JPH0230651A - Production of raw material for fine ceramics (new ceramics) having ceramic and mineralogically stable mineral facies - Google Patents

Production of raw material for fine ceramics (new ceramics) having ceramic and mineralogically stable mineral facies

Info

Publication number
JPH0230651A
JPH0230651A JP63180121A JP18012188A JPH0230651A JP H0230651 A JPH0230651 A JP H0230651A JP 63180121 A JP63180121 A JP 63180121A JP 18012188 A JP18012188 A JP 18012188A JP H0230651 A JPH0230651 A JP H0230651A
Authority
JP
Japan
Prior art keywords
temperature
zirconia
fine powder
raw material
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63180121A
Other languages
Japanese (ja)
Inventor
Minoru Hirokawa
広川 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63180121A priority Critical patent/JPH0230651A/en
Publication of JPH0230651A publication Critical patent/JPH0230651A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To use an inexpensive fuel with high thermal efficiency and obtain a raw material having the same quality as that of electrofused products and high-temperature stable type physical properties even at ordinary temperature by converting fine powder of refractory raw material mineral into a semifused and calcined product with an instant high-temperature flame, jetting and quenching the resultant product into flowing water just under the flame. CONSTITUTION:For example, high-purity alumina or magnesia which is normally fine powder is normally pulverized if the particle size is not suitable to provide -100mum particle diameter. The resultant fine powder is fed to the central part of a high-temperature frame at about 2,100 deg.C using acetylene, propane, etc., and kept in a semifused state. The flame holding the semifused powder is then jetted into flowing water just thereunder and instantaneously quenched. The recovered calcined product is further finely pulverized to the order of submicron and treated with a mineral acid to remove impurities. The treated fine powder is subsequently with water and dried to afford the objective product.

Description

【発明の詳細な説明】 本願発明は窯業産業に於けるファインセラミックス原料
微粉鉱物を瞬間高熱照射後瞬間急冷するインセラミック
スが得られる事を発見した。
DETAILED DESCRIPTION OF THE INVENTION The present invention has discovered that in-ceramics can be obtained by instantly quenching fine ceramic raw material fine powder minerals used in the ceramic industry after instantaneous high heat irradiation.

斯くして得られたファインセラミックス素材を仝−目的
で生産せられている電融に依るファインセラミックスと
比較した場合、得られた鉱物相及び化学的性質は仝−で
、唯急冷に依った為、其の物質に於て結晶が微細化して
いる点と、結晶格子が爾後の物理的方法で此の奎′は′
除去され、完全に仝−の物性を持ったものとなり、使用
上筒等の支障を起こさない。
When comparing the fine ceramic material obtained in this way with fine ceramics produced by electrofusion for the purpose of , this difference is due to the fact that the crystals in the substance are finer and the crystal lattice is changed by a later physical method.
It is removed and has completely the same physical properties, so it does not cause any trouble to the cylinder during use.

にも係らず、現在も尚、此等高溶融点を持ち且つ低熱転
導性の耐火セラミックス類素材は殆ど悉く不合理不経済
操業に依って造られているのが現状である。
Despite this, the current situation is that almost all refractory ceramic materials having high melting points and low thermal conductivity are manufactured using irrational and uneconomical operations.

此れは前記半溶融塊セラミックス素材を得るのに従来の
高温型窯業炉を使用しても其の生産が困い間接アークを
熱源として使用して居り而も此の熱源は点熱源で生産品
に多くの焼ムラが生じ、且つ電融の場合と仝様、高電力
料金が生産コストに大きく響いて経済的に其の利用を困
難にしている。
This is difficult to produce even if a conventional high-temperature ceramic furnace is used to obtain the semi-molten lump ceramic material, and an indirect arc is used as a heat source. In addition, as in the case of electrofusion, high electricity charges greatly affect production costs, making its use economically difficult.

又本願発明の如き半溶融物を含む耐火物の製法は、昭和
46−30284 (公告46−9−3)  で公知で
あるが、本願発明は其の目的製法並に機構が全く異るも
のである。
In addition, the method for manufacturing refractories containing semi-molten material as in the present invention is known in 1972-30284 (Public Notice No. 46-9-3), but the purpose of the present invention is completely different in its manufacturing method and mechanism. be.

