JPS6136679A - Gas liquefier - Google Patents

Gas liquefier

Info

Publication number
JPS6136679A
JPS6136679A JP15751184A JP15751184A JPS6136679A JP S6136679 A JPS6136679 A JP S6136679A JP 15751184 A JP15751184 A JP 15751184A JP 15751184 A JP15751184 A JP 15751184A JP S6136679 A JPS6136679 A JP S6136679A
Authority
JP
Japan
Prior art keywords
gas
temperature
expansion turbine
pressure expansion
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15751184A
Other languages
Japanese (ja)
Other versions
JPH0210356B2 (en
Inventor
岡部 道昌
染矢 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15751184A priority Critical patent/JPS6136679A/en
Publication of JPS6136679A publication Critical patent/JPS6136679A/en
Publication of JPH0210356B2 publication Critical patent/JPH0210356B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、空気分離装置等で分離した窒素、酸素等の沸
点が極めて低いガスを寒冷発生源として高圧膨張タービ
ンと低圧膨張タービンを用いた、いわゆる2段膨張ター
ビンを使用して液化するガス液化装置に関するものであ
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention uses a high-pressure expansion turbine and a low-pressure expansion turbine using gases with extremely low boiling points such as nitrogen and oxygen separated by an air separation device etc. as a cold generation source. The present invention relates to a gas liquefaction device that liquefies gas using a so-called two-stage expansion turbine.

〔発明の背景〕[Background of the invention]

酸素、窒素等の沸点の極めて低いガスを効率良く液化す
る方法として、例えば特公昭49−40547号公報に
示されるように、高圧膨張タービンと低圧膨張タービン
を組合せた2段膨張式のタービンを使用した方法が知ら
れている。
As a method for efficiently liquefying gases with extremely low boiling points such as oxygen and nitrogen, a two-stage expansion turbine that combines a high-pressure expansion turbine and a low-pressure expansion turbine is used, as shown in Japanese Patent Publication No. 49-40547, for example. The method is known.

ガス液化装置においては、高圧の状態で液化された製品
液化ガスを貯蔵タンクその他に供給する場合、低圧の状
態に減圧する必要があり、この時、製品液化ガスが十分
に過冷却されていないと、減圧された時液の一部がフラ
ッシュしてガスが発生する。
In gas liquefaction equipment, when supplying product liquefied gas under high pressure to a storage tank or other equipment, it is necessary to reduce the pressure to a low pressure state. When the pressure is reduced, part of the liquid flashes and gas is generated.

このフラブンユロスを少なくするためには、高圧の製品
液化ガスを減圧後の飽和温度まで過冷却してやる必要が
あり、そのため、低圧膨張タービンのガスの出口温度を
、液化ガスの減圧後の飽和温度以下に下げる必要がある
。しかしながら、低圧膨張タービンの出口温度を下げ過
ぎると、ガスの一部が液化し、ミストが発生する。膨張
タービンは、一般に敵方回転という高速回転で運転され
ており、ガス中に液ミストが発生すると、摩耗やアンバ
ランスを起してタービンを破壊する恐れがある。このた
めの保護装置として特公昭49−40547号公報に示
されているように、低圧膨張タービンの出口ガス温度を
制御する方法がこれまで採用されている。
In order to reduce this flabunyuros, it is necessary to supercool the high-pressure product liquefied gas to the saturation temperature after depressurization. Therefore, the gas outlet temperature of the low-pressure expansion turbine must be lowered below the saturation temperature of the liquefied gas after depressurization. need to be lowered. However, if the outlet temperature of the low-pressure expansion turbine is lowered too much, part of the gas will liquefy and mist will be generated. Expansion turbines are generally operated at high-speed rotation (opposite rotation), and if liquid mist is generated in the gas, there is a risk of wear and imbalance resulting in destruction of the turbine. As a protection device for this purpose, a method of controlling the outlet gas temperature of a low-pressure expansion turbine has been employed so far, as disclosed in Japanese Patent Publication No. 49-40547.

一方、寒冷を発生する膨張タービンは、熱力学の原理か
らガスの温度、圧力が高い方が理論断熱熱落差が多いた
め、熱交換器が許容できる範囲内で膨張タービンの入口
ガス温度を高めた方がガス液化装置の効率が向上する。
On the other hand, in an expansion turbine that generates cold air, based on the principle of thermodynamics, the higher the gas temperature and pressure, the greater the theoretical adiabatic heat drop. This will improve the efficiency of the gas liquefaction equipment.

