JP4920321B2 - Method for producing calcium aluminate - Google Patents

Method for producing calcium aluminate Download PDF

Info

Publication number
JP4920321B2
JP4920321B2 JP2006173297A JP2006173297A JP4920321B2 JP 4920321 B2 JP4920321 B2 JP 4920321B2 JP 2006173297 A JP2006173297 A JP 2006173297A JP 2006173297 A JP2006173297 A JP 2006173297A JP 4920321 B2 JP4920321 B2 JP 4920321B2
Authority
JP
Japan
Prior art keywords
calcium aluminate
alumina
spheroidized
raw material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006173297A
Other languages
Japanese (ja)
Other versions
JP2008001565A (en
Inventor
正晃 海賀
厚徳 小山
祐司 古賀
和人 串橋
裕智 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2006173297A priority Critical patent/JP4920321B2/en
Publication of JP2008001565A publication Critical patent/JP2008001565A/en
Application granted granted Critical
Publication of JP4920321B2 publication Critical patent/JP4920321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、化学成分としてCaOとAl2O3を主成分とする球状化カルシウムアルミネート及びその製造方法に関する。詳しくは、CaO原料とAl2O3原料を溶融装置に投入し、加熱溶融した後、該溶融物に高圧の水を吹き付けることにより得られる球状のカルシウムアルミネート、該カルシウムアルミネートを含有したアルミナセメント組成物、CaO原料とAl2O3原料を加熱溶融後、前記溶融物に高圧の水を吹き付けることにより球状化カルシウムアルミネートを製造することに関する。 The present invention relates to a spheroidized calcium aluminate mainly composed of CaO and Al 2 O 3 as chemical components and a method for producing the same. Specifically, a CaO raw material and an Al 2 O 3 raw material are charged into a melting apparatus, heated and melted, and then spherical calcium aluminate obtained by spraying high-pressure water on the melt, alumina containing the calcium aluminate The present invention relates to producing a spheroidized calcium aluminate by heating and melting a cement composition, a CaO raw material and an Al 2 O 3 raw material, and then spraying high-pressure water on the melt.

アルミナセメントの粉粒体は、様々な用途に使用されているが、その用途によっては球状にすることが好ましいものがある。例えば、球状の水硬性粉体を使用すると、ペースト、モルタル、キャスタブル又はコンクリートの流動性を向上させることができ、さらに、強度が向上するという効果がある。 Alumina cement powders are used in various applications, but some of them are preferably spherical. For example, when spherical hydraulic powder is used, the fluidity of paste, mortar, castable or concrete can be improved, and the strength can be improved.

アルミナセメントは、一般に、CaO原料として石灰石や生石灰を、Al2O3原料としてアルミナ、水酸化アルミニウム、ボーキサイト、アルミ残灰等を使用し、焼成法又は溶融法にて製造したカルシウムアルミネートを主成分とするクリンカーを単独で粉砕、或いは、クリンカーにアルミナや各種添加剤を添加して混合粉砕することにより製造される。一般的なアルミナセメントの製造方法及びその特性は、広く知られている(非特許文献1)。
行平安雄、佐藤正孝 、「アルミナセメントの諸特性について」、耐火物、耐火物技術協会、昭和52年、第29巻、第7号、p.368
Alumina cement generally uses calcium aluminate produced by a firing method or a melting method using limestone or quicklime as a CaO raw material and alumina, aluminum hydroxide, bauxite, aluminum residual ash, etc. as an Al 2 O 3 raw material. Manufactured by pulverizing the clinker as a component alone or by adding alumina and various additives to the clinker and mixing and pulverizing them. A general method for producing alumina cement and its characteristics are widely known (Non-Patent Document 1).
Yasuo Yukihira, Masataka Sato, "About the Properties of Alumina Cement", Refractory, Refractory Technology Association, 1977, Vol. 29, No. 7, p.368