従って現在の様に電融に依ってファインセラミックス素
材を生産する場合は次に列挙する多くの不合理、不利、
困難が存在する。(1)原料中の不純物を高価のエネル
ギーで除去しなければならない。
Therefore, when producing fine ceramic materials by electric fusion as at present, there are many unreasonable, disadvantageous, and
Difficulties exist. (1) Impurities in raw materials must be removed using expensive energy.

(2)使用電炉は多くはニル−炉で其の熱効率は50%
前後と甚だ低い。(3)融点の高い耐火物原料は一般に
熱伝導性は低く且粘性も低いから電融に長時間を容し、
且つ炉よりの取出し流出の為、温度も上昇せしめ、不必
要なエネルギーの損失が大きい。
(2) Most of the electric furnaces used are Nil furnaces, which have a thermal efficiency of 50%.
The front and back are extremely low. (3) Refractory raw materials with a high melting point generally have low thermal conductivity and low viscosity, so they can be electrofused for a long time,
In addition, since the material is taken out and discharged from the furnace, the temperature also rises, resulting in a large unnecessary loss of energy.

(4)電融品をセラミックス素材はとする場合、溶融冷
魂の微粉砕に多大の動力エネルギーを必要とする。(5
)電融目的原料が微粉の時は原料投入の場合電炉の吹上
げに依って原料の逸散飛散が多く実収率を下げる。(6
)電炉操業の場合は絶対に集塵装置の設置を必要とする
(4) When a ceramic material is used as an electric fusion product, a large amount of power energy is required to pulverize the molten cold soul. (5
) When the raw material for electric melting is a fine powder, the raw material is often scattered and scattered due to the blow-up of the electric furnace when the raw material is input, reducing the actual yield. (6
) When operating an electric furnace, it is absolutely necessary to install a dust collector.

本願発明は上記の処理、不経済を悉く除去し、更に窯業
炉に依る焼成の困難等を除去して、合理的にファインセ
ラミックス素材を工業的に生産を行う事を目的としてな
されたものである。
The present invention was made for the purpose of rationally industrially producing fine ceramic materials by eliminating all of the above-mentioned processing and uneconomical problems, as well as the difficulty of firing using a ceramic furnace. .

本願発明に従えば、高耐火セラミックス原料も充分な高
温域内では給粉が適宜の微粉であるならば、安定型変態
転移、解離合成も瞬間に完了する。
According to the present invention, if the highly refractory ceramic raw material is supplied with an appropriate fine powder within a sufficiently high temperature range, stable transformation transition and dissociative synthesis will be completed instantaneously.

而して此の瞬間は操作に依って制御することは不能の1
0−’sec とされている。
Therefore, it is impossible to control this moment through manipulation.
It is assumed to be 0-'sec.

本願発明(1)は原料鉱物を其の鉱物の持つ特性に従っ
て適宜の粒度に粉砕し、後此の微粉を、セラミックスフ
レーム溶射設備の如き高温火焔噴射装置を使用して、其
の噴射火焔の中央部に空気又は窒素ガスで送扮して焼成
を行う。此の火焔噴射装置は燃料ガスとしてアセチレン
、プロパン其他を使用するが鉱物の半溶融目的に合せて
適宜選択し酸素ガス中で燃焼して必要な高温火焔を得る
もので、セラミックス溶射の場合と違って給粉を溶融す
る必要が全く無く、其の半溶融セラミックス素材に使用
される熱効率は著しく高<80%以上である。此の火焔
中央部に送扮された鉱物を温度制御しながら半溶融の状
態に保ち、此の半溶融粉を保持した火焔を、其の直下の
流水中に噴射急冷する。
The present invention (1) involves pulverizing a raw material mineral to an appropriate particle size according to the properties of the mineral, and then using a high-temperature flame injection device such as a ceramic flame spraying equipment to pulverize the fine powder into the center of the injection flame. Firing is carried out by supplying air or nitrogen gas to the part. This flame injection device uses acetylene, propane, etc. as a fuel gas, which is selected appropriately depending on the purpose of semi-melting the mineral, and burns it in oxygen gas to obtain the necessary high-temperature flame, unlike the case of ceramic spraying. There is no need to melt the feed powder at all, and the thermal efficiency used for the semi-molten ceramic material is extremely high <80% or more. The mineral sent to the center of the flame is kept in a semi-molten state while controlling its temperature, and the flame holding the semi-molten powder is rapidly cooled by injecting it into the flowing water directly below it.

