equivalent moles and a polycondensation reaction is carried out. Formula (X)- o A r (-SO 3 H) n m: 1 to 3, n: 0 to 3 A r : Aromatic group X: OR 1 , COOR 2 , halogen However, R 1 and R 2 are hydrogen or It is a lower alkyl group. n=0 indicates that there is no nuclear substituent other than the sulfonic acid group. When n≧2, X may be the same or different. It is expected that if an oligomer with a high reaction rate and a small amount of glycol end groups is used, a polymer with a small amount of diethylene glycol component can be obtained. However, when the sulfonic acid compound of the present invention is used as a catalyst than when a known metal compound is used as a catalyst, the amount of glycol end groups in the oligomer has a greater effect on the amount of diethylene glycol component in the polymer. By using a small amount of oligomer, it is possible to obtain a polymer containing a diethylene glycol component that is so low as to be unimaginable from the behavior when known metal compounds are used. For example, oligomers with a low degree of polymerization are prepolycondensed without a catalyst to prepare various oligomers with different amounts of glycol end groups, and antimony trioxide (2×
10 -4 mol/mol of acid component), cobalt acetate (4×
The glycol terminal of the oligomer when polycondensed at 275°C for 2 hours using a sulfonic acid compound (4 x 10 -4 mol/mol of acid component) described in the Examples described later as a catalyst. The relationship between the amount of groups [OH] and the component amount DEG% of diethylene glycol in the produced polymer is shown in FIG. When polycondensation is carried out using a sulfonic acid compound as a catalyst, the amount of glycol end groups per gram of oligomer is 1.5.
Use of oligomers exceeding milliequivalents is not preferred because the amount of diethylene glycol component in the polymer increases. Furthermore, if the reaction rate is less than 96%, a polymer with a high degree of polymerization may not be obtained. If the amount of sulfonic acid groups in the aromatic sulfonic acid compound to be added is less than 1×10 -4 equivalent mole/mole of acid component, the polycondensation activity will be insufficient and it will be difficult to obtain a polymer with a high degree of polymerization. The reaction takes a long time, resulting in a yellowish tinge. The amount of sulfonic acid groups in the aromatic sulfonic acid compound to be added is 10 × 10 -4 equivalent mole/
If the amount exceeds the molar amount of the acid component, the polymer will be colored yellow and the amount of diethylene glycol component will increase, which is not preferable. It should be noted that the technique of producing a polyester easily dyeable with cationic dyes by copolymerizing a metal salt of an aromatic sulfonic acid compound having an ester-forming group (for example, 5-sodium sulfoisophthalic acid or its ester-forming derivative) is well known. It is being However, such metal salts of sulfonic acids have no polycondensation activity at all, and in order to develop sufficient dyeing properties, sulfonic acid metal salts must be
This method is completely different from the method of the present invention because it requires addition of approximately ×10 -3 mol or more. Aromatic sulfonic acid compounds used in the present invention include benzenesulfonic acid, m- or p-
-benzenedisulfonic acid, 1,3,5-benzenetrisulfonic acid, o-, m- or p-sulfobenzoic acid, anisole-o-sulfonic acid, 1,5-
naphthalenedisulfonic acid, o-, m- or p-
Chlorobenzenesulfonic acid, o-, m- or p
-bromobenzenesulfonic acid, o-, m- or p-fluorobenzenesulfonic acid, 4-chloro-
Examples include 3-methylbenzenesulfonic acid, chlorobenzene-1,4-disulfonic acid, 1-chloronaphthalene-4-sulfonic acid, 2-chloro-4-sulfobenzoic acid, and 5-sulfosalicylic acid. The method of the present invention uses not only polyethylene terephthalate but also isophthalic acid, p-
Oxybenzoic acid, 5-sodium sulfoisophthalic acid, adipic acid, propylene glycol, 1.
It can also be applied to the production of polyesters containing 4-cyclohexanedimethanol, trimellitic acid, pentaerythritol, etc. as copolymer components. Further, additives such as a catalyst during monomer synthesis, a stabilizer such as a phosphorus compound, a color improver such as a cobalt compound or a fluorescent agent, and a pigment such as titanium dioxide may be present together. Next, the method of the present invention will be described with reference to Examples, but the present invention is not limited thereto. In the Examples, the reaction rate was calculated based on the following formula. Reaction rate = [COO] - [A] / [COO] × 100 (%) Here, [COO] is the result of saponification by adding excess alcoholic potassium hydroxide solution to the oligomer and back titration with alkaline acid. It is calculated as the number of millimoles of potassium hydroxide consumed per gram of oligomer, and represents the total amount of ester-bonded carboxylic acid residues and free carboxyl groups. [A] is the number of milliequivalents of free carboxyl groups per gram of oligomer determined by neutralization titration in the case of directly esterified oligomers, and the number of milliequivalents of methyl ester terminal groups in the case of transesterified oligomers. The equivalent number is a value measured by a method of quantifying methanol by gas chromatography after hydrolysis. Furthermore, the concentration of glycol end groups was calculated based on the following formula. [OH] = 32.21 - 3.09 [COO] + 0.420 [A] {Here, [OH] represents the number of milliequivalents of glycol end groups per gram of oligomer. } The intrinsic viscosity [η] of the polymer is a value measured at a temperature of 20° C. using an equiweight mixture of phenol and tetrachloroethane as a solvent. The amount of diethylene glycol in the polymer is determined by quantifying ethylene glycol and diethylene glycol by gas chromatography after alkaline hydrolysis of the polymer, and is expressed as mol% of diethylene glycol (denoted as DEG%) based on the total glycol. Regarding the color tone, the obtained polyester was molded into granules and after crystallization at 150°C ± 2°C for 1 hour, the L, a, and b values were determined using a color difference meter. ), the a value represents a red-green hue (+: reddish, -: greenish), and the b value represents a yellow-blue hue (+: yellowish, -: bluish). The color tone of the polymer is better as the L value is larger, the a value is closer to 0, and the b value is smaller unless it becomes extremely small. Examples 1 to 8 and Comparative Examples 1 to 4 A slurry of terephthalic acid and ethylene glycol (ethylene glycol/terephthalic acid molar ratio
1.5) was continuously supplied and the esterification reaction was carried out at 245°C and under normal pressure for a residence time of 6 hours, resulting in a reaction rate of 95.0.
%, [0H] of 2.84 meq., and a DEG% of 1.0% measured in the same manner as for the polymer. Place this oligomer in a glass polymerization tube and
Preliminary polycondensation reaction was carried out at ℃ while changing the time and degree of vacuum. After the reaction, some oligomers were sampled,
This was used as a measurement sample for reaction rate and [OH]. Various aromatic sulfonic acid compounds were added to this reaction mixture in varying amounts, and the pressure was reduced to a final concentration of 0.1 mm.
Table 1 shows the results of polycondensation of Hg at 275°C for a predetermined period of time. According to Table 1, if the reaction rate is less than 96% or if an oligomer with [OH] exceeding 1.5 milliequivalents is used, the DEG% of the polymer will be high and the amount of sulfonic acid compound added will be too small. It can be seen that the polymerization activity is insufficient, and if the amount is too high, the color tone becomes poor and the DEG% increases.

