JPS6134961A - Electronic part and manufacture thereof - Google Patents

Electronic part and manufacture thereof

Info

Publication number
JPS6134961A
JPS6134961A JP15409184A JP15409184A JPS6134961A JP S6134961 A JPS6134961 A JP S6134961A JP 15409184 A JP15409184 A JP 15409184A JP 15409184 A JP15409184 A JP 15409184A JP S6134961 A JPS6134961 A JP S6134961A
Authority
JP
Japan
Prior art keywords
electronic component
layer
coating layer
resin
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15409184A
Other languages
Japanese (ja)
Other versions
JPH0773118B2 (en
Inventor
Michihiko Inaba
道彦 稲葉
Momoko Takemoto
竹本 モモ子
Takashi Anami
阿波 傑士
Susumu Yasaka
家坂 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59154091A priority Critical patent/JPH0773118B2/en
Publication of JPS6134961A publication Critical patent/JPS6134961A/en
Publication of JPH0773118B2 publication Critical patent/JPH0773118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • H01L23/49582Metallic layers on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To ensure excellent adhesion between a coating chiefly composed of Ni, Ag, or Au covering a lead and an epoxy resin for sealing said lead by a method wherein a Cu oxide layer is formed on at least a side of said coating in contact with said resin. CONSTITUTION:A Cu-base alloy lead 4, covered by a coating layer 7 formed of Ni, Ag, or Au with the mean diameter of the crystals therein not more than 2mum, is connected to an electronic part main body. Annealing is performed at temperatures 150-450 deg.C for the formation of a resin layer covering the entirety of the electronic part main body and a part of the wiring. By this, a type of chemical bondage is established between a Cu oxide layer 8 formed on the surface of the coating layer 7 covering the lead 4 and the sealing epoxy resin, which results in a strong adherence between the Cu oxide layer 8 and the sealing epoxy resin. Accordingly, moisture is efficiently prevented from penetrating the junction between the lead 4 and the epoxy resin when the electronic device is used in service.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は電子部品とその製造法に関し、更に詳しくは、
樹脂封止型の電子部品において、電子部品本体に接続さ
れた導線と樹脂層との密着性が良好な電子部品とその製
造法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an electronic component and a method for manufacturing the same, and more specifically,
The present invention relates to a resin-sealed electronic component that has good adhesion between a conductive wire connected to an electronic component body and a resin layer, and a method for manufacturing the same.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

樹脂封止型の電子部品は、通常、例えば第3図に示すよ
うに、電子部品本体1にはんだ層2.3を介してリード
線(導#)4.5が接続され、更に、電子部品本体1の
全体及びリード1s4.5の一部が樹脂層6によシ封止
された構造となっている。
In resin-sealed electronic components, as shown in FIG. The entire body 1 and a portion of the leads 1s4.5 are sealed with a resin layer 6.

リー゛ド線を形成する材料としては、通常、高い導電性
を有するCu系合金が使用されておル、封止用樹脂とし
てはエポキシ樹脂を使用することが−般的である。
As the material for forming the lead wire, a Cu-based alloy having high conductivity is usually used, and as the sealing resin, an epoxy resin is generally used.

ところで、電子部品本体かへ接合を有する3i半導体素
子である場合、リード線を接続したのちの洗浄工程にお
いてリード線のCuが溶は出し、Si表面、特にPN接
合近傍に付着して、素子の逆耐圧特性を劣化させる等の
問題を生ずる2゜そのため、従来、Cu系合金よりな、
るリード線の表面をNi、Ag又はAuなどを主成分と
した材料で層状に被覆し、リード線からのCuの溶出を
防止している。このとき、該被覆層は、Ni、Ag或は
Auなどよりなる結晶粒の集合体として形成されている
By the way, in the case of a 3i semiconductor element having a junction between the main body of the electronic component and the lead wire being connected, Cu from the lead wire melts out during the cleaning process and adheres to the Si surface, especially near the PN junction, causing damage to the element. 2゜This causes problems such as deterioration of reverse voltage resistance characteristics.For this reason, conventionally, Cu-based alloys
The surface of the lead wire is coated in a layered manner with a material mainly composed of Ni, Ag, or Au to prevent Cu from leaching out from the lead wire. At this time, the coating layer is formed as an aggregate of crystal grains made of Ni, Ag, Au, or the like.