従来技術による高圧膨張タービンと低圧膨張タービンを
用いたガス液化装置の一例を液体窒素発生装置で第2図
により説明する。
An example of a gas liquefaction device using a high-pressure expansion turbine and a low-pressure expansion turbine according to the prior art will be described with reference to FIG. 2 as a liquid nitrogen generator.

第2図において、lは窒素ガスを昇圧する循環圧縮機、
2は予冷器、3はフロン等を冷媒とする冷却器、4は熱
交換器、5は液化器、6は高圧膨張タービン、7は低圧
膨張タービン、8は液化ガス出口弁、9は熱交換器4で
冷却された窒素ガスの一部を寒冷発生用の高圧膨張ター
ビン6に導く導管、10は残部を液化用ガスとして液化
器5に導く導管、11は液化器5を通して高圧膨張ター
ビン6の出口と低圧膨張タービン7の入口とを連結した
導管である。
In Fig. 2, l is a circulation compressor that boosts the pressure of nitrogen gas;
2 is a precooler, 3 is a cooler using Freon or the like as a refrigerant, 4 is a heat exchanger, 5 is a liquefier, 6 is a high pressure expansion turbine, 7 is a low pressure expansion turbine, 8 is a liquefied gas outlet valve, 9 is a heat exchanger A conduit 10 guides a part of the nitrogen gas cooled in the liquefier 4 to the high pressure expansion turbine 6 for generating cold, a conduit 10 leads the remainder to the liquefier 5 as liquefaction gas, and 11 a conduit that leads the nitrogen gas cooled in the liquefier 5 to the high pressure expansion turbine 6. This is a conduit connecting the outlet and the inlet of the low pressure expansion turbine 7.

ガス窒素な循環圧縮機1で約35Kg/ctIGに昇圧
した後、予冷器2および冷却器3で冷却し、更に熱交換
器4で低温戻りガス窒素で約−】oo”cまで冷却した
後2分流し、その一方の高圧窒素ガスを導管9より高圧
膨張タービン6に導入し、圧力約5Ks+/cIIGま
で膨張させて約−160”Cの寒冷を発生させ、この窒
素ガスを導管11を介して液化器5で約−150℃まで
温度回復させた後、低圧膨張タービン7に導入して約−
190”Cの寒冷を発生させる。低圧膨張タービン7で
圧力約o3Kp/cal Gとなった低圧、低温度の窒
素ガスは液化器5に導かれ、熱交換器4の出口で分流さ
れ導管10より液化器5に導かれた他方の高圧液化用の
窒素ガスを液化させると同時に過冷却し、更に熱交換器
4で高圧窒素ガスを冷却して温度回復した後、予冷器2
を経て循環圧縮機1に戻される。一方、液化器5で液化
された高圧液化用窒素ガスは、液化器5の後流で製品の
飽和温度まで過冷却され、導管校より液化ガス出口弁8
を通って製品液体窒素として貯蔵タンクに溜められたり
、空気分離装などの精留塔の寒冷源として使用される。
After increasing the pressure to about 35 Kg/ctIG in the gas nitrogen circulation compressor 1, it was cooled in the precooler 2 and cooler 3, and further cooled to about -]oo"c with low temperature return gas nitrogen in the heat exchanger 4. One of the high-pressure nitrogen gases is introduced into the high-pressure expansion turbine 6 through the conduit 9 and expanded to a pressure of approximately 5Ks+/cIIG to generate a cooling temperature of approximately -160"C. This nitrogen gas is passed through the conduit 11. After recovering the temperature to about -150°C in the liquefier 5, it is introduced into the low pressure expansion turbine 7 and cooled to about -150°C.
A cold temperature of 190"C is generated. The low-pressure, low-temperature nitrogen gas, which has reached a pressure of approximately o3Kp/cal G in the low-pressure expansion turbine 7, is led to the liquefier 5, divided at the outlet of the heat exchanger 4, and sent through the conduit 10. The other high-pressure liquefied nitrogen gas led to the liquefier 5 is liquefied and supercooled at the same time, and the high-pressure nitrogen gas is further cooled in the heat exchanger 4 to recover its temperature, and then the precooler 2
It is returned to the circulation compressor 1 through the. On the other hand, the high-pressure liquefied nitrogen gas liquefied in the liquefier 5 is supercooled to the saturation temperature of the product in the wake of the liquefier 5, and is passed from the conduit to the liquefied gas outlet valve 8.
The product is then stored as liquid nitrogen in storage tanks, or used as a cooling source for rectification towers such as air separation equipment.