球状化アルミナセメントを製造する方法としては、以下に示すような特許があり、例えば、特許文献2には、加熱溶融した後、前記溶融物を吹き飛ばすことにより得られる球状化カルシウムアルミネート粉体が開示されている。
特開平5-229857号 特開2002-187749 特開2002-68769
As a method for producing a spheroidized alumina cement, there are patents as shown below. For example, Patent Document 2 discloses a spheroidized calcium aluminate powder obtained by heating and melting and then blowing off the melt. It is disclosed.
JP 5-229857 A JP2002-187749 JP2002-68769

セメントを球状化することにより、ペースト、モルタル、キャスタブル又はコンクリートが高流動化、高強度化されることが報告されている。しかしながら、生産性が良くなく、球状化粉体の生成割合が少ないなど、安価なセメントが得られないという課題があった。   It has been reported that paste, mortar, castable or concrete can be fluidized and strengthened by spheroidizing cement. However, there is a problem that an inexpensive cement cannot be obtained due to poor productivity and a small generation ratio of the spheroidized powder.

本発明の目的は、上記の状況に鑑み、生産性が高く、水硬性材料として使用した場合に良好な流動性および強度を得ることのできる球状化カルシウムアルミネート及びそれを含むアルミナセメント組成物を提供することである。 In view of the above situation, an object of the present invention is to provide a spheroidized calcium aluminate that has high productivity and can obtain good fluidity and strength when used as a hydraulic material, and an alumina cement composition including the same. Is to provide.

即ち、本発明は、化学成分としてCaOとAl2O3を主成分とするカルシウムアルミネートであって、CaO原料とAl2O3原料を加熱溶融した後、前記溶融物に高圧の水を吹き付けて得られることを特徴とする球状化カルシウムアルミネートであり、平均球形度が0.7〜1.0である球状化カルシウムアルミネートであり、球状化カルシウムアルミネートを含有するアルミナセメント組成物である。さらに、CaO原料とAl2O3原料を溶融装置に投入し、加熱溶融した後、前記溶融物に高圧の水を吹き付けることにより球状化することを特徴とするカルシウムアルミネートの製造方法である。 That is, the present invention is a calcium aluminate mainly composed of CaO and Al 2 O 3 as chemical components. After heating and melting the CaO raw material and the Al 2 O 3 raw material, high pressure water is sprayed on the melt. A spheroidized calcium aluminate having an average sphericity of 0.7 to 1.0, and an alumina cement composition containing a spheroidized calcium aluminate. Further, the calcium aluminate production method is characterized in that a CaO raw material and an Al 2 O 3 raw material are put into a melting apparatus, heated and melted, and then spheroidized by spraying high pressure water on the melt.

本発明の球状化カルシウムアルミネート及びそれを含むアルミナセメント組成物は、カルシウムアルミネートの球状化によるボールベアリング効果により、従来にない高流動性が得られる。そして、従来のアルミナセメント組成物と同等の作業性を得る場合は水量を減らすことが可能であり、その結果、高強度化が可能となる。さらに、本発明によれば、球状化が容易で、生産性の良い製造方法が提供される。 The spheroidized calcium aluminate of the present invention and the alumina cement composition containing the same can obtain a high fluidity that is unprecedented due to the ball bearing effect due to the spheroidization of calcium aluminate. And when obtaining workability | operativity equivalent to the conventional alumina cement composition, it is possible to reduce the amount of water, As a result, high intensity | strength is attained. Furthermore, according to the present invention, a production method that is easy to spheroidize and has high productivity is provided.

以下、本発明について詳しく説明する。本発明に係るカルシウムアルミネート粉体は、赤ボーキサイト等の天然原料をバイヤープロセス等の精製法により精製して得られた高純度アルミナや、ボーキサイトなどのAl2O3源と、石灰石や生石灰などのCaO源を、所定の成分割合になるように配合し、電気炉、反射炉、縦型炉、平炉等の設備で溶融後、前記溶融物に高圧の水を吹き付けることによって得られたものであり、水硬性を有するものである。 The present invention will be described in detail below. Calcium aluminate powder according to the present invention is a high-purity alumina obtained by refining natural raw materials such as red bauxite by a purification method such as the buyer process, Al 2 O 3 sources such as bauxite, limestone, quick lime, etc. The CaO source was blended so as to have a predetermined component ratio, and obtained by spraying high-pressure water on the melt after melting in facilities such as an electric furnace, a reflection furnace, a vertical furnace, and a flat furnace. Yes, it has hydraulic properties.

前述したカルシウムアルミネートの原料粉末を高温で溶融し、溶融物を流し落とす。流れ落ちてくる溶融物に高圧でノズルから水を吹き付けると、冷却されて微細なカルシウムアルミネート粉末になる。得られたカルシウムアルミネート粉末は、平均球形度が0.7〜1.0と高い。更に、従来のような溶融物を吹き飛ばすことにより得られる球状化カルシウムアルミネート粉体に比べて、球状化粉体の生成割合が多く、生産性が高い。 The above-mentioned calcium aluminate raw material powder is melted at a high temperature, and the melt is poured off. When water is sprayed from the nozzle at high pressure onto the flowing melt, it is cooled to become a fine calcium aluminate powder. The obtained calcium aluminate powder has a high average sphericity of 0.7 to 1.0. Furthermore, compared with the conventional spheroidized calcium aluminate powder obtained by blowing off the melt, the production rate of the spheroidized powder is large and the productivity is high.

溶融したカルシウムアルミネートに、ノズルから水を吹き付ける圧力は、0.1MPa以上が好ましい。圧力が0.1MPa未満であると、球形度が低下する場合がある。溶融物が球状化すればよく、ノズルの本数、形状等は特に限定されない。生産性を上げる為には、ノズルの本数を複数にする方が好ましい。 The pressure for spraying water from the nozzle to the molten calcium aluminate is preferably 0.1 MPa or more. If the pressure is less than 0.1 MPa, the sphericity may decrease. What is necessary is just to spheroidize a molten material, and the number of nozzles, a shape, etc. are not specifically limited. In order to increase productivity, it is preferable to use a plurality of nozzles.

平均球形度は、実体顕微鏡(例えばニコン社製モデル「SMZ−10型」)、走査型電子顕微鏡等にて撮影した粒子像を画像解析装置(例えば日本アビオニクス社製)に取り込み、次のようにして測定する。   The average sphericity is obtained by taking a particle image taken with a stereomicroscope (for example, model “SMZ-10” manufactured by Nikon Corporation), a scanning electron microscope, etc. into an image analyzer (for example, manufactured by Nippon Avionics Co., Ltd.). To measure.

粒子像から粒子の投影面積(A)と周囲長(PM)を測定する。周囲長(PM)に対応する真円の面積を(B)とすると、その粒子の球形度はA/Bとして表示できる。試料粒子の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、B=πr 2であるから、B=π×(PM/2π)2となり、個々の粒子の球形度は、球形度=A/B=A×4π/(PM)2として算出することができる。このようにして得られた任意の粒子200個の球形度を求め、その平均値を平均球形度とする。平均球形度は、良好なボールベアリング効果を得る為、平均球形度で0.7〜1.0であることが好ましい。平均球形度が0.7未満であると、強度が低下する場合がある。 The projected area (A) and perimeter (PM) of the particle are measured from the particle image. If the area of a perfect circle corresponding to the perimeter (PM) is (B), the sphericity of the particle can be displayed as A / B. Assuming a true circle having a peripheral length of the same and the peripheral length (PM) of the sample particles, PM = 2.pi.r, because it is B = πr 2, B = π × (PM / 2π) 2 , and the spherical individual particles The degree can be calculated as sphericity = A / B = A × 4π / (PM) 2 . The sphericity of 200 arbitrary particles thus obtained is obtained, and the average value is defined as the average sphericity. The average sphericity is preferably 0.7 to 1.0 in terms of average sphericity in order to obtain a good ball bearing effect. If the average sphericity is less than 0.7, the strength may decrease.

この方法以外にも、粒子像分析装置(例えばシスメックス社製「FPIA−1000」)にて定量的に自動計測された個々の粒子の球形度から求めることもできる。球状化したカルシウムアルミネート粉体は、分級操作、粒子形状を破壊しない程度の粉砕等を施すことにより、任意の平均粒子径に調整可能である。 In addition to this method, it can also be determined from the sphericity of individual particles quantitatively and automatically measured by a particle image analyzer (for example, “FPIA-1000” manufactured by Sysmex Corporation). The spheroidized calcium aluminate powder can be adjusted to an arbitrary average particle size by performing classification operation, grinding to such an extent that the particle shape is not destroyed, and the like.

本発明に係る平均粒子径は、メジアン径であり、レーザー回折法やレーザー散乱法等の粒度分布測定装置(例えば日機装株式会社製「マイクロトラック粒度分布測定装置」)により測定することができる。平均粒子径は1〜100μmが好ましく、1〜40μmがより好ましい。 The average particle diameter according to the present invention is a median diameter, and can be measured by a particle size distribution measuring device such as a laser diffraction method or a laser scattering method (for example, “Microtrack particle size distribution measuring device” manufactured by Nikkiso Co., Ltd.). The average particle diameter is preferably 1 to 100 μm, more preferably 1 to 40 μm.

本発明に係る球状化カルシウムアルミネートに、耐火性及び耐食性を向上させる目的でアルミナを添加することが可能である。このアルミナは、水酸化アルミニウムや仮焼アルミナなどのAl2O3源を、ロータリーキルン等の焼成装置やガス化溶融炉等の溶融装置によって、焼結又は溶融したものを、所定のサイズに粉砕し、篩い分けしたものである(以下、添加用アルミナと呼ぶ)。鉱物組成としては、α-Al2O3やβ-Al2O3などと示される酸化アルミニウムで、焼結アルミナ、仮焼アルミナ、及び易焼結アルミナ等と呼ばれるものである。通常、化学的に安定、融点が高い、機械的強度が大きい、硬度が高い等の特性を持つα-Al2O3が、添加用アルミナとして最も好ましい。 Alumina can be added to the spheroidized calcium aluminate according to the present invention for the purpose of improving fire resistance and corrosion resistance. This alumina is made by sintering or melting an Al 2 O 3 source such as aluminum hydroxide or calcined alumina by a firing device such as a rotary kiln or a melting device such as a gasification melting furnace into a predetermined size. And sieved (hereinafter referred to as additive alumina). The mineral composition is aluminum oxide indicated as α-Al 2 O 3 , β-Al 2 O 3 or the like, which is called sintered alumina, calcined alumina, easily sintered alumina, or the like. Usually, α-Al 2 O 3 having the characteristics of being chemically stable, having a high melting point, a high mechanical strength, and a high hardness is most preferred as the alumina for addition.

更に本発明では、流動性を改善する目的で、通常、不定形耐火物に配合される硬化遅延剤や硬化促進剤、流動化剤等の添加剤を併用することが可能である。 Furthermore, in the present invention, for the purpose of improving fluidity, it is possible to use additives such as a curing retarder, a curing accelerator, a fluidizing agent, etc., which are usually blended in an amorphous refractory.

硬化促進剤としては、Li2CO3、Ca(OH)2、 NaOH、KOH等のリチウム塩や水酸化物が挙げられ、中でも、リチウム塩は硬化促進作用が強く好ましい。また、硬化遅延剤としては、カルボン酸類、硼酸類、ポリアクリル酸類、ポリメタクリル酸類及びヘキサメタ燐酸、トリポリ燐酸、ピロ燐酸等のアルカリ塩類が挙げられる。 Examples of the curing accelerator include lithium salts and hydroxides such as Li 2 CO 3 , Ca (OH) 2 , NaOH, and KOH. Among these, lithium salts are preferable because they have a strong curing promoting action. Examples of the curing retarder include carboxylic acids, boric acids, polyacrylic acids, polymethacrylic acids, and alkali salts such as hexametaphosphoric acid, tripolyphosphoric acid, and pyrophosphoric acid.

添加剤の配合方法は、特に限定されるものではなく、各添加剤を所定の割合になるように配合し、V型ブレンダー、コーンブレンダー、ナウターミキサー、パン型ミキサー、及びオムニミキサー等の混合機を用いて均一混合する。 The method of blending the additive is not particularly limited, and each additive is blended in a predetermined ratio, and mixing such as V-type blender, corn blender, nauter mixer, pan-type mixer, and omni mixer is performed. Mix evenly using a machine.

本発明に係る耐火骨材は、通常、不定形耐火物に使用されている耐火骨材が使用可能であって、具体的には、溶融マグネシア、焼結マグネシア、天然マグネシア、及び軽焼マグネシア等のマグネシア、溶融マグネシアスピネルや焼結マグネシアスピネルなどのマグネシアスピネル、溶融アルミナ、焼結アルミナ、軽焼アルミナ、及び易焼結アルミナ等のアルミナ、シリカヒューム、コロイダルシリカ、軽焼アルミナ、及び易焼結アルミナ等の超微粉、その他、溶融シリカ、焼成ムライト、酸化クロム、ボーキサイト、アンダルサイト、シリマナイト、シャモット、ケイ石、ロー石、粘土、ジルコン、ジルコニア、ドロマイト、パーライト、バーミキュライト、煉瓦屑、陶器屑、窒化珪素、窒化ホウ素、炭化珪素、窒化珪素鉄等の使用が可能である。 As the refractory aggregate according to the present invention, a refractory aggregate usually used for an amorphous refractory can be used, and specifically, fused magnesia, sintered magnesia, natural magnesia, light-burned magnesia, and the like. Magnesia, fused magnesia spinel and magnesia spinel such as sintered magnesia spinel, fused alumina, sintered alumina, light calcined alumina, alumina such as easily sintered alumina, silica fume, colloidal silica, light calcined alumina, and easily sintered Ultrafine powders such as alumina, others, fused silica, calcined mullite, chromium oxide, bauxite, andalusite, sillimanite, chamotte, quartzite, rholite, clay, zircon, zirconia, dolomite, perlite, vermiculite, brick waste, ceramic waste, Silicon nitride, boron nitride, silicon carbide, silicon iron iron, etc. can be used That.

中でも、耐食性、耐用性、及び耐火性の面から、マグネシア、マグネシアスピネル、シャモット、アルミナ、炭化珪素、及び超微粉、更にはオイルピッチ、タール、鱗状黒鉛等のカーボン質骨材の中から選ばれた一種又は二種以上の耐火骨材を配合して、耐火骨材99〜92質量部、アルミナセメント組成物の添加量が1〜8質量部の低セメントキャスタブルに使用することが好ましい。 Among these, from the viewpoint of corrosion resistance, durability, and fire resistance, it is selected from magnesia, magnesia spinel, chamotte, alumina, silicon carbide, and ultrafine powder, and carbonaceous aggregates such as oil pitch, tar, and scale graphite. It is preferable to use one or two or more kinds of refractory aggregates for low cement castables having 99 to 92 parts by mass of refractory aggregate and 1 to 8 parts by mass of the alumina cement composition.

さらに、本発明の不定形耐火物は、その硬化体を乾燥する際に発生し易い爆裂を防止する目的で金属アルミニウムやシリコン合金などの金属粉末、ビニル繊維やポリプロピレン等の有機繊維、窒素含有ガス生成物、およびデキストリン等の爆裂防止剤を必要に応じて配合することができる。爆裂防止剤の使用量は目的とする耐爆裂性に応じて適宜決定すべきもので、一義的に決定することはできないが、一般的には、不定形耐火物100質量部に対して、0.05〜5質量部程度配合することが好ましく、1〜4質量部配合することがより好ましい。0.05質量部未満では爆裂防止効果が得られない場合があり、5質量部を超えると流動性が低下する場合がある。 Furthermore, the amorphous refractory of the present invention is made of metal powder such as metal aluminum or silicon alloy, organic fiber such as vinyl fiber or polypropylene, nitrogen-containing gas, etc. for the purpose of preventing explosion that tends to occur when the cured product is dried. The product and an anti-explosion agent such as dextrin can be blended as necessary. The amount of the explosion-preventing agent to be used should be determined as appropriate according to the intended explosion resistance and cannot be uniquely determined. Generally, it is 0.05 to 100 parts by mass with respect to 100 parts by mass of the amorphous refractory. It is preferable to mix about 5 parts by mass, and more preferably 1 to 4 parts by mass. If the amount is less than 0.05 parts by mass, the explosion preventing effect may not be obtained. If the amount exceeds 5 parts by mass, the fluidity may decrease.

本発明に係る不定形耐火物の製造方法は、特に限定されるものではなく、通常の不定形耐火物の製造方法に準じ、各構成原料を所定の割合になるように配合し、V型ブレンダー、コーンブレンダー、ナウターミキサー、パン型ミキサー、及びオムニミキサー等の混合機を用いて均一混合するか、あるいは、所定の割合で混練り施工する際、混練り機に直接秤込むことも可能である。 The method for producing the amorphous refractory according to the present invention is not particularly limited, and in accordance with the usual method for producing an irregular refractory, each constituent raw material is blended to a predetermined ratio, and a V-type blender It is possible to mix evenly using a mixer such as a cone blender, a nauter mixer, a bread mixer, and an omni mixer, or to directly weigh into a kneader when performing kneading at a predetermined ratio. is there.

Al2O3源として高アルミナ質アルミナ、CaO源として酸化カルシウムを用い、CaO/Al2O3 mol比が所定の割合になるように原料を配合し、電気炉にて1650℃で溶融後、溶融物に0.2MPaの圧力でノズルから水を吹きつけることにより、球状化カルシウムアルミネートクリンカーを作製した。次に、得られたクリンカーをサイクロンにて分級し、球状化されたカルシウムアルミネート粉体を得た。結果を表1に示す。尚、比較例として1-4に0.2MPaの圧力でノズルからAirを吹きつけることにより、球状化カルシウムアルミネートクリンカーを作製した。得られたクリンカーは、同様にサイクロンにて分級し、球状化されたカルシウムアルミネート粉体を得た。 Using high alumina alumina as the Al 2 O 3 source and calcium oxide as the CaO source, blending the raw materials so that the CaO / Al 2 O 3 mol ratio is a predetermined ratio, melting at 1650 ° C. in an electric furnace, Spherical calcium aluminate clinker was prepared by spraying water from the nozzle at a pressure of 0.2 MPa to the melt. Next, the obtained clinker was classified with a cyclone to obtain a spheroidized calcium aluminate powder. The results are shown in Table 1. As a comparative example, spheroidized calcium aluminate clinker was produced by blowing air from a nozzle to 1-4 at a pressure of 0.2 MPa. The obtained clinker was similarly classified with a cyclone to obtain a spheroidized calcium aluminate powder.

<使用材料>
(1)Al2O3源:市販品(Al2O3純度=99.0%、Na2O=0.3%)
(2)CaO源:市販品(CaO純度=98.0%、I.g.loss=1.0%)
(3)焼結アルミナ:市販品(Al2O3純度=99.0%、Na2O=0.2%、粒度;3―1mm:28%、1―0.5mm:17%、0.6―0.2mm:15%、0―0.3mm:14%、0―0.045mm:6%)
(4)微粉アルミナ:市販品(Al2O3純度=99.7% 、Na2O=0.3%)
<Materials used>
(1) Al 2 O 3 source: Commercial product (Al 2 O 3 purity = 99.0%, Na 2 O = 0.3%)
(2) CaO source: Commercial product (CaO purity = 98.0%, Igloss = 1.0%)
(3) Sintered alumina: commercial product (Al 2 O 3 purity = 99.0%, Na 2 O = 0.2%, particle size; 3-1 mm: 28%, 1-0.5 mm: 17%, 0.6-0.2 mm: 15% (0-0.3mm: 14%, 0-0.045mm: 6%)
(4) Fine alumina: Commercial product (Al 2 O 3 purity = 99.7%, Na 2 O = 0.3%)

<評価方法>
(1)平均粒子径:エタノール溶媒中に超音波によりサンプルを分散後、日機装株式会社製「マイクロトラック粒度分布測定装置」で測定した。
(2)化学成分:理学電機工業社製蛍光X線装置「RIX-3000」を用い、検量線法で測定した。
(3)平均球形度:シスメックス社製フロー式粒子像分析装置(商品名「FPIA-1000」)を用い、作製したカルシウムアルミネート粉体の平均球形度を測定した。
(4)収率(%):球形度が0.7以上の割合
<Evaluation method>
(1) Average particle size: The sample was dispersed in an ethanol solvent by ultrasonic waves, and then measured with a “Microtrac particle size distribution analyzer” manufactured by Nikkiso Co., Ltd.
(2) Chemical composition: Measured by a calibration curve method using a fluorescent X-ray apparatus “RIX-3000” manufactured by Rigaku Corporation.
(3) Average sphericity: The average sphericity of the produced calcium aluminate powder was measured using a flow type particle image analyzer (trade name “FPIA-1000”) manufactured by Sysmex Corporation.
(4) Yield (%): Percentage of the sphere Katachido 0.7 or higher

実施例1の実験No.1-1で試作した球状化カルシウムアルミネートA7.5質量部、骨材として、焼結アルミナ80質量部、及び平均粒子径4μmのアルミナ(微粉アルミナ)12.5質量部を配合して、不定形耐火物を製造した。尚、比較として実験No.1-1で試作した球状化カルシウムアルミネートAと同一成分のカルシウムアルミネートクリンカーをボールミルで粉砕し、平均球形度0.60、平均粒径10.3μmのカルシウムアルミネート(カルシウムアルミネートE)を作製した。
次に水を所定の割合加えて、モルタルミキサーにて3分間混練り後、20℃における特性を評価した。結果を表2に示す。
Spherical calcium aluminate A 7.5 parts by mass produced in Experiment No. 1-1 of Example 1, 80 parts by mass of sintered alumina and 12.5 parts by mass of alumina (fine powder alumina) with an average particle size of 4 μm as aggregates Blended to produce an amorphous refractory. For comparison, a calcium aluminate clinker having the same component as the spheroidized calcium aluminate A produced in Experiment No. 1-1 was ground by a ball mill, and calcium aluminate (calcium aluminum aluminate having an average sphericity of 0.60 and an average particle size of 10.3 μm was used. Nate E ) was prepared.
Next, water was added at a predetermined ratio, and after kneading for 3 minutes with a mortar mixer, the characteristics at 20 ° C. were evaluated. The results are shown in Table 2.

<評価方法>
(1)流動性:20℃恒温室内に混練物を所定時間放置した後、JISR2521フロー試験に準拠し15回の落下運動を与え、フロー値を測定した。
(2)硬化時間:20℃恒温室内に混練物を放置した際の、注水から発熱温度が最大に到達するまでの時間を温度記録計を用いて測定し、硬化時間とした。
(3)養生強度:4×4×16cmの型枠に混練物を入れ、20℃恒温室内で24時間養生した後、圧縮強度を測定した。
(4)乾燥強度:4×4×16cmの型枠に混練物を入れ、20℃恒温室内で24時間養生した後、更に110℃にて24時間乾燥して、圧縮強度を測定した。
<Evaluation method>
(1) Fluidity: The kneaded material was allowed to stand in a constant temperature room at 20 ° C. for a predetermined time, and then subjected to 15 falling motions in accordance with the JIS R2521 flow test, and the flow value was measured.
(2) Curing time: When the kneaded material was allowed to stand in a constant temperature room at 20 ° C., the time from the injection of water until the exothermic temperature reached the maximum was measured using a temperature recorder to obtain the curing time.
(3) Curing strength: The kneaded product was put in a 4 × 4 × 16 cm mold and cured in a constant temperature room at 20 ° C. for 24 hours, and then the compressive strength was measured.
(4) Drying strength: The kneaded product was put into a 4 × 4 × 16 cm mold, cured in a constant temperature room at 20 ° C. for 24 hours, then dried at 110 ° C. for 24 hours, and the compressive strength was measured.




本発明の球状化カルシウムアルミネートの製造装置の一例を示す概略図Schematic which shows an example of the manufacturing apparatus of the spheroidized calcium aluminate of this invention.