【表】 実施例 9 ジメチルテレフタレート1モル、エチレングリ
コール2モル、酢酸亜鉛1×10-4モルを分留管を
備えたガラスフラスコ中に入れ、常圧下で180℃
から220℃まで徐々に昇温してメタノールを留出
させながら4時間加熱した。 このエステル交換オリゴマーをガラス製重合管
に移し、減圧にして285℃で1時間予備重縮合を
行つた。生成物の一部を分析したところ反応率は
99.3%、〔OH〕は1.34ミリ当量であつた。これに
ベンゼンスルホン酸5×10-4モル、トリメチルホ
スフエート2×10-4モルを添加した後、徐々に減
圧にして最終的に0.1mmHgとし、275℃で1.5時間
重縮合を行つた。 得られたポリエステルは〔η〕=0.68、DEG%
=2.9、L値=84.5、、a値=−1.6、b値=2.1で
あつた。 比較例 5 実施例9において予備重縮合を行うことなくエ
ステル交換オリゴマー(反応率99.0%、〔OH〕
3.73ミリ当量)へ直接芳香族スルホン酸とリン化
合物を添加する以外は実施例9と同じ条件で実施
した。 得られたポリエステルは〔η〕=0.67、DEG%
=7.2、L値=84.1、a値=−1.7、b値=2.2であ
り、実施例9で得られたポリマーにくらべ著しく
DEG%が高くなつた。
[Table] Example 9 1 mol of dimethyl terephthalate, 2 mol of ethylene glycol, and 1 x 10 -4 mol of zinc acetate were placed in a glass flask equipped with a fractionating tube and heated at 180°C under normal pressure.
The temperature was gradually increased from 220°C to 220°C, and the mixture was heated for 4 hours while distilling methanol. This transesterified oligomer was transferred to a glass polymerization tube and subjected to preliminary polycondensation at 285° C. for 1 hour under reduced pressure. When a part of the product was analyzed, the reaction rate was
99.3%, [OH] was 1.34 meq. After adding 5 x 10 -4 mol of benzenesulfonic acid and 2 x 10 -4 mol of trimethyl phosphate, the pressure was gradually reduced to 0.1 mmHg and polycondensation was carried out at 275°C for 1.5 hours. The obtained polyester has [η] = 0.68, DEG%
= 2.9, L value = 84.5, a value = -1.6, b value = 2.1. Comparative Example 5 Transesterified oligomer (reaction rate 99.0%, [OH]
Example 9 was carried out under the same conditions as in Example 9, except that the aromatic sulfonic acid and the phosphorus compound were directly added to (3.73 milliequivalent). The obtained polyester has [η] = 0.67, DEG%
= 7.2, L value = 84.1, a value = -1.7, b value = 2.2, which is significantly higher than the polymer obtained in Example 9.
DEG% has become high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は3種の触媒を用いて重縮合した場合の
オリゴマーの〔OH〕と生成ポリマーのDEG%の
関係を示す図である。
FIG. 1 is a diagram showing the relationship between [OH] of the oligomer and DEG% of the resulting polymer in the case of polycondensation using three types of catalysts.