低圧膨張タービン7の出口ガス温度の調節は、出口温度
検出器を設け、温度調節装M13により液化ガス出口弁
8を介して調節する方法が従来より行なわれている。ま
た、減量運転時または液化用ガスの調整が間に合わない
ような場合は、前述の特公昭49−40547号公報の
方法なども併用されている。
Conventionally, the outlet gas temperature of the low-pressure expansion turbine 7 is adjusted by providing an outlet temperature detector and adjusting the temperature via the liquefied gas outlet valve 8 using a temperature adjusting device M13. In addition, during the reduction operation or when the liquefaction gas cannot be adjusted in time, the method described in Japanese Patent Publication No. 49-40547 mentioned above is also used.

しかしながら、第2図に示す従来の調節方法では、液化
器5で温度回復される低圧膨張タービン7の入口温度は
、高温流体である高圧の液化用ガスの流量によって変化
する。換言すれば、低圧膨張タービン7の出口ガス温度
で液化用ガス量を制御する方法では、設計点以外の減量
運転などでは液化器5の伝熱面積の関係を変えることが
できないため、液化器5より製品として取出される液体
窒素の温度は、低圧膨張タービン7の出口温度優先制御
により、液化用ガス量の変動により大きく変化し、また
。高圧膨張タービン6の入口温度にも影響を与えるなど
の欠点があった。
However, in the conventional adjustment method shown in FIG. 2, the inlet temperature of the low-pressure expansion turbine 7, whose temperature is recovered by the liquefier 5, changes depending on the flow rate of the high-pressure liquefaction gas, which is a high-temperature fluid. In other words, in the method of controlling the amount of liquefied gas by the outlet gas temperature of the low-pressure expansion turbine 7, the relationship between the heat transfer areas of the liquefier 5 cannot be changed by a reduction operation other than the design point. The temperature of liquid nitrogen taken out as a product changes greatly due to fluctuations in the amount of liquefied gas due to the outlet temperature priority control of the low-pressure expansion turbine 7. This has the disadvantage that it also affects the inlet temperature of the high-pressure expansion turbine 6.

液体窒素の温度が上昇するとフラッシュロスが増加し、
余分な窒素ガスを捨てることになり、効率が低下する。
As the temperature of liquid nitrogen increases, flash loss increases,
Excess nitrogen gas will be discarded, reducing efficiency.

一方、特公昭49−40547号公報の高圧膨張タービ
ン6の入口ガスをバイパスする方法は、低圧膨張タービ
ン7の保護としては有効であるが、エネルギーの損失と
なり、同様に液化装置の効率が大幅に低下する。
On the other hand, the method disclosed in Japanese Patent Publication No. 49-40547, which bypasses the inlet gas of the high-pressure expansion turbine 6, is effective in protecting the low-pressure expansion turbine 7, but results in a loss of energy, and similarly the efficiency of the liquefaction device is greatly reduced. descend.

〔発明の目的〕[Purpose of the invention]

本発明は、かかる従来技術の欠点をな曵するため、低圧
膨張タービンの出口ガス温度を、高圧膨張タービンの入
口温度や液化ガスの最終冷却温度に影響を与えることな
く、装置の最適運転条件に合せて運転できるガス液化装
置を提供することにある。
In order to overcome the drawbacks of the prior art, the present invention adjusts the outlet gas temperature of the low-pressure expansion turbine to the optimum operating condition of the device without affecting the inlet temperature of the high-pressure expansion turbine or the final cooling temperature of the liquefied gas. The object of the present invention is to provide a gas liquefaction device that can be operated together.