しかしながら、かかる被覆層は、封止用エポキシ樹脂と
の接合性が悪く、被覆層と樹脂層との界面に微小間隙が
生じ、特に湿潤環境下で電子部品を使用した場合この微
小間隙を通して水分が電子部品の内部に流入して素子の
電気的特性を低下させるという問題が生じている。
However, such a coating layer has poor bonding properties with the sealing epoxy resin, and micro-gaps occur at the interface between the coating layer and the resin layer, and especially when electronic components are used in a humid environment, water can leak through these micro-gaps. A problem has arisen in which particles flow into electronic components and deteriorate the electrical characteristics of the devices.

〔発明の目的〕[Purpose of the invention]

本発明は、かかる従来の問題を解消し、Cu系合金よ)
なシ、かつその表面にNi、Ag又はAuを主成分とす
る被覆層が形成されたリード線と電子部品本体用エポキ
シ樹脂との密着性が良好で、両者の界面から水分が流入
することがなく、信頼性の高い電子部品とその製造法を
提供することを目的とする。
The present invention solves such conventional problems and improves the Cu-based alloy).
Also, the adhesion between the lead wire, on which a coating layer mainly composed of Ni, Ag, or Au is formed, and the epoxy resin for the electronic component body is good, and moisture does not flow in from the interface between the two. Our goal is to provide highly reliable electronic components and their manufacturing methods.

〔発明の概要〕[Summary of the invention]

上述の如き被覆層を有するリード線とエポキシ樹脂との
密着不良を解消するためには、(1)リード線の被覆層
を構成する材料をエポキシ樹脂との゛密着性が良いもの
に代える、或いは(2)リード線の被覆層を更に、エポ
キシ樹脂との密着性が良好な物質で被覆するという方法
が考えられるが、従来の被覆層の構成材料、すなわち、
Ni、Ag又はAuを主成分とする材料は、めっき法な
どによりCu系合金よυなるリード線に容易に被覆する
ことができる上に、はんだ付けにより他部材に容易に接
合しうるなどの利点を備えているため上記(1)の方法
はらまシ得策であるとは言い難い。〜 そこ′で本発明者らは、上記(2)の方法に焦点を紋つ
て鋭意研究、を重ねた結果、リード線の構成材料がCu
系合金であることに着目し、リード線に後述するような
平均結晶粒径を有する被覆層を形成した後に、後述する
所定の条件下で加熱処理すれば、被覆層を構成する各金
属元素の結晶粒界を通してリード線の主要な構成材料で
あるCuが粒界拡散して該被覆層の表面にゝゝにじみI
出て、ただちに表面拡散するため該表面に濃化し、尚且
つ、直ちにそれは、樹脂との密着性に浸れた酸化物に転
態するとの事実を見い出して本発明を完成するに至った
In order to eliminate the poor adhesion between the lead wire having a coating layer and the epoxy resin as described above, (1) replace the material constituting the coating layer of the lead wire with one that has good adhesion with the epoxy resin, or (2) Although it is possible to further coat the lead wire coating layer with a substance that has good adhesion to the epoxy resin, conventional materials for the coating layer, i.e.
Materials whose main components are Ni, Ag, or Au have the advantage that they can be easily coated on lead wires such as Cu-based alloys by plating, etc., and can also be easily joined to other components by soldering. Therefore, it is hard to say that method (1) above is a good idea. ~ Therefore, the inventors of the present invention focused on method (2) above and conducted extensive research. As a result, the material of the lead wire was made of Cu.
Focusing on the fact that it is a metal alloy, if a coating layer having an average crystal grain size as described below is formed on the lead wire and then heat-treated under the specified conditions described below, the amount of each metal element constituting the coating layer can be reduced. Cu, which is the main constituent material of the lead wire, diffuses through the grain boundaries and bleeds onto the surface of the coating layer.
The present invention has been completed based on the discovery that the oxides are immediately concentrated on the surface because they are diffused into the surface, and are immediately transformed into oxides that have good adhesion to the resin.