Claims (1)

【特許請求の範囲】 1 テレフタル酸を主成分とする二官能性カルボ
ン酸またはそのエステル形成性誘導体とエチレン
グリコールを主成分とするグリコールとの反応に
より得られ、その反応率が96%以上であり、かつ
オリゴマー1g当りのグリコール末端基の量が
1.5ミリ当量以下であるようなオリゴマーに次式
で示されるスルホン酸化合物を、スルホン酸基が
ポリエステルを構成する酸成分1モルに対し1×
10-4〜10×10-4当量モルとなる量添加し、重縮合
反応を行なうことを特徴とするポリエステルの製
法。 式 (X)−or(−SO3H)n m:1〜3、n:0〜3 Ar:芳香族基 X:OR1、COOR2、ハロゲン ただしR1、R2は水素または低級アルキル基で
ある。 n=0はスルホン酸基以外に全く核置換基を有
しないことを示す。 n≧2のとき、Xは同じであつても異なつてい
てもよい。
[Scope of Claims] 1. Obtained by the reaction of a difunctional carboxylic acid whose main component is terephthalic acid or its ester-forming derivative with a glycol whose main component is ethylene glycol, and whose reaction rate is 96% or more. , and the amount of glycol end groups per gram of oligomer is
Add a sulfonic acid compound represented by the following formula to an oligomer having a weight of 1.5 milliequivalent or less at a rate of 1 x
1. A method for producing polyester, which comprises adding an amount of 10 -4 to 10×10 -4 equivalent moles and carrying out a polycondensation reaction. Formula (X)- o A r (-SO 3 H) n m: 1 to 3, n: 0 to 3 A r : Aromatic group X: OR 1 , COOR 2 , halogen However, R 1 and R 2 are hydrogen or It is a lower alkyl group. n=0 indicates that there is no nuclear substituent other than the sulfonic acid group. When n≧2, X may be the same or different.
JP6573879A 1979-05-28 1979-05-28 Preparation of polyester Granted JPS55157625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6573879A JPS55157625A (en) 1979-05-28 1979-05-28 Preparation of polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6573879A JPS55157625A (en) 1979-05-28 1979-05-28 Preparation of polyester

Publications (2)

Publication Number Publication Date
JPS55157625A JPS55157625A (en) 1980-12-08
JPS6136777B2 true JPS6136777B2 (en) 1986-08-20

Family

ID=13295647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6573879A Granted JPS55157625A (en) 1979-05-28 1979-05-28 Preparation of polyester

Country Status (1)

Country Link
JP (1) JPS55157625A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424337A (en) * 1982-09-07 1984-01-03 The Goodyear Tire & Rubber Company Polyisophthalate and copolymers thereof having reduced cyclic dimer content, and a process for making the same
US4418188A (en) * 1982-09-07 1983-11-29 The Goodyear Tire & Rubber Company Polyethylene isophthalate having reduced cyclic dimer content and process therefore
US4447595A (en) * 1982-09-07 1984-05-08 The Goodyear Tire & Rubber Company Polyterephthalates and copolymers thereof having high clarity and process for making same
US8637632B2 (en) 2005-11-25 2014-01-28 Fuji Xerox Co., Ltd. Method for producing binder resin, particulate resin dispersion and method for producing same, electrostatic image development toner and method for producing same, electrostatic image developer, and image forming method

Also Published As

Publication number Publication date
JPS55157625A (en) 1980-12-08

Similar Documents

Publication Publication Date Title
US5378796A (en) Process for preparing copolyesters
KR940009419B1 (en) Process for preparation of polyester with excellent colour
EP1384740A1 (en) Process for preparing copolyesters of terephthalic acid, ethylene glycol, and 1,4-cyclohexanedimethanol exhibiting a neutral hue, high clarity and increased brightness
EP0091180A2 (en) Catalyst system for polycondensation of ethylene terephthalate prepolymer
KR20050089743A (en) Ester-modified dicarboxylate polymers
US3533973A (en) Polyester polycondensation in the presence of a catalytic amount of a trivalent aluminum salt
US5331066A (en) Process for producing polyester ether copolymer
US4131601A (en) Process for the preparation of polyesters
JPS6136777B2 (en)
US3385830A (en) Process for manufacturing polyethylene terephthalate employing metal salts of halogenated haliphatic acids
JPH08283398A (en) Production of polyester
JPS6159335B2 (en)
JP2002030137A (en) Process for producing modified polyester
EP0119731B1 (en) Copolyester of polyethylene terephthalate, process for making it and its use in producing molded articles
JPS60219226A (en) Production of high-polymerization degree polyester
JPS6254130B2 (en)
JPS6136529B2 (en)
JPS6364449B2 (en)
JPH11140175A (en) Production of polyester resin
JPS591416B2 (en) Polyester manufacturing method
JPS6333489B2 (en)
JPH03227318A (en) Production of modified polyester
JPS6136779B2 (en)
JPS591734B2 (en) Polyester manufacturing method
JPS58117216A (en) Production of polyester