〔発明の概要〕[Summary of the invention]

本発明の要点は、高圧膨張タービン出口と低圧膨張ター
ビン入口とを連結する導管の途中に、低圧膨張タービン
の出口ガス温度を調節するためのタービン熱交換器を設
け、温度調節するための高温流体に液化用ガスを2分し
てその一方をタービン熱交換器に通し、低圧膨張タービ
ンの出口ガス温度によりタービン熱交換器に導かれる液
化用ガスと液化器を通る液化ガス量をそれぞれ調節弁に
より自動的に調整するようにしたもので、更に液化器出
口の製品液化ガスの温度を検出し、液化温度で高圧膨張
タービンの入口温度を最適温度に自動調整するようにし
たものである。
The gist of the present invention is to provide a turbine heat exchanger for adjusting the outlet gas temperature of the low-pressure expansion turbine in the middle of a conduit connecting the high-pressure expansion turbine outlet and the low-pressure expansion turbine inlet, and to provide a high-temperature fluid for temperature adjustment. The liquefied gas is divided into two parts, one of which is passed through a turbine heat exchanger, and the amount of liquefied gas guided to the turbine heat exchanger and the amount of liquefied gas that passes through the liquefier are controlled by control valves depending on the outlet gas temperature of the low-pressure expansion turbine. The temperature is automatically adjusted by detecting the temperature of the product liquefied gas at the liquefier outlet, and automatically adjusting the inlet temperature of the high pressure expansion turbine to the optimum temperature based on the liquefaction temperature.

〔発明の実施例〕 以下、本発明の一実施例を窒素ガス液化装置についてg
J1図により詳細に説明する。
[Embodiment of the Invention] An embodiment of the present invention will be described below regarding a nitrogen gas liquefaction device.
This will be explained in detail using diagram J1.

第1図において、第2図と同一部分は同一符号で示し説
明を省略する。14は高圧膨張タービン6の出口と低圧
膨張タービン7の入口とを連結した導管11の途中に設
けられたタービン熱交換器、15はタービン熱交換器1
4を通る液化用ガスの自動調節弁、16は液化器5の中
間部を流れる液化用ガスの自動調節弁、17はタービン
熱交換器14に液化用ガスを導(導管、18は液化器5
の中間から液化用ガスを導く導管、19は自動調節弁1
5.16を出た後の液化用ガスを再び液化器5の後流側
に導く導管、囚は液化ガス出口温度を検出し高圧膨張タ
ービン6の入口温度を調節する温度調節装置21のセッ
ト値を変える自動調節装置である。
In FIG. 1, the same parts as in FIG. 2 are designated by the same reference numerals and explanations will be omitted. 14 is a turbine heat exchanger provided in the middle of the conduit 11 connecting the outlet of the high-pressure expansion turbine 6 and the inlet of the low-pressure expansion turbine 7; 15 is the turbine heat exchanger 1;
4 is an automatic control valve for the liquefied gas flowing through the liquefier 5; 16 is an automatic control valve for the liquefied gas flowing through the middle part of the liquefier 5; 17 is a conduit for introducing the liquefied gas to the turbine heat exchanger 14;
19 is an automatic control valve 1
5.16 A conduit that guides the liquefied gas to the downstream side of the liquefier 5 again, and a set value of the temperature control device 21 that detects the liquefied gas outlet temperature and adjusts the inlet temperature of the high pressure expansion turbine 6. It is an automatic adjustment device that changes the