其の噴射速度は著しく早く通常1375m/sec以上
であり、為に急冷の効果を高める事が出来る。
Its injection speed is extremely fast, usually 1375 m/sec or more, and therefore the rapid cooling effect can be enhanced.

此等の操作をする為に特別な炉を必要とせず、たゾ空気
のドラフトに依る熱源の冷却を防ぐ為に鉄板類にて囲を
造る程度で済み、粉塵の発生がないから集塵機の必要も
無い。
A special furnace is not required for these operations; all you need to do is build an enclosure with iron plates to prevent the heat source from being cooled by the draft of Tazo air, and there is no need for a dust collector as no dust is generated. There is no.

水中に噴射堆積したセラミックス素材は、異種鉱物間の
膨張収縮の差違から互に剥離分離して各単体鉱物となる
から、爾後物理的な手法に依って高純度各鉱物に選別さ
れる。
Ceramic materials sprayed and deposited in water peel and separate from each other to form individual minerals due to differences in expansion and contraction between different types of minerals, and are then sorted into high-purity minerals using physical methods.

斯り荏産せられたファインセラミックス素材は1次の様
な多くの特性を持っているのが特徴である。
The fine ceramic materials produced in this way are characterized by having many primary properties.

有の壁間を持たなく又マグネシャ特有の水分等に依る消
化現象を起こさず且つ鉱酸に対する抵抗性も増大する。
It does not have any inter-wall space, does not cause the digestion phenomenon due to moisture etc. which is characteristic of Magnesia, and has increased resistance to mineral acids.

上記アルミナ、マグネシャ其他此等合成解離に依って高
温処理を受けた他の多くのファインセラミックス素材も
それぞれの特性を示し、合成スピンネルの如く加熱に依
る膨張後の収縮を起こさない。
Alumina, magnesia, and many other fine ceramic materials that have been subjected to high-temperature treatment through synthetic dissociation exhibit their own characteristics, and unlike synthetic spinel, they do not shrink after expansion due to heating.

尚現在のファインセラミックス素材の要求する超微粉も
此急冷に依って結晶が微細化され爾後の超微粉を得るの
に便利有益であるのも此の特徴の一つである。
One of the characteristics of this process is that the crystals of the ultrafine powder required by current fine ceramic materials are made finer by this rapid cooling process, which is convenient and beneficial for obtaining ultrafine powder later on.

本願発明(2)は発明(1)と仝−平手法依って従来ジ
ルコニア立方晶の生産が安定化剤を添加しなけれを得る
事が出来る。
Invention (2) of the present application is based on Invention (1) and the second method, so that the conventional production of cubic zirconia crystals can be achieved without adding a stabilizer.

得られたジルコニアは体心立方晶安定型で正方晶単斜晶
を全く含まない半溶融微結晶で、爾後加熱した場合0.
 J、 whittmore に櫨るジルコニア熱膨張
曲線図に示されている通り可逆的直線膨張収縮のみでジ
ルコニア特有の異状変態転移は起らない。
The obtained zirconia is a semi-molten microcrystal of a body-centered cubic stable type and does not contain any tetragonal monoclinic crystals, and when heated after that, it has a 0.
As shown in the zirconia thermal expansion curve shown in J. Whittmore, only reversible linear expansion and contraction occurs, and the abnormal transformation transition peculiar to zirconia does not occur.

従って得られたファインセラミックスジルコニア素材は
品質99.9%以上を保つ事が出来る。
Therefore, the obtained fine ceramic zirconia material can maintain a quality of 99.9% or more.

以下に此の発明の実施の態様を更に詳しく詳述する。Embodiments of this invention will be described in more detail below.

A)−成分系高温安定型半溶融素材を生産する場合 発明(1)の場合でアルミナ或はマグネシャに就で其の
生産方法を述べる。
A) - Case of producing a high-temperature stable semi-molten material based on components In the case of invention (1), the production method for alumina or magnesia will be described.

化学的に生産された高純度のアルミナ或はマグネシャは
通例微細であるが、原料が本願発明に適応する粒度でな
い場合は通例粉砕して一100μmとし此の微粉を21
00℃にて高熱火焔で瞬間照射し、早い速度で炉の下部
に設置しである流後水洗乾燥を経て製品とする。
Chemically produced high-purity alumina or magnesia is usually fine, but if the raw material does not have a particle size suitable for the present invention, it is usually ground to 1100 μm and this fine powder is 21 μm.
The product is instantaneously irradiated with a high-temperature flame at 00°C, placed at the bottom of the furnace at a high speed, and washed and dried with water to produce the product.

