JPS6135145B2 - - Google Patents

Info

Publication number
JPS6135145B2
JPS6135145B2 JP55171320A JP17132080A JPS6135145B2 JP S6135145 B2 JPS6135145 B2 JP S6135145B2 JP 55171320 A JP55171320 A JP 55171320A JP 17132080 A JP17132080 A JP 17132080A JP S6135145 B2 JPS6135145 B2 JP S6135145B2
Authority
JP
Japan
Prior art keywords
particles
ceramic particles
spherical
ceramic
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55171320A
Other languages
Japanese (ja)
Other versions
JPS5795877A (en
Inventor
Masataka Matsuo
Sumikazu Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP55171320A priority Critical patent/JPS5795877A/en
Publication of JPS5795877A publication Critical patent/JPS5795877A/en
Publication of JPS6135145B2 publication Critical patent/JPS6135145B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は焼結性、容積安定性および充填性にす
ぐれた球状セラミツク粒子の製造方法に関するも
のである。 従来、耐火物の製造に使用される原料は天然の
鉱物、あるいは水酸化物から合成された軽焼物、
硬焼物、さらにはこれらを電気溶融したものなど
が知られている。耐火物の製造は、これらの原料
を粉砕して適当な粒度に調整し、結合剤を加え、
任意の成形方法で成形した後、必要によつては焼
成するものである。 原料の焼結性と容積安定性は耐火物の品質に大
きく関与するため重要視されるが、焼結性と容積
安定性は相反する性質であるため、両性質を同時
に満足する耐火物を得るのは極めて困難であつ
た。 すなわちアルミナ、マグネシアなどの水酸化物
を1300℃以下の低温で焼成した軽焼物を例にとる
と、これらは非常に活性であるため焼結性にすぐ
れているが、反面、焼成中に多大な収縮を生じ、
この原料をもつて耐火物を製造すると亀裂の発生
や変形が著しい。したがつて、耐火物製造のため
の原料は容積安定性の面から、軽焼のアルミナや
マグネシアなどを1800℃以上の高温で硬焼してク
リンカーにするか、あるいはこれを溶融したもの
が主として使用されている。 しかし、このように高温で焼結もしくは溶融さ
せた原料は不活性なため、耐火物製造の場合はセ
ラミツクボンドが容易に形成されないので1700℃
以上の焼成温度を必要とし、製造コスト、製造所
要時間などに難点があつた。 一方、焼結性、容積安定性の両方を満足させる
ために軽焼物を微粒に、硬焼物を粗粒に配合して
耐火物を製造することも知られているが、軽焼物
と硬焼物の焼成収縮差によつてマトリツクス間に
微亀裂が発生し、充分な強度が得られなかつた。 また、従来の原料は粉砕によつて細粒化するた
め角ばつた形状をしており、粒子間の摩擦抵抗が
大きく、混合・混練時の流動性および成形時の充
填性に難点があつた。 本発明は、上記の従来材質の欠点を解決するた
めに焼結性、容積安定性、充填性のいずれの性質
も満足し得るセラミツク粒子を製造することを目
的としてもので、炭化水素及び水素と酸素との高
温火炎中にセラミツク微粒子を通過させて溶融ま
たは半溶融状態とし、さらにこれを冷却させるこ
とを特徴とする球状セラミツク粒子の製造方法で
ある。 本発明方法をさらに詳述する。 まず、プロパン、ブタン、プロピレン、アセチ
レン、水素などの可燃ガスを燃料とした火炎発生
装置を用意し、この装置から発生する2800〜3300
℃の高温火炎中に平均径30〜100μ、最大径500μ
以下程度のセラミツク粒子を一定量づつ供給し、
溶融または半溶融化させると表面張力で球状化
し、さらに冷却によつて球状セラミツク粒子が得
られる。 本発明で使用するセラミツク粒子は例えばシリ
コン、チタニウム、アルミニウム、クロミユム、
マグネシウム、カルシウム、ジルコニウム等の水
酸化物、塩化物、硫酸塩、硝酸塩、炭化物、有機
酸塩、窒化物等の化合物もしくは前記化合物を軽
焼、硬焼又は溶融した酸化物である。これらの中
で溶融球状化のためには活性な軽焼酸化物がより
効果的である。 火炎中へのセラミツク粒子への供給は、火炎中
における濃度〔セラミツク粒子供給量(Kg)/ガ
ス使用量(m3)〕は、セラミツク粒子の化学組
成、粒径、および燃焼ガスの種類などによつて多
少異なるが、6.0以下で操作する。セラミツク粒
子の濃度が6.0を超えると火炎の温度、火炎中で
のセラミツク粒子の分散性が低下し、第2図から
明らかなように球状化率が急激に悪化して真球も
しくは真球に近い球状粒子が得られないほかセラ
ミツク粒子間の融着現象を生起して製品歩留が低
下する。 本発明方法で得られる球状アルミナ粒子が耐火
物原料として好ましい理由は次のとおりである。 一度、溶融または半溶融化しているため組識
が緻密であり、したがつて容積安定性にすぐれ
ている。 溶融または半溶融後に冷却するため、1〜10
μ程度の微細な結晶で形成された活性な表面状
態となり、粒子間同志の焼結性に富む。 球状粒なので、粒子間の摩擦抵抗が少なく、
したがつて成形の際の充填性がよい。 つぎに、本発明実施例とその比較例を示す。 第1図は本発明実施例において使用する装置の
模式図であり、1はバーナーで、これにはプロパ
ンなどの可燃ガス供給管3、セラミツク粉供給管
4および酸素供給管5が接続し、火炎2と共にセ
ラミツク粉が噴出するようになつている。8は熱
遮断用覆いであつて、その先方には球状セラミツ
ク粒子を収集するホツパー6を設けてある。球状
セラミツク粒子のうち超微粒子はダクト7を経て
集塵機で回収される。 実施例 1 水酸化アルミニウム(Al(OH)3=99.78%)を
混練の上成形乾燥し1300℃×3hr焼成し軽焼アル
ミナを得た。これを重量平均径で30〜80μとなる
よう微粉砕し、図面に示す実施態様で粉末濃度
2.4で一定量づつ2800℃のプロパン−酸素炎中に
供給し、放冷して球状粒子を製造した。これら球
状粒子を10,50,100μで分級した。 又、比較例として軽焼アルミナ(溶射する前の
粉末)、焼結アルミナ、溶融アルミナを溶射で得
られた球状粒子と同様10,50,100μに篩分た。 上記4種のアルミナを100〜50μ40%、10〜50
μ30%、10μ以下30%に調合し、これらにアラビ
アゴムを外掛で0.5%添加し、適量水分を加えた
上十分混練後、1000Kg/cm2の圧力で40〓×40H
円柱状に成形した。これを乾燥の上高温ガス炉で
1650℃×1hr焼成し試験試料とした。 第1表に使用した粉末特性ならびに成形した物
品の特性値を示す。
The present invention relates to a method for producing spherical ceramic particles having excellent sinterability, volume stability and filling properties. Traditionally, the raw materials used to manufacture refractories have been natural minerals or light baked products synthesized from hydroxides.
Hard-fired products and even electrically fused products are known. To manufacture refractories, these raw materials are crushed, adjusted to an appropriate particle size, and a binder is added.
After being molded by any molding method, it may be fired if necessary. The sinterability and volumetric stability of raw materials are important because they greatly affect the quality of refractories, but since sinterability and volumetric stability are contradictory properties, it is necessary to obtain refractories that simultaneously satisfy both properties. It was extremely difficult. In other words, if we take as an example a light fired product made by firing hydroxides such as alumina and magnesia at low temperatures below 1300°C, these are highly active and have excellent sinterability, but on the other hand, they undergo a large amount of heat during firing. causes contraction,
When refractories are manufactured using this raw material, cracking and deformation occur significantly. Therefore, from the standpoint of volumetric stability, the raw materials for producing refractories are mainly either lightly calcined alumina or magnesia hard-baked at high temperatures of 1800°C or higher to form clinker, or molten clinker. It is used. However, since raw materials sintered or melted at high temperatures are inert, ceramic bonds cannot be easily formed when producing refractories;