第2図で説明したように、熱交換器4を出た高圧の窒素
ガスは2分され、寒冷発生用の窒素ガスは導管9より高
圧膨張タービン6に導かれ、ここで寒冷発生した窒素ガ
スは導管11の途中に設けられたタービン熱交換器14
に導かれる。一方、導管10より液化器5に導かれた液
化用高圧窒素ガスは更に2分され、一方の高圧窒素ガス
は導管17よりタービン熱交換器14に導かれる。ター
ビン熱交換器14では、高圧膨張タービン6で低温にな
った寒冷発生用窒素ガスと液化用高圧窒素ガスとが熱交
換し、寒冷発生用ガスは所定の温度まで昇温されて低圧
膨張タービン7の入口に導かれる。液化用高圧窒素ガス
はここで液化され、液化器5で分流されて液化された残
りの液化用ガスと自動調節弁15および16を経て導管
19で合流し、再び液化器5の後流側に導かれて低圧膨
張タービン7で寒冷発生した出口窒素ガスと熱交換し、
過冷却されて導管12.液化ガス出口弁8を通って製品
液化ガスとして取出される。
As explained in FIG. 2, the high-pressure nitrogen gas that exits the heat exchanger 4 is divided into two parts, and the nitrogen gas for cold generation is guided through the conduit 9 to the high-pressure expansion turbine 6, where the cold generation nitrogen gas is a turbine heat exchanger 14 installed in the middle of the conduit 11
guided by. On the other hand, the high-pressure nitrogen gas for liquefaction led to the liquefier 5 through the conduit 10 is further divided into two parts, and one of the high-pressure nitrogen gases is led to the turbine heat exchanger 14 through the conduit 17. In the turbine heat exchanger 14 , the cold generation nitrogen gas that has become low temperature in the high-pressure expansion turbine 6 and the liquefied high-pressure nitrogen gas exchange heat, and the cold generation gas is heated to a predetermined temperature and then transferred to the low-pressure expansion turbine 7 . will lead you to the entrance. The high-pressure nitrogen gas for liquefaction is liquefied here, and is divided in the liquefier 5 and joins with the remaining liquefied gas through the automatic control valves 15 and 16 in the conduit 19, and then flows back to the downstream side of the liquefier 5. It is guided and exchanges heat with the cold generated outlet nitrogen gas in the low pressure expansion turbine 7,
Supercooled conduit 12. It passes through the liquefied gas outlet valve 8 and is taken out as a product liquefied gas.

一方、低圧膨張タービン7の出口窒素ガス温度は、温度
調節装置113により自動調節弁15.16を介して自
動制御される。また、製品液化ガスの温度は導管校に取
付けられた温度検出器により、高圧膨張タービン6の入
口導管9に設置された温度調節装置I21のセット値を
自動セブトする自動調節装置加で液化ガス出口弁8を介
して自動制御される。
On the other hand, the temperature of the nitrogen gas at the outlet of the low pressure expansion turbine 7 is automatically controlled by the temperature control device 113 via automatic control valves 15 and 16. In addition, the temperature of the product liquefied gas is determined by a temperature sensor installed at the conduit pipe, and an automatic control device that automatically sets the set value of the temperature control device I21 installed at the inlet pipe 9 of the high-pressure expansion turbine 6 is used at the liquefied gas outlet. Automatically controlled via valve 8.

上述の実施例では、低圧膨張タービン7の出口窒素ガス
温度を検出して自動調節弁15.16を作動する場合に
ついて説明したが、低圧膨張タービン70入口温度を検
出しても間接的に同様な効果が得られる。また、製品液
化ガスの温度を検出して液化ガス出口弁8を介して直接
制御しても、液化器5の熱交換性能上から高圧膨張ター
ビン6の入口温度は自動的に最適温度に制御されるが、
起動時など液化ガスが発生していない状態では温度が定
まらず、また、液化ガスの温度変化が小さいため制御性
が悪い。本発明によれば、高圧膨張タービン6人口の温
度調節装置1i21に、運転範囲内の限界値にセットポ
イントのりミツターを設けることもできるので、起動時
の問題や制御性の問題が解消される。
In the above-mentioned embodiment, the automatic control valve 15,16 is activated by detecting the nitrogen gas temperature at the outlet of the low-pressure expansion turbine 7. However, even if the inlet temperature of the low-pressure expansion turbine 70 is detected, the same effect can be achieved indirectly. Effects can be obtained. Furthermore, even if the temperature of the product liquefied gas is detected and directly controlled via the liquefied gas outlet valve 8, the inlet temperature of the high-pressure expansion turbine 6 is automatically controlled to the optimum temperature due to the heat exchange performance of the liquefier 5. However,
In a state where liquefied gas is not generated, such as during startup, the temperature is not fixed, and controllability is poor because the temperature change of liquefied gas is small. According to the present invention, the temperature control device 1i21 of the high-pressure expansion turbine 6 can be provided with a set point limiter at a limit value within the operating range, so problems at startup and controllability are solved.