更に、発明(2)の場合は例えばジルコニアは(1)と
仝−平手法依るが此の場合焼成温度を2350−265
0℃域内約2500℃で焼成すればジルコニア体心立方
晶100%のファインセラミックス素材を得ることが出
来る。
Furthermore, in the case of invention (2), for example, zirconia depends on the same method as (1), but in this case, the firing temperature is 2350-265.
By firing at about 2500°C within the 0°C range, a fine ceramic material with 100% body-centered cubic zirconia can be obtained.

B)多成分系の高温安定型半溶融素材を生産する場合 (イ)二成分系鉱物の解離の場合 一例としてジルコニアを得る目的で原料をジルコンとし
た場合に就で記載する。
B) In the case of producing a multicomponent high temperature stable semi-molten material (a) In the case of dissociation of binary minerals As an example, the case where zircon is used as the raw material for the purpose of obtaining zirconia will be described below.

ジルコン原砂商品は杓ね其の粒度800ミクロン以下の
砂状であるから、先づジルコニア製ボールミルで微粉砕
して一100μmとする。
Since zircon raw sand products are sand-like with a particle size of 800 microns or less, they are first ground to 1100 microns using a zirconia ball mill.

此の微粉を、酸素と燃料ガスプロパンの供給Zirco
n(ジルコン)は1500℃より解離が始り完全に解離
する迄は長時間を此の温度では要するが約1900℃以
上では完全に100%瞬間此の解離物を焼成炉直下の流
水中に噴射急ジルコニアの熱膨張係数は8.0X10−
’で溶融硅酸は0.6X10−”で著しく相違し、其の
急冷に依る収縮も亦両鉱物共直線的可逆膨張であるから
其の収縮も亦著しく相違して、此の両鉱物は其の収縮差
に依って水中にてジルコ物をバルブ濃度60%として、
アトリションスクラッパーミルで処理する。此のミル中
では両鉱物粒子は同体摩擦に依り更にジルコニア粒子表
面に耐着残存した未剥離の溶融硅酸を除去してジルコニ
アは単体となるが更に強靭性のジルコニアと脆弱性の溶
融硅酸は其のFr1ability(粉砕能) が著し
く異るから上記ミルでの処理に依って完全に両鉱物と単
体分離が可能となる。
This fine powder is supplied to Zirco, which supplies oxygen and fuel gas propane.
Zircon (n) starts to dissociate from 1500℃ and it takes a long time at this temperature to completely dissociate, but at about 1900℃ or higher it is completely 100% instantaneous and this dissociated product is injected into the flowing water directly below the kiln. The thermal expansion coefficient of sudden zirconia is 8.0X10-
'The molten silicic acid is 0.6X10-'', which is significantly different, and the contraction caused by rapid cooling is also significantly different because both minerals undergo linear reversible expansion. Depending on the difference in shrinkage, the zirco material was made into a bulb with a concentration of 60% in water.
Process in an attrition scraper mill. In this mill, the two mineral particles further remove the unpeeled molten silicic acid remaining on the surface of the zirconia particles due to body friction, and the zirconia becomes a single substance, but the tougher zirconia and the brittle molten silicic acid are further removed. Since these minerals have significantly different frability (crushability), it is possible to completely separate both minerals as single substances by processing in the above-mentioned mill.

更に此のミルで処理する目的に(1)微粉給鉱ジルコニ
ア粒子が高温処理で溶融硅酸で融着されて粗大となって
いる部分があるから其の部分の砕解と(2)爾後の両鉱
物の比選の際、スライムテーブルへの給鍍粒子の最小限
度が+70μmであるから、出来るだけジルコニア粒子
の微粉化を防ぐ、(3)上記瞬間高熱照射焼成と瞬間急
冷の為、ジルコニア結晶格子の歪に依る残存応力が結晶
内に残留するから、仝ミル操作に依って外圧をジルコニ
ア粒子表面に加えて其の格子歪を除去する等が附随する
Furthermore, the purposes of processing with this mill are (1) crushing of the coarse portions of the finely fed zirconia particles that have been fused with molten silicic acid during high-temperature treatment, and (2) crushing of those portions. When selecting the ratio of both minerals, the minimum amount of particles fed to the slime table is +70 μm, so pulverization of zirconia particles is prevented as much as possible. Since residual stress due to lattice distortion remains in the crystal, external pressure is applied to the surface of the zirconia particles by milling to remove the lattice distortion.