即ち、本発明は、電子部品本体;該電子部品本体に接続
され、Nf、Ag及びAuから成る群より選択された少
なくとも1つを主成分とする被覆層をその表面に有する
Cu系合金よりなる導線;並びに該電子部品本体全体と
導線の一部とを覆って形成された樹脂層とを備えた電子
部品において、該被覆層の少なくとも樹脂層と接合する
面に、Cuの酸化物よりなる層が形成されていることを
特徴とするものである。
That is, the present invention provides an electronic component body; a Cu-based alloy connected to the electronic component body and having on its surface a coating layer containing at least one selected from the group consisting of Nf, Ag, and Au as a main component; In an electronic component comprising a conductive wire; and a resin layer formed to cover the entire electronic component body and a part of the conductive wire, a layer made of an oxide of Cu is provided on at least the surface of the coating layer that is bonded to the resin layer. It is characterized by the formation of

かかる構成において、Cuの酸化物層の厚さは1000
 A以下であることが好ましい。層厚が1000 Xを
超えると、リード線形成工程後の電子部品の洗浄工程で
該酸化物層の、Cuが溶出する場合があるので望ましく
ない。
In such a configuration, the thickness of the Cu oxide layer is 1000
It is preferable that it is A or less. If the layer thickness exceeds 1000×, Cu in the oxide layer may be eluted during the electronic component cleaning step after the lead wire forming step, which is not desirable.

更に、本発明の電子部品の製造法は、Ni、Ag及びA
uから成る群より選択された少なくとも1つを主成分と
し、その平均結晶粒径が2gm以下であるような被覆層
がその表面に形成されたCu系合金よりなるリード線を
電子部品本体に接続したのち、150〜450℃の温度
において焼鈍を行ない、次いで該電子部品本体全体と該
導線の一部を覆って樹脂層を形成することを特徴とする
ものである。
Furthermore, the method for manufacturing electronic components of the present invention includes Ni, Ag, and A
A lead wire made of a Cu-based alloy whose main component is at least one selected from the group consisting of u and on whose surface a coating layer having an average crystal grain size of 2 gm or less is formed is connected to the electronic component body. After that, annealing is performed at a temperature of 150 to 450°C, and then a resin layer is formed covering the entire electronic component body and a part of the conductive wire.

上記の製造工程において、リード線の被覆層の厚さは3
μm以下である。層厚が極端に大きいと続<Cuの粒界
拡散工程に長時間必要とするため好ましくない。しかし
、Cuの粒界拡散の条件、例えば温度等を適宜選択する
ことによって6μm程度の厚さまでは粒界拡散によって
Cuの酸化物層を形成することが可能である。この被覆
層はNl、Ag又はAu”を主成分とするため、めっき
法によシ容易に形成することができる。更に、この被覆
層を構成する材料の平均結晶粒径は2P′m以下とする
。平均結晶粒径が2μmを超えると結晶粒界が減少して
Cuを均一に粒界拡散せしめることが困難になる。尚、
このような2μm以下の平均結晶粒径を有する被覆層を
形成するためには、例えば、めっき法による場合、めっ
き浴の温度、電流密度、めっき浴の攪拌程度などの諸条
件を適宜選択することが望ましい。
In the above manufacturing process, the thickness of the lead wire coating layer is 3
It is less than μm. If the layer thickness is extremely large, it is not preferable because the subsequent process of grain boundary diffusion of Cu requires a long time. However, by appropriately selecting conditions for Cu grain boundary diffusion, such as temperature, it is possible to form a Cu oxide layer by grain boundary diffusion up to a thickness of about 6 μm. Since this coating layer mainly contains Nl, Ag, or Au, it can be easily formed by plating. Furthermore, the average crystal grain size of the material constituting this coating layer is 2P'm or less. If the average grain size exceeds 2 μm, the grain boundaries will decrease and it will be difficult to uniformly diffuse Cu at the grain boundaries.
In order to form such a coating layer having an average crystal grain size of 2 μm or less, for example, when using a plating method, various conditions such as the temperature of the plating bath, the current density, and the degree of stirring of the plating bath must be appropriately selected. is desirable.

かかる被覆層が形成されたリード線を電子部品本体、例
えば81半導体よりなる整流素子にはんだ等を介して接
合したのち、焼純する。この工程は150〜450℃、
好ましくは200〜400℃でなされる。焼純温度が1
50℃未満の場合にはCuの粒界拡散が充分に進行せず
、焼純温度が450℃を超えると被覆層内においてCu
の粒内拡散が発生したシ、或いは粒径成長が起こったシ
して好ましくない。
The lead wire on which such a coating layer is formed is bonded to an electronic component body, for example, a rectifying element made of 81 semiconductor, via solder or the like, and then sintered. This process is carried out at 150-450℃.
It is preferably carried out at 200 to 400°C. The sintering temperature is 1
If the temperature is less than 50°C, grain boundary diffusion of Cu will not proceed sufficiently, and if the sintering temperature exceeds 450°C, Cu will not be diffused in the coating layer.
This is undesirable because intragranular diffusion or grain size growth occurs.