なお、本発明のタービン熱交換器14の代りに、従来の
液化器5に高圧膨張タービン出口ガスを昇温する通路と
、液化器5を通らない高圧膨張タービン出口から直接低
圧膨張タービン入口にパイ/fスする導管を設けて、低
圧膨張タービン出口温度調節計でそれぞれの弁を作動さ
せて制御しても、本発明と類似の制御は可能であるが、
液化器5の伝熱面積の増加割合が太きえなるばかりでな
曵、流量の大きな大口径導管に調節弁を設けることは経
済的に不利となり、しかも弁の圧力損失増加により膨張
タービンの寒冷発生量も低下するため、性能上も損失が
大きい。また、運転の変化によって液化器の温度ゾーン
が変化するため最適条件とは成り得す、液化器の温度ゾ
ーンの変化に影響しない本発明の方が有効である。
In addition, instead of the turbine heat exchanger 14 of the present invention, a passage for raising the temperature of high-pressure expansion turbine outlet gas is provided in the conventional liquefier 5, and a pipe is provided directly from the high-pressure expansion turbine outlet to the low-pressure expansion turbine inlet without passing through the liquefier 5. Control similar to the present invention is possible even if a conduit is provided for /f and each valve is operated and controlled by a low-pressure expansion turbine outlet temperature controller.
As the rate of increase in the heat transfer area of the liquefier 5 increases, it becomes economically disadvantageous to provide a control valve in a large-diameter conduit with a large flow rate, and furthermore, the increased pressure loss of the valve causes cooling of the expansion turbine. Since the quantity also decreases, there is a large loss in terms of performance. Further, since the temperature zone of the liquefier changes with changes in operation, the present invention is more effective because it does not affect the change in the temperature zone of the liquefier, which can be considered as the optimum condition.

〔発明の効果〕〔Effect of the invention〕

本発明は以上述べたように、高圧膨張タービン出口と低
圧膨張タービン入口を連結する導間の途中に、低圧膨張
タービン出口温度を調整するためのタービン熱交換器を
設けたことにより、従来ののように液化器で低圧膨張タ
ービン入口温度を昇温していたものに比べて、低圧膨張
タービン出口の低圧、低温の窒素ガスの温度の影響が無
いため、いかなる運転条件においても低圧膨張タービン
出口温度を一定に制御することができ、しかも、液化ガ
スの出口温度による高圧膨張タービン入口温度制御と相
俟って、常にエネルギーロスの最小なガス液化装置の最
適運転条件を容易に設定することができる効果がある。
As described above, the present invention provides a turbine heat exchanger for adjusting the low-pressure expansion turbine outlet temperature in the middle of the inductor connecting the high-pressure expansion turbine outlet and the low-pressure expansion turbine inlet. Compared to the case where the low-pressure expansion turbine inlet temperature was raised using a liquefier, there is no effect of the low pressure and low-temperature nitrogen gas temperature at the low-pressure expansion turbine outlet, so the low-pressure expansion turbine outlet temperature remains constant under any operating conditions. In addition, by controlling the high-pressure expansion turbine inlet temperature using the liquefied gas outlet temperature, it is possible to easily set the optimum operating conditions for the gas liquefaction equipment that always minimizes energy loss. effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一冥施例を示すガス液化装置の系統図
、第2図は高圧膨張タービンおよび低圧膨張タービンを
使用したいわゆる2段式膨張タービンを採用した従来の
ガス液化装置の系統図である。 l・・・・・・循環圧縮機、2・・・・・・予冷器、3
・・・・・・冷却器、4・・・・・・熱交換器、5・・
・・・・液化器、6・・・・・高圧膨張タービン、7・
・・・・・低圧膨張タービン、8・・・・・・液化ガス
出口弁、9〜12.17〜19・・・・・導管、13゜
4・・・・・・温度調節装置、14・・・・・・タービ
ン熱交換器、=1−1図 ′I=2図
Fig. 1 is a system diagram of a gas liquefaction equipment showing one embodiment of the present invention, and Fig. 2 is a system diagram of a conventional gas liquefaction equipment employing a so-called two-stage expansion turbine using a high-pressure expansion turbine and a low-pressure expansion turbine. It is a diagram. l... Circulating compressor, 2... Precooler, 3
...Cooler, 4...Heat exchanger, 5...
... Liquefier, 6 ... High pressure expansion turbine, 7.
...Low pressure expansion turbine, 8 ... Liquefied gas outlet valve, 9 - 12. 17 - 19 ... Conduit, 13° 4 ... Temperature control device, 14. ...Turbine heat exchanger, = 1-1 diagram'I = 2 diagram

Claims (1)