此の大きな外圧に依って完全に除去する。又に依っても
此の歪は完全に必要があれば除去出来る。
It is completely removed by this large external pressure. Again, this distortion can be completely removed if necessary.

上記ミルより排出された二種鉱物は湿式サイクロン等を
利用してタラシファイヤーで分級して後パルプ濃度30
%でスライムテーブルにて比重選鉱を行う。此のスライ
ムテーブルの選別能は±5μm内外迄精選が可能であり
、普通此の種スライムテーブルでは可能比重差1で其の
比重差実に4.0と太き(、従って前記単体分離が完全
に行われているならば此の両鉱物の精選別は可能であり
且つ其の実収率も95%と極めて高く効率良く精選され
たジルコニアと溶融硅酸の二産物を得る事が出来る。
The second type minerals discharged from the above mill are classified with a taracifier using a wet cyclone etc., and the pulp density is 30.
Perform specific gravity beneficiation on a slime table at %. The sorting ability of this slime table is capable of fine selection within ±5 μm, and normally with this kind of slime table, the possible specific gravity difference is 1, and the specific gravity difference is as large as 4.0 (therefore, the above-mentioned single substance separation is completely If this process is carried out, it is possible to selectively separate these two minerals, and the actual yield is as high as 95%, making it possible to efficiently obtain the two products of zirconia and fused silicic acid.

又此の比重はTBE (S、G、3.0)のサイクロン
を利用した重液型破に依っても亦スライムの浮選で精選
された高純度ジルコニアを得る事が出来る。
Also, with this specific gravity, high-purity zirconia carefully selected by slime flotation can be obtained by heavy liquid mold breaking using a TBE (S, G, 3.0) cyclone.

上記浮選を含めてテーブル等の動力は僅少でコスト経済
に大きく寄与する。
The power required for the table, etc., including the flotation process described above, is small and contributes greatly to cost economy.

其の後必要に応じて細微粉をマイクロサイザーで行って
、尚残存するかも知れない結晶格子の歪を、此の粉砕の
大きな外圧で完全に除去する。
Thereafter, if necessary, the powder is finely pulverized using a microsizer, and any distortion of the crystal lattice that may still remain is completely removed by the large external pressure of this pulverization.

された高純度溶融硅酸を得る事が出来る。It is possible to obtain high purity molten silicic acid.

ジルコニアを得る目的でジルコンを原料とした場合、ジ
ルコンのジルコニア含有率及び型破実収率より計算して
、ジルコンよりジルコニア60%溶融硅酸30%が得ら
れることになる。
When zircon is used as a raw material for the purpose of obtaining zirconia, 60% zirconia and 30% molten silicic acid can be obtained from zircon, calculated from the zirconia content of zircon and the mold failure yield.

(ロ)二成分系鉱物の合成半溶融素材を生産するネルの
合成の場合に就で次に記述する。
(b) Synthesis of binary minerals The synthesis of flannel, which produces semi-molten materials, will be described below.

G 、A 、 Ramkist及びH,E、 Merw
in 1916に櫨るMgo−αA l x○、二元系
平衡状態図えば両鉱物は1600℃より合成が始るが、
完全にスピンネルが合成する迄には長時間を要す1″し て立方体微晶となっている。(半溶融状)此の合成スピ
ンネルを流水中に噴射急冷して半溶融高温安定型スピン
ネルを得る事が出来る。
G., A., Ramkist and H.E., Merw.
In 1916, the synthesis of both minerals starts at 1600℃, which shows the equilibrium state of the binary system.
It takes a long time to completely synthesize spinel, which becomes 1" cubic microcrystals. (Semi-molten) This synthesized spinel is injected into flowing water and rapidly cooled to form semi-molten high temperature stable spinel. You can get it.

