JPS6136346B2 - - Google Patents

Info

Publication number
JPS6136346B2
JPS6136346B2 JP55041427A JP4142780A JPS6136346B2 JP S6136346 B2 JPS6136346 B2 JP S6136346B2 JP 55041427 A JP55041427 A JP 55041427A JP 4142780 A JP4142780 A JP 4142780A JP S6136346 B2 JPS6136346 B2 JP S6136346B2
Authority
JP
Japan
Prior art keywords
lead
battery
sulfuric acid
anode plate
dilute sulfuric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55041427A
Other languages
Japanese (ja)
Other versions
JPS56138867A (en
Inventor
Etsuji Makino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP4142780A priority Critical patent/JPS56138867A/en
Publication of JPS56138867A publication Critical patent/JPS56138867A/en
Publication of JPS6136346B2 publication Critical patent/JPS6136346B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/20Processes of manufacture of pasted electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、未化陽極板を使つて組立てたペース
ト式鉛蓄電池の化成効率向上に関するものであ
る。 従来の技術 従来未化極板を用いて組立てられた鉛蓄電池の
化成の場合には、該鉛蓄電池に一定比重の希硫酸
を注入し、一定時間静置して希硫酸を極板に十分
浸透させた後一定電流を所定時間流して電解液比
重と電池端子電圧が一定値まで上昇したのを確認
してから化成工程を終了する方法が採用されてい
る。 発明が解決しようとする問題点。 この場合、未化陽、陰極板の含有する硫酸鉛か
ら化成の酸化、還元によつて放出された硫酸及び
化成終期に起こる水の電解による電解液の濃縮を
考慮し、電池の電解液量と併せて電池に注液する
電解液比重を定めているが、電解液を化成中に入
換える工程を採らない限り、比重値の高い希硫酸
(1.180〜1.220)による化成を施さざるを得な
い。比重値の高い希硫酸による化成では、電解液
注液後に未化陽、陰極板中の硫酸鉛の生成量が、
比重値の低い希硫酸(1.050〜1.150)に比べて著
しく増大し、導伝性の悪い硫酸鉛の量が多くな
り、従つて通電電気量に対する化成効率が悪くな
るため多大の電気量を必要とする。又、化成終了
後陽極板表面、特に格子基板の桝目中央部分には
化成されない白色の硫酸鉛が残留し易く、電池性
能の低下や電池外観を悪くする等の欠点を有して
いた。 問題点を解決するための手段。 本発明は上記の如き欠点を除去するもので、
PbO(酸化鉛)の粉末を希硫酸で混練したペース
トを鉛または鉛合金の格子基板に充填した後、該
充填極板における格子基板の桝目中央部の表面に
Pb3O4(鉛丹)の粉末を付着させて作つた未化陽
極板を電池に組立てた後、化成を行なうものであ
る。 作 用 上記組立電池の化成においては比重値の高い希
硫酸(1.180〜1.200)による場合でも、電池内へ
の電解液注液時に未化陽極板における格子基板の
桝目中央部表面部に存在する鉛丹が硫酸と反応し
て導電性の良い二酸化鉛を形成し、同時に未化陽
極板中における格子基板の桝目中央部に生成する
導電性の悪い硫酸鉛と混在して、鉛丹より形成し
た二酸化鉛が核となつて化成効率が向上すること
になる。 実施例 次に本発明における実施例を説明する。 PbOの粉末を希硫酸で混練して得られるペース
ト2を鉛または鉛合金からなる格子基板1に充填
した充填極板における格子基板1の桝目中央部表
面に、更にPb3O4の粉末(鉛丹)3を付着せしめ
て未化陽極板4を得る。 上記未化陽極板4を用いて組立てられた鉛蓄電
池の化成においては比重値の高い希硫酸(1.180
〜1.200)による場合でも、化成効率が向上して
通電電気量の節減が可能となり、しかも化成終了
後の陽極板における格子基板1の桝目中央部表面
部には残留白色硫酸鉛は全く存在せず、電池外観
を損うことなく、且つ、電池性能も向上せしめる
ことができるものである。 次に第1表において説明すると、従来の鉛酸化
物を希硫酸で混練して得られるペーストを鉛また
は鉛合金からなる格子基板に充填して得られる未
化陽極板を用いて組立てられた鉛蓄電池の化成
(希硫酸比重1.180〜1.200、化成液温度40℃)に
おける通電電気量(電池公称容量の300%)を100
とし、その場合の電池容量を100として示してい
る。 従来の通電電気量を単純に20%低減すると第1
表から判明するように、陽極板中の残留硫酸鉛量
が2乃至3倍に増加して、電池容量が低下する等
電池外観、電池性能に悪影響を及ぼす。 一方、本発明による未化陽極板を用いて組立て
られた鉛蓄電池の化成(希硫酸比重1.180〜
1.200、化成液温度40℃)における通電電気量
を、従来のそれの80%、70%に低減した場合、そ
の時の電池容量は第1表から判明するように、従
来の鉛蓄電池と殆ど変わらない。しかも、陽極板
中の残留酸鉛量は、従来の鉛蓄電池と比べて著し
く減少している。これは、比重値の高い希硫酸
(1.180〜1.200)による化成の場合でも電解液注
液時に、未化陽極板における格子基板1の桝目中
央部の表面部に設けられた鉛丹3が硫酸と反応し
て導伝性の良い二酸化鉛を形成し、同時に未化陽
極板中に生成する導伝性の悪い硫酸鉛と混在する
ことになり、鉛丹層より形成した二酸化鉛が核と
なつて化成効率が向上するためと思われる。 上記鉛丹3は希硫酸と下記のように反応するこ
とが知られている。 〔例えば 「理化学辞典(第3版)」、(1971、5、20)、岩
波書店、P516、および「鉛―酸電池データブツ
ク(LEAD―ACIDBATTERIES A
REFERENCE AND DATA BOOK)」、
(1677)、エルシビアセクオア(ELSEVIER
SEQUOIAS、A、)P35〕 Pb3O4+2H2SO4
→PbO2+2PbSO4+2H2O
INDUSTRIAL APPLICATION FIELD The present invention relates to improving the formation efficiency of paste-type lead-acid batteries assembled using unconverted anode plates. Conventional technology When converting a lead-acid battery that has been assembled using unconverted electrode plates, dilute sulfuric acid of a certain specific gravity is injected into the lead-acid battery, and the dilute sulfuric acid is left to stand for a certain period of time to sufficiently penetrate the electrode plates. After that, a method is adopted in which a constant current is passed for a predetermined period of time, and the chemical formation process is completed after confirming that the specific gravity of the electrolytic solution and the battery terminal voltage have increased to a certain value. The problem that the invention seeks to solve. In this case, the amount of electrolyte in the battery should be calculated by taking into consideration the sulfuric acid released from the lead sulfate contained in the negative and negative electrode plates through oxidation and reduction during chemical formation, and the concentration of the electrolyte due to the electrolysis of water that occurs at the end of chemical formation. The specific gravity of the electrolytic solution to be injected into the battery is also determined, but unless a step is taken to replace the electrolytic solution during formation, formation will have to be performed using dilute sulfuric acid (1.180 to 1.220), which has a high specific gravity value. In chemical formation using dilute sulfuric acid with a high specific gravity value, the amount of lead sulfate produced in the unformed positive and negative electrode plates after electrolyte injection is as follows:
Compared to dilute sulfuric acid (1.050 to 1.150), which has a low specific gravity value, the amount of lead sulfate increases significantly, and the amount of lead sulfate, which has poor conductivity, becomes large.As a result, the chemical formation efficiency with respect to the amount of electricity applied becomes poor, so a large amount of electricity is required. do. Further, after completion of chemical formation, unformed white lead sulfate tends to remain on the surface of the anode plate, particularly in the central part of the squares of the lattice substrate, resulting in disadvantages such as deterioration of battery performance and poor appearance of the battery. A means to solve a problem. The present invention eliminates the above-mentioned drawbacks,
After filling a lead or lead alloy grid substrate with a paste made by kneading PbO (lead oxide) powder with dilute sulfuric acid,
After assembling an unformed anode plate made by adhering Pb 3 O 4 (redundant) powder into a battery, chemical conversion is performed. Effect In the formation of the above assembled battery, even when using dilute sulfuric acid (1.180 to 1.200) with a high specific gravity value, the lead present on the surface of the center of the square of the grid substrate in the unconverted anode plate is removed when the electrolyte is poured into the battery. Red reacts with sulfuric acid to form lead dioxide, which has good conductivity, and at the same time, it mixes with lead sulfate, which has poor conductivity, that forms in the center of the squares of the grid substrate in the unconverted anode plate, resulting in the formation of lead dioxide formed from red lead. Lead becomes the core and the chemical conversion efficiency improves. Examples Next, examples of the present invention will be described. Pb 3 O 4 powder (lead 3) to obtain an unconverted anode plate 4. When forming a lead-acid battery assembled using the unconverted anode plate 4, dilute sulfuric acid (1.180
~1.200), it is possible to improve the chemical formation efficiency and reduce the amount of electricity applied, and furthermore, there is no residual white lead sulfate on the surface of the center of the squares of the grid substrate 1 in the anode plate after the chemical formation is completed. , it is possible to improve the battery performance without impairing the appearance of the battery. Next, as explained in Table 1, lead is assembled using an unconverted anode plate obtained by filling a grid substrate made of lead or lead alloy with a paste obtained by kneading conventional lead oxide with dilute sulfuric acid. The amount of electricity (300% of the battery's nominal capacity) during storage battery chemical formation (dilute sulfuric acid specific gravity 1.180 to 1.200, chemical liquid temperature 40°C) is 100%.
The battery capacity in that case is shown as 100. Simply reducing the amount of electricity supplied by conventional methods by 20% will result in the first
As is clear from the table, the amount of residual lead sulfate in the anode plate increases two to three times, which adversely affects the battery appearance and battery performance, such as decreasing battery capacity. On the other hand, chemical conversion of lead-acid batteries assembled using unconverted anode plates according to the present invention (dilute sulfuric acid specific gravity 1.180~
1.200, chemical liquid temperature: 40℃), if the amount of electricity to be energized is reduced to 80% or 70% of that of conventional batteries, the battery capacity at that time is almost the same as that of conventional lead-acid batteries, as shown in Table 1. . Moreover, the amount of residual acid lead in the anode plate is significantly reduced compared to conventional lead-acid batteries. Even in the case of formation using dilute sulfuric acid (1.180 to 1.200), which has a high specific gravity value, when pouring the electrolyte, the red lead 3 provided on the surface of the center of the square of the grid substrate 1 on the unformed anode plate becomes sulfuric acid. It reacts to form lead dioxide, which has good conductivity, and at the same time it mixes with lead sulfate, which has poor conductivity, which is generated in the unconverted anode plate, and the lead dioxide formed from the red lead layer becomes the nucleus. This seems to be due to improved chemical conversion efficiency. It is known that the above red lead 3 reacts with dilute sulfuric acid as described below. [For example, "Physical and Chemistry Dictionary (3rd edition)" (1971, 5, 20), Iwanami Shoten, P516, and "LEAD-ACID BATTERIES A
REFERENCE AND DATA BOOK)”,
(1677), ELSEVIER
SEQUOIAS, A,)P35〕 Pb 3 O 4 +2H 2 SO 4
→PbO 2 +2PbSO 4 +2H 2 O