【特許請求の範囲】 1、循環圧縮機で昇圧したガスを熱交換器で低温戻りガ
スにより冷却した後、寒冷発生用ガスと液化用ガスに2
分流し、第1分流の寒冷発生用ガスを第1段目の高圧膨
張タービンに導入して寒冷を発生させ、高圧膨張タービ
ン出口のガスを温度回復させた後、第2段目の低圧膨張
タービンに導入して更に寒冷を発生させ、低温戻りガス
を液化器を通して前記第2分流の液化用ガスを液化する
と共に、熱交換器を通して温度回復させた後、循環圧縮
機に循環させるようにしたガス液化装置において、前記
高圧膨張タービン出口と低圧膨張タービン入口とを連結
した導管の途中に、高圧膨張タービン出口ガス温度を昇
温するためのタービン熱交換器を設け、前記第2分流の
液化用ガスを液化器の上流側で更に2分流し、一方の分
流ガスを前記タービン熱交換器を通して液化器の下流側
で他方の分流ガスと合流させる導管を設け、該導管およ
び他方の分流ガスの導管にそれぞれ流量を調整する自動
調節弁を設け、前記低圧膨張タービンの入口または出口
温度を検出して自動調節弁を作動する温度調節装置を設
けたことを特徴とするガス液化装置。 2、循環圧縮機で昇圧したガスを熱交換器で低温戻りガ
スにより冷却した後、寒冷発生用ガスと液化用ガスに2
分流し、第1分流の寒冷発生用ガスを第1段目の高圧膨
張タービンに導入して寒冷を発生させ、高圧膨張タービ
ン出口のガスを温度回復させた後、第2段目の低圧膨張
タービンに導入して更に寒冷を発生させ、低温戻りガス
を液化器を通して前記第2分流の液化用ガスを液化する
と共に、熱交換器を通して温度回復させた後、循環圧縮
機に循環させるようにしたガス液化装置において、前記
高圧膨張タービン出口と低圧膨張タービン入口とを連結
した導管の途中に、高圧膨張タービン出口ガス温度を昇
温するためのタービン熱交換器を設け、前記第2分流の
液化用ガスを液化器の上流側で更に2分流し、一方の分
流ガスを前記タービン熱交換器を通して液化器の下流側
で他方の分流ガスと合流させる導管を設け、該導管およ
び他方の分流ガスの導管にそれぞれ流量を調整する自動
調節弁を設け、前記低圧膨張タービンの入口または出口
温度を検出して自動調節弁を作動する温度調節装置を設
け、前記第1分流を高圧膨張タービンに導く導管に高圧
膨張タービン入口ガスの温度調節装置を設け、液化器出
口の液化ガス導管に製品液化ガス温度を検出して前記温
度調節装置のセット値を自動調整する自動調節装置を設
けたことを特徴とするガス液化装置。
[Claims] 1. The gas pressurized by the circulation compressor is cooled by low-temperature return gas in a heat exchanger, and then converted into cold generation gas and liquefaction gas.
The cold generation gas of the first divided flow is introduced into the first-stage high-pressure expansion turbine to generate cold, and after recovering the temperature of the gas at the high-pressure expansion turbine outlet, the second-stage low-pressure expansion turbine The low-temperature return gas is passed through a liquefier to liquefy the liquefied gas in the second branch stream, and the temperature is recovered through a heat exchanger, after which the gas is circulated to the circulation compressor. In the liquefaction device, a turbine heat exchanger for increasing the temperature of the high-pressure expansion turbine outlet gas is provided in the middle of a conduit connecting the high-pressure expansion turbine outlet and the low-pressure expansion turbine inlet. is further divided into two parts on the upstream side of the liquefier, and a conduit is provided in which one of the divided gases passes through the turbine heat exchanger and joins with the other divided gas on the downstream side of the liquefier, and the conduit and the other divided gas conduit are connected to each other. A gas liquefaction device characterized in that an automatic control valve is provided to adjust the flow rate, and a temperature control device is provided to detect the inlet or outlet temperature of the low-pressure expansion turbine and operate the automatic control valve. 2. After the gas pressurized by the circulation compressor is cooled by the low-temperature return gas in the heat exchanger, it is divided into cold generation gas and liquefaction gas.
The cold generation gas of the first divided flow is introduced into the first-stage high-pressure expansion turbine to generate cold, and after recovering the temperature of the gas at the high-pressure expansion turbine outlet, the second-stage low-pressure expansion turbine The low-temperature return gas is passed through a liquefier to liquefy the liquefied gas in the second branch stream, and the temperature is recovered through a heat exchanger, after which the gas is circulated to the circulation compressor. In the liquefaction device, a turbine heat exchanger for increasing the temperature of the high-pressure expansion turbine outlet gas is provided in the middle of a conduit connecting the high-pressure expansion turbine outlet and the low-pressure expansion turbine inlet. is further divided into two parts on the upstream side of the liquefier, and a conduit is provided in which one of the divided gases passes through the turbine heat exchanger and joins with the other divided gas on the downstream side of the liquefier, and the conduit and the other divided gas conduit are connected to each other. an automatic control valve for adjusting the flow rate, and a temperature control device for detecting the inlet or outlet temperature of the low-pressure expansion turbine and operating the automatic control valve; Gas liquefaction, characterized in that a turbine inlet gas temperature control device is provided, and a liquefied gas conduit at the liquefier outlet is provided with an automatic control device that detects the product liquefied gas temperature and automatically adjusts the set value of the temperature control device. Device.
JP15751184A 1984-07-30 1984-07-30 Gas liquefier Granted JPS6136679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15751184A JPS6136679A (en) 1984-07-30 1984-07-30 Gas liquefier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15751184A JPS6136679A (en) 1984-07-30 1984-07-30 Gas liquefier