This method requires a higher firing temperature and has disadvantages in terms of manufacturing cost and time required. On the other hand, in order to satisfy both sinterability and volume stability, it is known to manufacture refractories by blending light-fired materials into fine particles and hard-fired materials into coarse particles; Microcracks occurred between the matrices due to the difference in shrinkage during firing, and sufficient strength could not be obtained. In addition, conventional raw materials have an angular shape because they are made into fine particles by pulverization, resulting in large frictional resistance between particles, which poses difficulties in fluidity during mixing and kneading and filling properties during molding. . The purpose of the present invention is to produce ceramic particles that can satisfy all of the properties of sinterability, volume stability, and filling properties in order to solve the above-mentioned drawbacks of conventional materials. This method of producing spherical ceramic particles is characterized by passing ceramic fine particles through a high-temperature flame with oxygen to make them molten or semi-molten, and then cooling them. The method of the present invention will be explained in further detail. First, we prepare a flame generator that uses combustible gases such as propane, butane, propylene, acetylene, and hydrogen as fuel.
Average diameter 30~100μ, maximum diameter 500μ during high temperature flame of °C
Supply a certain amount of ceramic particles of the following size,
When melted or semi-molten, it becomes spherical due to surface tension, and spherical ceramic particles are obtained by further cooling. Ceramic particles used in the present invention include silicon, titanium, aluminum, chromium,
Compounds such as hydroxides, chlorides, sulfates, nitrates, carbides, organic acid salts, nitrides, etc. of magnesium, calcium, zirconium, etc., or oxides obtained by lightly baking, hard baking, or melting the above compounds. Among these, active lightly calcined oxides are more effective for melting and spheroidizing. Regarding the supply of ceramic particles into the flame, the concentration in the flame [ceramic particle supply amount (Kg)/gas usage amount ( m3 )] depends on the chemical composition of the ceramic particles, particle size, and type of combustion gas. Therefore, it is slightly different, but it is operated with 6.0 or lower. When the concentration of ceramic particles exceeds 6.0, the temperature of the flame and the dispersibility of ceramic particles in the flame decrease, and as is clear from Figure 2, the sphericity rate rapidly deteriorates and becomes a true sphere or close to a true sphere. In addition to not being able to obtain spherical particles, a phenomenon of fusion between ceramic particles occurs, resulting in a decrease in product yield. The reason why the spherical alumina particles obtained by the method of the present invention are preferable as a refractory raw material is as follows. Once molten or semi-molten, it has a dense structure and therefore has excellent volume stability. 1 to 10 for cooling after melting or semi-melting
It becomes an active surface state formed by micro-sized crystals, and is highly sinterable between particles. Because it is a spherical particle, there is less frictional resistance between particles.
Therefore, the filling property during molding is good. Next, examples of the present invention and comparative examples thereof will be shown. FIG. 1 is a schematic diagram of the apparatus used in the embodiment of the present invention. 1 is a burner, to which a combustible gas supply pipe 3 such as propane, a ceramic powder supply pipe 4 and an oxygen supply pipe 5 are connected, and the flame Ceramic powder is now gushing out along with 2. Reference numeral 8 is a heat-insulating cover, and a hopper 6 for collecting spherical ceramic particles is provided in front of the cover. Among the spherical ceramic particles, ultrafine particles pass through a duct 7 and are collected by a dust collector. Example 1 Aluminum hydroxide (Al(OH) 3 =99.78%) was kneaded, molded and dried, and fired at 1300° C. for 3 hours to obtain lightly calcined alumina. This is finely pulverized to a weight average diameter of 30 to 80μ, and the powder concentration is
In step 2.4, a fixed amount of the mixture was fed into a propane-oxygen flame at 2800°C and allowed to cool to produce spherical particles. These spherical particles were classified at 10, 50, and 100μ. In addition, as a comparative example, light calcined alumina (powder before thermal spraying), sintered alumina, and fused alumina were sieved into 10, 50, and 100 μm particles similar to the spherical particles obtained by thermal spraying. The above four types of alumina are 100~50μ40%, 10~50
Mix 30% μ and 30% below 10 μ, add 0.5% of gum arabic as an outer layer, add an appropriate amount of water, mix thoroughly, and form into a 40〓× 40H cylinder shape under a pressure of 1000Kg/ cm2 . did. This is then dried in a high-temperature gas oven.
It was fired at 1650°C for 1 hour and used as a test sample. Table 1 shows the properties of the powder used and the properties of the molded articles.