此の合成されたスピンネルは焼成時に若干の融液を含み
、゛急冷すると其の鉱物のガラス相が混在し且つ未反応
のマグネシャ、アルミナも僅少であるが残存する可能性
があり、又原料粉砕時の不純物の混入も有るが、而し此
等混在鉱物の熱膨張係数はアルミナ=80X107マグ
ネシヤ= 140X10−’、スピンネル=90XIO
−’で急冷に依り直線的可逆膨張収縮の為に此等混在鉱
物は互いに剥離現象に依って各単体鉱物となる。故に前
記ジルコニア生産の如き精選方法で高純度スピンネルを
高収率で採取することが出来る。
This synthesized spinel contains a small amount of melt during firing, and if it is rapidly cooled, the glass phase of the mineral may be mixed, and a small amount of unreacted magnesia and alumina may remain. However, the coefficient of thermal expansion of these mixed minerals is Alumina = 80X107 Magnesia = 140X10-', Spinel = 90XIO
-' Due to linear reversible expansion and contraction due to rapid cooling, these mixed minerals separate from each other and become individual minerals. Therefore, high-purity spinel can be obtained at a high yield by a selective method such as the above-mentioned zirconia production.

而して上記鉱物類は其の比重スビンネルキ3.5、マグ
ネシャ=5.4、アルミナ=3.9、ダラス相=4.0
で比重差は大きくないから比重は不利である。
The above minerals have a specific gravity of 3.5, magnesha = 5.4, alumina = 3.9, and Dallas phase = 4.0.
Since the difference in specific gravity is not large, the specific gravity is disadvantageous.

従って浮選に依ってスピンネルのみを浮遊させて高純度
精鉱とする。此の場合スピンネルは十−のイオン捕収剤
の何れにても其の浮選は可能であるから、スピンネルの
みをノノン酸(Nonoic Ac1d)及び高級脂肪
酸に依って浮選する。
Therefore, by flotation, only the spinel is suspended to produce a high-purity concentrate. In this case, since spinel can be flotated with any of the ten ion collectors, only spinel is flotated with nononic acid and higher fatty acids.

選別後はサブミクロン迄微粉砕して大きな外圧をスピン
ネルの粒子表面に与えて急冷に依り残存した結晶格子の
歪を除去し、後鉱酸にて処理して混入不純分を除き水洗
乾燥して高純度超微粉スピンネル製品とする。
After sorting, the particles are finely pulverized to submicron size, a large external pressure is applied to the surface of the spinel particles, and the remaining crystal lattice distortion is removed by rapid cooling.The particles are then treated with mineral acid to remove any impurities, washed with water, and dried. High-purity ultra-fine powder spinel product.

仝様な手法で、ピコタイ) (MgO: Cr2O3重
量比58.5%+41.5%)、フォルステライト (
2MgO: S i O,重量比57.2%:42.8
%)、ムライト (3Al、o、=28io2重量比7
1.8%: 28.2%) 、コージイライト(2Mg
O:2AIiOi  :5SiOa 重量比13.8%
:34.9%:51.3%)、チタン酸マグネ: T 
IO,重量比49.5%: 50.5%) 等の高級耐
火セラミックス類は皆スピンネルの場合と仝様其の成分
系平衡状態図を利用してスピンネル合成の場合と仝−の
設備で仝−千手法生産を達成する。
(MgO: Cr2O3 weight ratio 58.5% + 41.5%), forsterite (
2MgO: S i O, weight ratio 57.2%: 42.8
%), mullite (3Al, o, = 28io2 weight ratio 7
1.8%: 28.2%), cordierite (2Mg
O:2AIiOi:5SiOa Weight ratio 13.8%
:34.9%:51.3%), Magne titanate: T
All high-grade refractory ceramics such as IO, weight ratio 49.5%: 50.5%) can be synthesized using spinel synthesis using the equilibrium phase diagram of the component system. - Achieve thousand-method production.

此等の合成に依って生産された鉱物類は等しく高温処理
を受けているからスピンネルの場合仝様膨張後の収縮を
起こさない安定型産物となる事は勿論である。
Minerals produced through such synthesis are similarly subjected to high-temperature treatment, so it goes without saying that spinel is a stable product that does not undergo contraction after expansion.

特許請求範囲(2)に就て更に其の実施の態様を特徴と
する 特許請求範囲(1)と全く仝−千手法ジルコニアを生産
するが、(1)の手法では高温安定型体心立方晶のジル
コニアは得る事が出来ない。
Regarding patent claim (2), zirconia is produced by a completely different method than patent claim (1), which further features embodiments thereof, but method (1) produces high-temperature stable body-centered cubic crystals. zirconia cannot be obtained.