【表】 発明の効果 上述せる如く、本発明によれば未化陽極板と、
未化陰極板とを用いて組立てられた鉛蓄電池の化
成において、電解液を化成中に入換える工程を要
しない比重値の高い希硫酸による化成の場合で
も、未化陽極板に設けた鉛丹層により、化成効率
が向上して通電電気量の節減が可能となり、また
化成終了後の陽極板表面に化成されない硫酸鉛が
残留することなく、電池性能を向上せしめ得る等
工業的価値甚だ大なるものである。
[Table] Effects of the invention As mentioned above, according to the present invention, an unconverted anode plate,
When forming a lead-acid battery assembled using an unprocessed cathode plate, even in the case of forming using dilute sulfuric acid with a high specific gravity value, which does not require the process of replacing the electrolyte during formation, it is possible to The layer improves chemical formation efficiency and reduces the amount of electricity used, and also has great industrial value, such as improving battery performance by eliminating unformed lead sulfate from remaining on the surface of the anode plate after chemical formation. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明により得られた陽極板の一実施例
を示す正面図である。 1は格子基板、2はペースト、3は鉛丹、4は
陽極板。
The drawing is a front view showing one embodiment of an anode plate obtained according to the present invention. 1 is a grid substrate, 2 is a paste, 3 is red lead, and 4 is an anode plate.