【表】 第1表に示したようにNo.3、No.4の焼結および
電融アルミナでは焼結活性に乏しいため気孔率が
高く、一方No.2の軽焼アルミナは非常に活性で気
孔率は低下し緻密となるが、10%以上の焼成収縮
を伴い成形体中に微小な亀裂が観察され強度の低
下をきたした。 これに対して本発明の球状粒子は緻密でかつ充
填性が良く、更には粒子の表面が微細な繊維状の
δ−Al2O3で構成され非常に活性を有しているの
で、容積安定性、緻密性、強度に優れた成形物を
得ることが出来た。 実施例 2 溶融スピネル(MgO=28.0%、Al2O3=71.10
%)を重量平均径で30〜80μに微粉砕し粉末濃度
5.2で一定量づつ3300℃のアセチレン−酸素炎中
に供給し次いで冷却してスピネルの球状粒子を得
た。これらを10,50,100μに篩分た。 実施例1と同様の方法で試験試料を作成し高温
ガス炉で1650℃×1hr焼成した。 第2表に使用した粉末の特性ならびに成形した
物品の特性値を示す。
[Table] As shown in Table 1, sintered and fused aluminas No. 3 and No. 4 have high porosity due to poor sintering activity, while light sintered alumina No. 2 has high porosity. Although the porosity decreased and the molded product became dense, microcracks were observed in the molded product with firing shrinkage of 10% or more, resulting in a decrease in strength. On the other hand, the spherical particles of the present invention are dense and have good filling properties, and furthermore, the surface of the particles is composed of fine fibrous δ-Al 2 O 3 and is highly active, resulting in stable volume. A molded product with excellent properties, density, and strength could be obtained. Example 2 Molten spinel (MgO = 28.0%, Al 2 O 3 = 71.10
%) to a weight-average diameter of 30 to 80μ and powder concentration.
In step 5.2, a fixed amount of the mixture was fed into an acetylene-oxygen flame at 3300°C and then cooled to obtain spinel spherical particles. These were sieved to 10, 50, and 100μ. A test sample was prepared in the same manner as in Example 1 and fired in a high-temperature gas furnace at 1650°C for 1 hour. Table 2 shows the properties of the powders used as well as the properties of the molded articles.