Publications (2)

Publication Number Publication Date
JPS6136679A true JPS6136679A (en) 1986-02-21
JPH0210356B2 JPH0210356B2 (en) 1990-03-07

Family

ID=15651274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15751184A Granted JPS6136679A (en) 1984-07-30 1984-07-30 Gas liquefier

Country Status (1)

Country Link
JP (1) JPS6136679A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002715A (en) * 2006-06-20 2008-01-10 Tohoku Univ Very low temperature micro-slush production system
WO2008105085A1 (en) * 2007-02-28 2008-09-04 Hitachi Plant Technologies, Ltd. Method of oxidation reaction flue gas treatment and energy recovery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002715A (en) * 2006-06-20 2008-01-10 Tohoku Univ Very low temperature micro-slush production system
WO2008105085A1 (en) * 2007-02-28 2008-09-04 Hitachi Plant Technologies, Ltd. Method of oxidation reaction flue gas treatment and energy recovery

Also Published As

Publication number Publication date
JPH0210356B2 (en) 1990-03-07

Similar Documents

Publication Publication Date Title
US3503208A (en) Co2 gas turbine power plant
KR102493917B1 (en) gas production system
US4582519A (en) Gas-liquefying system including control means responsive to the temperature at the low-pressure expansion turbine
EP0244205A2 (en) Gas liquefaction method
JP4563269B2 (en) Refrigeration capacity control device for turbine-type refrigerator
US7278280B1 (en) Helium process cycle
KR20190046107A (en) Apparatus for cooling working fluid and Power generation plant using the same
JPS6136679A (en) Gas liquefier
JPH04126988A (en) Separating method for air using external cold source
US10935031B2 (en) Booster system
JP2841955B2 (en) Supercritical helium cooling device and operating method thereof
US7409834B1 (en) Helium process cycle
JPH05180558A (en) Method of liquefying gas and refrigerating plant
JPH06265230A (en) Method and device for controlling operation of liquefaction-refrigerating device
JPH05302504A (en) Low temperature power generating device using liquefied natural gas
JP2512041B2 (en) Operation control method for cryogenic refrigerator
JPS63194163A (en) Cryogenic refrigerator
Hsiao et al. The liquid helium cryogenic system for the superconducting cavity in SRRC
JP3026091B2 (en) Air liquefaction separation device and start-up method thereof
JPH01102289A (en) Helium liquefying refrigerator
JPH0480558A (en) Helium liquefying refrigerator
JP3722928B2 (en) Waste heat recovery boiler unit
JPH0448186A (en) Air separating device
Sahu et al. Adopted Methodology for Cool-Down of SST-1 Superconducting Magnet System: Operational Experience with the Helium Refrigerator
JPH0794928B2 (en) Cryogenic refrigerator and operation control method thereof