依ってジルコニアの微粉を(1)の製法に従ってJ 、
R、HellmanのZr02−Cao及びH,G。
Therefore, fine zirconia powder was prepared by J according to the manufacturing method (1),
R, Hellman's Zr02-Cao and H,G.

5cott(D Z r Oa  Y20s の此の二
元両平衡状態図1975に見られるジルコニア100%
の成分域で温度域が2350−2670℃の範囲即ちジ
ルコニアの立方晶の域内で不必要な加熱エネルギーの損
失を却けて2500℃で瞬間高温熱照射を行って後此の
ものを流水中に噴射急冷して爾後は【1]の手法で体心
立方微小ジルコニアを得る。得られたヂルコニアは高温
安定型である。
5cott (100% zirconia seen in this binary equilibrium state diagram 1975 of D Z r Oa Y20s
In the composition range of 2,350-2,670℃, that is, within the cubic crystal region of zirconia, instantaneous high-temperature heat irradiation was performed at 2,500℃ to avoid unnecessary loss of heating energy, and then the product was placed in running water. After rapid cooling by injection, body-centered cubic microscopic zirconia is obtained using the method [1]. The obtained zirconia is stable at high temperatures.

以上詳述した発明から明かな様に本願発明は次の如きす
ぐれた多くの効果を奏するものである。
As is clear from the invention detailed above, the present invention has many excellent effects as follows.

(1)本願発明は生産にエネルギー源として熱効率の著
しく低く高価な電力を使用しないで安価の燃料を高効率
で使用して、従来の電融品と同質の而も常温で高温型安
定の半溶融品が工業的に大量安価に供給出来る点で其の
生産コストに及ぼす効果は絶大である。
(1) The present invention does not use expensive electricity with extremely low thermal efficiency as an energy source for production, but uses inexpensive fuel with high efficiency, and although it has the same quality as conventional electrical products, it is semi-stable at room temperature. Since the molten product can be supplied industrially in large quantities at low cost, it has a tremendous effect on production costs.

(2)従来ジルコニアは此の安定剤を添加しなければ立
方晶で得る事が不能であった為、止むを得ず、不純分と
なるカルジャ、マグネシャ、イツトリヤ等を添加して其
の添加量も5%以上添加しなければならない為に、折角
のジルコニアの純度を下げて使用することになる。
(2) Conventionally, it was impossible to obtain zirconia in the form of a cubic crystal without adding this stabilizer, so impurities such as karja, magnesha, and ittoriya were added to reduce the amount of zirconia added. Since it is necessary to add 5% or more of zirconia, the purity of zirconia must be lowered.

ジルコニア豆方晶100%では2700 ’の耐火度の
あるものと添加剤を添加した場合ジルコニア92−95
%程度となり、従って耐火度も2500 ’上限で此の
高温域に於ける200 ℃の差異は高耐火ファインセラ
ミックス素材として使用利用上絶大な効果を持つ。
Zirconia 100% square crystal has a fire resistance of 2700' and when additives are added zirconia 92-95
%, and therefore the upper limit of the fire resistance is 2500', and a difference of 200 °C in this high temperature range has a tremendous effect on its use as a highly refractory fine ceramic material.

出  顆  人   松  1) 恭  雄2月17日
差出 添  付  書  類 明細書の(1、発明の名称欄を「窯業鉱物学的に安定し
た鉱物相を持ったファインセラミックスにューセラミッ
クス)原料素材の生産方法」とあるを、「窯業鉱物学的
に安定した鉱物相を持ったファインセラミックス原料素
材の生産方法」と訂正します。
1) In the attached document submitted by Kyoto on February 17th, (1. Name of invention column) ``Ceramic industry: Production of raw materials for fine ceramics and new ceramics with a mineralogically stable mineral phase''``Method'' has been corrected to ``Method for producing fine ceramic raw materials with a mineral phase that is mineralogically stable.''

郵便番号 方法」 と訂正します。post code Method" I will correct it.