【表】 第2表に示す如くスピネルの場合もアルミナと
同様の結果が得られた。すなわち、No.3、No.4の
焼結および電融スピネルは容積安定性には優れる
が焼結しがたく気孔率が高い。一方No.2の軽焼ス
ピネルは非常に活性で緻密なものが得られるけれ
ども微細な亀裂が観察され強度の低下をきたし
た。 これに対し本発明のスピネル球状粒子は緻密で
かつ充填性が良く、更には粒子の表面が数μ程度
の羊歯状結晶で構成され非常に活性を有している
ので、容積安定性、緻密性強度に優れた成形物を
得ることができた。
[Table] As shown in Table 2, similar results were obtained with spinel as with alumina. That is, the sintered and fused spinels of No. 3 and No. 4 have excellent volume stability, but are difficult to sinter and have high porosity. On the other hand, No. 2 lightly calcined spinel was very active and dense, but fine cracks were observed and the strength decreased. On the other hand, the spinel spherical particles of the present invention are dense and have good filling properties, and furthermore, the surface of the particles is composed of fern-shaped crystals of about several micrometers and is extremely active, so they have good volume stability and compactness. A molded product with excellent strength could be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第2図はセラミツク粒子の供給量(Kg)/ガス
使用量(m2)比と球状化率を示す図である。 第2図における球状化率の測定法は、走査型電
子顕微鏡で500〜700個を観察し、球状粒子の個数
割合を算出した。ここで球状とは長軸/短軸の比
が1.0〜1.3のものをいう。又第2図における球状
化の条件は以下の通りである。 (a) 燃焼条件 プロパン:10m3/Hr 酸 素:50m3/Hr (b) セラミツク粒子の粒径 Al2O3:最大径210μm、平均径30〜80μm SiO2:最大径210μm、平均径30〜80μm 第1図は本発明方法に用いる火炎発生装置の模
式図、第2図はセラミツク粒子の供給量(Kg)/
ガス使用量(m3)比と球状化率を示す図である。 1:バーナー、2:火炎、3:可燃ガス供給
管、4:セラミツク粉供給管、5:酸素供給管、
6:ホツパー、7:ダクト、8:熱遮断用覆。
FIG. 2 is a diagram showing the ratio of the amount of ceramic particles supplied (Kg)/the amount of gas used (m 2 ) and the spheroidization rate. The spheroidization rate in FIG. 2 was measured by observing 500 to 700 particles with a scanning electron microscope and calculating the number ratio of spherical particles. Here, spherical means that the ratio of major axis/minor axis is 1.0 to 1.3. The conditions for spheroidization in FIG. 2 are as follows. (a) Combustion conditions Propane: 10m 3 /Hr Oxygen: 50m 3 /Hr (b) Particle size of ceramic particles Al 2 O 3 : Maximum diameter 210μm, average diameter 30-80μm SiO 2 : Maximum diameter 210μm, average diameter 30 ~80μm Figure 1 is a schematic diagram of the flame generator used in the method of the present invention, and Figure 2 is the amount of ceramic particles supplied (Kg)/
FIG. 3 is a diagram showing the gas consumption (m 3 ) ratio and the spheroidization rate. 1: burner, 2: flame, 3: combustible gas supply pipe, 4: ceramic powder supply pipe, 5: oxygen supply pipe,
6: Hopper, 7: Duct, 8: Heat shield cover.