Claims (1)

CaO原料とAlO原料を溶融装置に投入し、加熱溶融した後、前記溶融物に高圧の水を吹き付けることにより球状化することを特徴とするカルシウムアルミネートの製造方法。 A method for producing calcium aluminate, characterized in that a CaO raw material and an Al 2 O 3 raw material are charged into a melting apparatus, heated and melted, and then spheroidized by spraying high-pressure water on the melt.
JP2006173297A 2006-06-23 2006-06-23 Method for producing calcium aluminate Active JP4920321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006173297A JP4920321B2 (en) 2006-06-23 2006-06-23 Method for producing calcium aluminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006173297A JP4920321B2 (en) 2006-06-23 2006-06-23 Method for producing calcium aluminate

Publications (2)

Publication Number Publication Date
JP2008001565A JP2008001565A (en) 2008-01-10
JP4920321B2 true JP4920321B2 (en) 2012-04-18

Family

ID=39006260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006173297A Active JP4920321B2 (en) 2006-06-23 2006-06-23 Method for producing calcium aluminate

Country Status (1)

Country Link
JP (1) JP4920321B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090205741A1 (en) 2007-01-10 2009-08-20 Sumitomo (Sei) Steel Wire Corp. Connection method of metal linear element and connection device of metal linear element
CN105600813B (en) * 2016-01-15 2017-07-11 武汉大学 A kind of method that utilization discharge plasma sintering technique prepares tricalcium aluminate
CN114685095B (en) * 2020-12-25 2023-07-11 比亚迪股份有限公司 Organic-inorganic composite material and preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472945A (en) * 1987-09-11 1989-03-17 Onoda Cement Co Ltd Fluidization cement
JPH05339037A (en) * 1992-06-09 1993-12-21 Mitsubishi Materials Corp Production of mortar and concrete
JP2002187749A (en) * 2000-12-19 2002-07-05 Taiheiyo Cement Corp Spherical powder

Also Published As

Publication number Publication date
JP2008001565A (en) 2008-01-10

Similar Documents

Publication Publication Date Title
JP4527656B2 (en) Calcium aluminate, alumina cement and amorphous refractories
CN1308099C (en) Spherical casting sand and method for making same
JP2004202577A (en) Spherical molding sand
JP2007303011A (en) Inorganic fiber and monolithic refractory using the same
JP2006282486A (en) Alumina cement, alumina cement composition, and monolithic refractory
JP4602379B2 (en) Method for producing alumina cement
CN1214031A (en) Refractory compsn. for producing compact castable and wet spraying method
JP4920321B2 (en) Method for producing calcium aluminate
JP6427456B2 (en) Unshaped refractory composition and unshaped refractory
JP2002193681A (en) Castable refractory and waste melting furnace utilizing it
JP6752074B2 (en) Aggregates for refractories, their manufacturing methods, and refractories using them
JP2008001566A (en) Alumina cement, alumina cement composition and monolithic refractory using the same
WO2017170840A1 (en) Refractory aggregate, method for manufacturing same, and refractory employing same
JP2009173458A (en) Alumina cement and monolithic refractory
JP4155932B2 (en) Alumina cement and amorphous refractory
JP4312190B2 (en) Calcium aluminate, alumina cement composition and amorphous refractory
JP2003321276A (en) Silicon carbide material for monolithic refractory excellent in driability and monolithic refractory material
JP4141158B2 (en) SiC for amorphous refractories with excellent corrosion resistance, spalling resistance, and drying properties, and raw materials for amorphous refractories
JP4343127B2 (en) Alumina cement and alumina cement composition
JP5019715B2 (en) Alumina cement and hardened alumina cement
JP4101162B2 (en) Alumina cement, alumina cement composition and amorphous refractory using the same
JP5663122B2 (en) Castable refractories for non-ferrous metal smelting containers and precast blocks using the same
JP2007210805A (en) Alumina cement, alumina cement composition and monolithic refractory
JP2009096658A (en) Alumina cement composition, and monolithic refractory using the same
KR960006239B1 (en) Process for the preparation of magnesia powders

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120201

R151 Written notification of patent or utility model registration

Ref document number: 4920321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250