厚さ3μm以下の被覆層上に1000 X以下の酸化層
を形成するための焼純時間は1時間以内であるが、被覆
層が厚い場合、例えば6μm程度であれば、焼純時間は
4〜5時間とすることが好ましい。更に、この焼鈍工程
は被覆層がAg又はAuの場合は真空中あるいは大気中
のいずれで行なってもよいが、被覆層がNiの場合は粒
界酸化を防止する上で真空中或いは不活恍ガス中で行な
うことが望ましい。
The sintering time to form an oxide layer of 1000X or less on a coating layer with a thickness of 3 μm or less is within 1 hour, but if the coating layer is thick, for example, about 6 μm, the sintering time is 4 to 4 μm. It is preferable to set it as 5 hours. Furthermore, when the coating layer is Ag or Au, this annealing step may be performed in a vacuum or in the air, but when the coating layer is Ni, it may be performed in a vacuum or in an inert environment to prevent grain boundary oxidation. It is preferable to perform this in gas.

この焼純工程において、第1図に示すようにリード線4
からCuが被覆層7の粒界7aを介して図に矢線で示す
如く被[17の表面へ拡散し、拡散したCuは直ちに酸
化されて、Cu酸化物層8を形成する。
In this sintering process, as shown in Figure 1, the lead wire 4
Then, Cu diffuses through the grain boundaries 7a of the coating layer 7 to the surface of the target 17 as shown by arrows in the figure, and the diffused Cu is immediately oxidized to form a Cu oxide layer 8.

最後に、電子部品本体全部及びリード線の1部をエポキ
シ樹脂によシ封止して電子部品を完成する。
Finally, the entire electronic component body and a portion of the lead wires are sealed with epoxy resin to complete the electronic component.

このようにして得られた電子部品において、リード線の
被覆層表面に形成されたCu酸化物層と封止用エポキシ
樹脂との間にある種の化学結合が形成されて、該酸化物
層とエポキシ樹脂とが強固に密着する。従って、電子部
品の使用時に、リード線とエポキシ樹脂との接合面から
水分が侵入することが有効に防止される。更に、被覆層
の平均結晶粒径を小さくして細粒としたので、仮に水分
が侵入したとしても、部品本体に至る経路が長いため、
水分が電子部品本体に到達しにくくなるなどの付加的な
効果がある。
In the electronic component thus obtained, a certain chemical bond is formed between the Cu oxide layer formed on the surface of the coating layer of the lead wire and the sealing epoxy resin, and the oxide layer and Strongly adheres to epoxy resin. Therefore, when the electronic component is used, moisture is effectively prevented from entering through the joint surface between the lead wire and the epoxy resin. Furthermore, because the average crystal grain size of the coating layer has been reduced to make it fine, even if moisture does enter, it will take a long path to reach the component body.
This has the additional effect of making it difficult for moisture to reach the electronic component body.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明に依れば、封止
用エポキシ樹脂とリード線との密着性が極めて良好な電
子部品を簡便な方法で提供することができるため、例え
ば該電子部品を湿潤環境下で連続使用しても電気的特性
が劣化することがなく、その工業的価値は極めて犬であ
る。
As is clear from the above description, according to the present invention, it is possible to provide an electronic component with extremely good adhesion between a sealing epoxy resin and a lead wire by a simple method. Even when used continuously in a humid environment, the electrical characteristics do not deteriorate, and its industrial value is extremely high.

〔発明の実施例〕[Embodiments of the invention]

実施例1゜ 平均結晶粒径をll1rr1に調整したNiめりき層を
1.5μmの厚さに形成したCuリード線を共晶はんだ
を使用してSi半導体よりなる整流素子に接続した。該
整流素子の器接合領域をポリイミド系の樹脂で保護した
のち、焼純工程として、真空中200℃において1時間
加熱処理した。被覆層表面をオージェ電子分光装置で分
析した結果、cuが濃化していることが確認された。次
いでエポキシ樹脂で該整流素子を封止し、封止型整流素
子として完成した。
Example 1 A Cu lead wire on which a Ni plated layer with an average crystal grain size adjusted to ll1rr1 was formed to a thickness of 1.5 μm was connected to a rectifying element made of a Si semiconductor using eutectic solder. After protecting the vessel bonding area of the rectifying element with a polyimide resin, the rectifying element was heat-treated at 200° C. for 1 hour in a vacuum as a sintering process. As a result of analyzing the surface of the coating layer using an Auger electron spectrometer, it was confirmed that Cu was concentrated. The rectifier was then sealed with epoxy resin to complete a sealed rectifier.