Claims (1)

【特許請求の範囲】[Claims] 1 炭化水素あるいは水素と酸素との高温火炎中
に、セラミツク粒子の濃度(セラミツク粒子供給
量(Kg)/ガス使用量(m3))を6.0以下に調整し
た前記セラミツク粒子を通過させて溶融または半
溶融状態とし、さらにこれを冷却させることを特
徴とする球状セラミツク粒子の製造方法。
1. The ceramic particles whose concentration (ceramic particle supply amount (Kg)/gas usage amount (m 3 )) has been adjusted to 6.0 or less are passed through a high-temperature flame of hydrocarbon or hydrogen and oxygen to melt or A method for producing spherical ceramic particles, which comprises bringing the spherical ceramic particles into a semi-molten state and then cooling the state.
JP55171320A 1980-12-04 1980-12-04 Manufacture of spherical ceramic particle Granted JPS5795877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55171320A JPS5795877A (en) 1980-12-04 1980-12-04 Manufacture of spherical ceramic particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55171320A JPS5795877A (en) 1980-12-04 1980-12-04 Manufacture of spherical ceramic particle

Publications (2)

Publication Number Publication Date
JPS5795877A JPS5795877A (en) 1982-06-14
JPS6135145B2 true JPS6135145B2 (en) 1986-08-11

Family

ID=15921053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55171320A Granted JPS5795877A (en) 1980-12-04 1980-12-04 Manufacture of spherical ceramic particle

Country Status (1)

Country Link
JP (1) JPS5795877A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111277A (en) * 1980-12-29 1982-07-10 Harima Refractories Co Ltd Manufacture of alumina ceramic plate
JPS6026505B2 (en) * 1982-09-30 1985-06-24 新日本製鐵株式会社 Method for producing inorganic filled resin composition
JPS59152215A (en) * 1983-02-16 1984-08-30 Nippon Aerojiru Kk Production of high-purity silica beads
JPS6131346A (en) * 1984-07-18 1986-02-13 ハリマセラミック株式会社 Nozzle for casting
JPS6321255A (en) * 1986-07-10 1988-01-28 ハリマセラミック株式会社 Manufacture of powder for burning ceramic substrate
JPH0230651A (en) * 1988-07-18 1990-02-01 Matsuda Yasuo Production of raw material for fine ceramics (new ceramics) having ceramic and mineralogically stable mineral facies
JPH0645508B2 (en) * 1989-09-29 1994-06-15 ハリマセラミック株式会社 Refractory for press-fitting construction
DE102009005446A1 (en) * 2009-01-21 2010-07-22 Schott Ag Granules, process for its preparation and its use

Also Published As

Publication number Publication date
JPS5795877A (en) 1982-06-14

Similar Documents

Publication Publication Date Title
JP3600933B2 (en) Method for producing aluminum titanate-based sintered body
US4152166A (en) Zircon-containing compositions and ceramic bodies formed from such compositions
JP6771078B1 (en) Alumina particle material and its manufacturing method
WO2004052572A1 (en) Spherical casting sand
CN108069708A (en) A kind of high thermal shock long-life saggar and preparation method
CN110002887A (en) The refractory material and preparation method thereof of ash attack under the conditions of a kind of high temperature resistant
JPS6135145B2 (en)
CN108585824A (en) A kind of preparation method of magnesium-aluminum spinel raw material
CN1108634A (en) Fired microporous carbon-aluminium brick
CN101891408B (en) Method for preparing magnesia-alumina spinel-containing aluminate cement
JPH0158130B2 (en)
JP4920321B2 (en) Method for producing calcium aluminate
KR960006239B1 (en) Process for the preparation of magnesia powders
KR101929342B1 (en) Apparatus for fused beads using high temperature flow tube and Manufacturing method using the same
Tian et al. Effect of carbon-coated Al2O3 powder on structure and properties of low-carbon MgO-C refractory composites
CN100582056C (en) Fast cooling and fast heating resistant burner brick and preparation method thereof
AU638794B2 (en) Chrome oxide refractory composition
JP2976209B2 (en) Carbon black production furnace
JPH061654A (en) Manufacture of calcia clinker
JPS5813510B2 (en) Maguro direct bond brick
KR100213320B1 (en) Process for producing spray deposit
JPH0229631B2 (en)
JPS6112871B2 (en)
KR101867236B1 (en) Method for manufacturing spheroidised ceramic powder
JPS596249B2 (en) Manufacturing method of magnesia thermal spray powder