Claims (1)

【特許請求の範囲】[Claims] 1 鉛または鉛合金からなる格子基板にPbOの粉
末を希硫酸で混練したペーストを充填した後、該
充填極板における格子基板の桝目中央部の表面部
にPb3,O4の粉末を付着させてなる未化陽極板を
電池に組立てた後、化成を行なうことを特徴とす
る鉛蓄電池の製造法。
1 After filling a grid substrate made of lead or lead alloy with a paste made by kneading PbO powder with dilute sulfuric acid, Pb 3 and O 4 powders are attached to the surface of the center of the squares of the grid substrate in the filled electrode plate. A method for producing a lead-acid battery, which comprises assembling an unconverted anode plate made of chlorine into a battery, and then performing chemical formation.
JP4142780A 1980-03-31 1980-03-31 Manufacture of plate for lead battery Granted JPS56138867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4142780A JPS56138867A (en) 1980-03-31 1980-03-31 Manufacture of plate for lead battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4142780A JPS56138867A (en) 1980-03-31 1980-03-31 Manufacture of plate for lead battery

Publications (2)

Publication Number Publication Date
JPS56138867A JPS56138867A (en) 1981-10-29
JPS6136346B2 true JPS6136346B2 (en) 1986-08-18

Family

ID=12608056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4142780A Granted JPS56138867A (en) 1980-03-31 1980-03-31 Manufacture of plate for lead battery

Country Status (1)

Country Link
JP (1) JPS56138867A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60249243A (en) * 1984-05-24 1985-12-09 Furukawa Battery Co Ltd:The Positive plate for sealed storage battery
JPS6190458A (en) * 1984-10-11 1986-05-08 Canon Inc Continuous image sensor unit

Also Published As

Publication number Publication date
JPS56138867A (en) 1981-10-29

Similar Documents

Publication Publication Date Title
JPS6136346B2 (en)
JP4645039B2 (en) Manufacturing method of cylindrical sealed lead-acid battery
JPH0569263B2 (en)
JP2943572B2 (en) Manufacturing method of electrode plate for lead-acid battery
JPS6136347B2 (en)
JPH1064530A (en) Manufacture of electrode plate for lead-acid battery
JP2001185206A (en) Lead-acid battery and manufacturing method therefor
JPH07288128A (en) Activation method for sealed lead-acid battery
JPH11120998A (en) Manufacture of lead-acid battery
JP2000082473A (en) Sealed lead-acid battery
JPH05135761A (en) Lead-acid battery
JPH0850896A (en) Manufacture of lead-acid battery
JP2949767B2 (en) Lead battery manufacturing method
JPH0773872A (en) Manufacture of clad-type lead-acid battery
JP2006114314A (en) Manufacturing method of lead acid storage battery
JPH10134810A (en) Manufacture of lead-acid battery
JPS59138063A (en) Lead storage battery
JPS59157969A (en) Manufacture of lead storage battery
JP2000323132A (en) Lead-acid battery forming method
JPS62168341A (en) Manufacture of electrode plate for lead storage battery
JPH0887999A (en) Manufacture of lead-acid battery
JPH046751A (en) Manufacture of lead battery
JPH0523022B2 (en)
JP2000182615A (en) Lead-acid battery
JPH0461749A (en) Manufacture of positive electrode for lead-acid battery