この封止型整流素子に対してプレッシャークッカーテス
) (PCT)を行ない、しかるのち、■通電特性試験
を行なった。PCTは、121℃、 80%H20の湿
潤ふん囲気において素子を8時間放置するテストであシ
、■通電特性試験とは、順方向にIへ通電し、経過時間
に対するリーク電流値を調べるものである。第2図はそ
の結果を示したもので、縦軸は400vの電圧を印加し
たときのリーク電流値を示し、横軸は時間(時間)を示
す。
A pressure cooker test (PCT) was conducted on this sealed rectifier element, and then a current conduction characteristic test was conducted. PCT is a test in which the device is left in a humid atmosphere of 80% H2O at 121°C for 8 hours. ■ Current carrying characteristic test is a test in which current is applied to I in the forward direction and the leakage current value is checked over the elapsed time. be. FIG. 2 shows the results, where the vertical axis shows the leakage current value when a voltage of 400 V is applied, and the horizontal axis shows time.

比較例 被覆層の平均結晶粒径が5μmであり、且つ焼純を行な
わないという2点を除いては上記実施例と同様にして封
止型整流素子を製造し、上記と同様PCT及びDC通電
特性試験を行なった。その結果を第2図に示した。
Comparative Example A sealed rectifier was manufactured in the same manner as in the above example except that the average crystal grain size of the coating layer was 5 μm and no sintering was performed, and PCT and DC energization were performed in the same manner as above. Characteristic tests were conducted. The results are shown in Figure 2.

第2図から明らかなように、本発明の電子部品は従来の
ものに比べて、PCT後のDC通電特性が著しく優れて
いることが確認された。□実施例2 被覆層がAgめつき層であることを除いては、上記実施
例1と同様にして樹脂封止型整流素子を製造した。焼鈍
後の被覆層表面の状態及びPCT後のDC通電特性は実
施例1と同様でめった。
As is clear from FIG. 2, it was confirmed that the electronic component of the present invention had significantly superior DC current conduction characteristics after PCT compared to the conventional electronic component. □Example 2 A resin-sealed rectifier was manufactured in the same manner as in Example 1, except that the coating layer was an Ag plating layer. The surface condition of the coating layer after annealing and the DC current conduction characteristics after PCT were the same as in Example 1.

尚、本実施例においては、電子部品本体として、整流素
子を用いたが、これに限るものではなく、トランジスタ
、サイリスタ、又は集積回路等などに適用し得ることは
言うまでもない。
In this embodiment, a rectifying element is used as the main body of the electronic component, but it goes without saying that the present invention is not limited to this and can be applied to transistors, thyristors, integrated circuits, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電子部品の製造法におけるCU酸化層
の形成過程を説明するだめの図、第2図は本発明の電子
部品のPCT後のDC通電特性を従来のものの特性と比
較して示した図、第3図は樹脂封止型の電子部品の一般
的な構造を示す概念的断面図である。 1・・・電子部品本体、4.5・・・リード線、6・・
・エポキシ樹脂層、7・・・被覆層、7a・・・粒界、
 8・・・Cu酸化層。
Figure 1 is a diagram for explaining the formation process of the CU oxide layer in the method for manufacturing electronic components of the present invention, and Figure 2 compares the DC current conduction characteristics of the electronic component of the present invention after PCT with those of conventional ones. FIG. 3 is a conceptual cross-sectional view showing the general structure of a resin-sealed electronic component. 1... Electronic component body, 4.5... Lead wire, 6...
- Epoxy resin layer, 7... coating layer, 7a... grain boundary,
8...Cu oxide layer.