以 上 補正の内容 添付別紙の通りBelow Up Contents of correction As per attached attachment

Claims (2)

【特許請求の範囲】[Claims] (1)耐火原料鉱物の微粉を瞬間高温火焔にて照射し、
半溶融焼成品を造り後此のものを、火焔直下の流水中に
噴射し瞬間に急冷して、其の鉱物の高温域内で安定して
いた鉱物相並びにその物性を常温域に於ても其の■状態
で 保持している事を特徴とした高温耐火セラミックス原料
素材の生産方法。
(1) Irradiate fine powder of refractory raw material mineral with instantaneous high temperature flame,
After producing a semi-molten fired product, this material is injected into running water directly under the flame and instantly quenched.The mineral phase and physical properties of the mineral, which were stable in the high temperature range, are also preserved in the normal temperature range. A method for producing high-temperature refractory ceramic raw materials characterized by maintaining the material in the state of ■.
(2)請求(1)の手法に依り、ジルコニア(ZrO_
2)の常温にに於ける安定化に従来の如き安定剤を添加
しないで常温で安定の体心立方晶ジルコニアを100%
生産する方法。
(2) Zirconia (ZrO_
2) For stabilization at room temperature, we use 100% body-centered cubic zirconia that is stable at room temperature without adding conventional stabilizers.
How to produce.
JP63180121A 1988-07-18 1988-07-18 Production of raw material for fine ceramics (new ceramics) having ceramic and mineralogically stable mineral facies Pending JPH0230651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63180121A JPH0230651A (en) 1988-07-18 1988-07-18 Production of raw material for fine ceramics (new ceramics) having ceramic and mineralogically stable mineral facies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63180121A JPH0230651A (en) 1988-07-18 1988-07-18 Production of raw material for fine ceramics (new ceramics) having ceramic and mineralogically stable mineral facies

Publications (1)

Publication Number Publication Date
JPH0230651A true JPH0230651A (en) 1990-02-01

Family

ID=16077789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63180121A Pending JPH0230651A (en) 1988-07-18 1988-07-18 Production of raw material for fine ceramics (new ceramics) having ceramic and mineralogically stable mineral facies

Country Status (1)

Country Link
JP (1) JPH0230651A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180550A (en) * 2011-02-28 2012-09-20 Mitsubishi Heavy Ind Ltd Method for repairing thermal barrier coating

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795877A (en) * 1980-12-04 1982-06-14 Nippon Steel Corp Manufacture of spherical ceramic particle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795877A (en) * 1980-12-04 1982-06-14 Nippon Steel Corp Manufacture of spherical ceramic particle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180550A (en) * 2011-02-28 2012-09-20 Mitsubishi Heavy Ind Ltd Method for repairing thermal barrier coating

Similar Documents

Publication Publication Date Title
US2535526A (en) Stabilized zirconia and method for producing same
US1268533A (en) Aluminous abrasive.
JPS6099567A (en) Alumina/zirconia abrasive grain, abrasive cloth paper and grinding wheel
EP0104025A2 (en) Baddeleyite sinterable refractory compositions and refractories produced therefrom
EP0460959B1 (en) Fused zirconia refractory materials having high-temperature heat resistance and corrosion resistance and a method for producing the same
Yugeswaran et al. Zircon dissociation in air plasma through a low power transferred arc plasma torch
JPH0230651A (en) Production of raw material for fine ceramics (new ceramics) having ceramic and mineralogically stable mineral facies
CN1225432C (en) Finegrained aluminium-chromium composite fireproof materials
US3463650A (en) Vitreous silica refractories
CN104818530B (en) A kind of Opacity in lens stove and its application
EP0633232A1 (en) Fused zirconia refractory materials, method for producing the same and refractory products
EP0209081A2 (en) Sintered bodies of stabilized zirconia
US3979214A (en) Sintered alumina body
US2569430A (en) Manufacture
US3328183A (en) Refractories
US3849532A (en) Method of preparing a zirconium oxide that is crystallized mostly or completely in cubic form
Syamaprasad et al. Studies on plasma dissociation of Indian zircon in a specially developed plasma reactor
US3712599A (en) Method of producing high density refractory grain from natural magnesite
CN107416885B (en) A kind of method of electric smelting method production cerium oxide
RU2806273C1 (en) Method for producing forsterite material
CN109592709A (en) A kind of preparation method of electric smelting barium zirconate
CN109928754B (en) Method for preparing modified yttrium oxide
CN114409429B (en) Preparation method of titanium-based foamed ceramic
US1909785A (en) Ceramic material and method of making same
US3985842A (en) Method of making electrical magnesia