Claims (1)

【特許請求の範囲】 1、電子部品本体;該電子部品本体に接続され、Ni、
Ag及びAuから成る群より選択された少なくとも1つ
を主成分とする被覆層をその表面に有するCu系合金よ
りなる導線;並びに該電子部品本体全体と導線の一部と
を覆つて形成された樹脂層を備えた電子部品において、
該被覆層の少なくとも樹脂層と接合する面に、Cuの酸
化物よりなる層が形成されていることを特徴とする電子
部品。 2、該酸化物よりなる層の厚さが1000Å以下である
特許請求の範囲第1項記載の電子部品。 3、該樹脂層がエポキシ樹脂から成る層である特許請求
の範囲第1項記載の電子部品。 4、Ni、Ag及びAuから成る群より選択された少な
くとも1つを主成分とし、その平均結晶粒径が2μm以
下であるような被覆層がその表面に形成されたCu系合
金よりなる導線を電子部品本体に接続したのち、150
〜450℃の温度において焼鈍を行ない、次いで該電子
部品本体全体と該導線の一部を覆つて樹脂層を形成する
ことを特徴とする電子部品の製造法。
[Claims] 1. Electronic component body; connected to the electronic component body, Ni,
A conductive wire made of a Cu-based alloy having a coating layer mainly composed of at least one selected from the group consisting of Ag and Au; and a conductive wire formed to cover the entire electronic component body and a part of the conductive wire. In electronic components with resin layers,
An electronic component characterized in that a layer made of Cu oxide is formed on at least the surface of the coating layer that is bonded to the resin layer. 2. The electronic component according to claim 1, wherein the layer made of the oxide has a thickness of 1000 Å or less. 3. The electronic component according to claim 1, wherein the resin layer is a layer made of epoxy resin. 4. A conductive wire made of a Cu-based alloy whose main component is at least one selected from the group consisting of Ni, Ag, and Au, and a coating layer having an average crystal grain size of 2 μm or less is formed on its surface. After connecting to the electronic component body, 150
A method for manufacturing an electronic component, comprising annealing at a temperature of ~450°C, and then forming a resin layer covering the entire electronic component body and a portion of the conductive wire.
JP59154091A 1984-07-26 1984-07-26 Electronic components and their manufacturing methods Expired - Fee Related JPH0773118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59154091A JPH0773118B2 (en) 1984-07-26 1984-07-26 Electronic components and their manufacturing methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59154091A JPH0773118B2 (en) 1984-07-26 1984-07-26 Electronic components and their manufacturing methods

Publications (2)

Publication Number Publication Date
JPS6134961A true JPS6134961A (en) 1986-02-19
JPH0773118B2 JPH0773118B2 (en) 1995-08-02

Family

ID=15576702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59154091A Expired - Fee Related JPH0773118B2 (en) 1984-07-26 1984-07-26 Electronic components and their manufacturing methods

Country Status (1)

Country Link
JP (1) JPH0773118B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122524A (en) * 2004-10-29 2006-05-18 Shima Seiki Mfg Ltd Knitted fabric sample with hanger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117383A (en) * 1974-08-05 1976-02-12 Asahi Chemical Ind

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117383A (en) * 1974-08-05 1976-02-12 Asahi Chemical Ind

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122524A (en) * 2004-10-29 2006-05-18 Shima Seiki Mfg Ltd Knitted fabric sample with hanger

Also Published As

Publication number Publication date
JPH0773118B2 (en) 1995-08-02

Similar Documents

Publication Publication Date Title
US3663184A (en) Solder bump metallization system using a titanium-nickel barrier layer
EP0435009B1 (en) Semiconductor package connecting method and semiconductor package connecting wires
US3952404A (en) Beam lead formation method
US3200490A (en) Method of forming ohmic bonds to a germanium-coated silicon body with eutectic alloyforming materials
JP2526007B2 (en) Structures and methods for forming electrical interconnections to semiconductor chips
US5906312A (en) Solder bump for flip chip assembly and method of its fabrication
US4675243A (en) Ceramic package for semiconductor devices
JPS60257160A (en) Semiconductor device
US2820932A (en) Contact structure
US3212160A (en) Method of manufacturing semiconductive devices
JPS5948546B2 (en) Metal strip for lead frame and its manufacturing method
USH498H (en) Electronic component including soldered electrical leads
JP3356649B2 (en) Semiconductor device and manufacturing method thereof
JPH034030Y2 (en)
US4065588A (en) Method of making gold-cobalt contact for silicon devices
JPS6141135B2 (en)
JPS6134961A (en) Electronic part and manufacture thereof
US3249829A (en) Encapsulated diode assembly
US4765528A (en) Plating process for an electronic part
JPS5916353A (en) Lead frame
JPS61140160A (en) Lead frame for semiconductor
US3702787A (en) Method of forming ohmic contact for semiconducting devices
JPS6218744A (en) Lead frame
JPS5978551A (en) Resin-sealed semiconductor device
JPS5934148Y2 (en) bidirectional thyristor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees