JPS613457A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS613457A
JPS613457A JP12322084A JP12322084A JPS613457A JP S613457 A JPS613457 A JP S613457A JP 12322084 A JP12322084 A JP 12322084A JP 12322084 A JP12322084 A JP 12322084A JP S613457 A JPS613457 A JP S613457A
Authority
JP
Japan
Prior art keywords
film
transistor gate
transistor
insulating film
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12322084A
Other languages
Japanese (ja)
Inventor
Toshihiko Kawachi
利彦 河地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP12322084A priority Critical patent/JPS613457A/en
Publication of JPS613457A publication Critical patent/JPS613457A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To obtain the semiconductor circuit device difficult of decrease in insulation strength between the source and drain regions even with a micro transistor gate electrode by a method wherein a transistor gate is formed out of an aperture pattern of photo resist. CONSTITUTION:One main surface of a P type single crystal Si substrate 11 is coated with an Si oxide film 12, and next an N type region 13 of low impurity concentration is formed on the surface of the substrate. Then, a PSG film 14 is grown and is thereafter etched in the part turning into the channel region of the transistor in order to open this film 14. The first photo resist 15 is removed. A P type channel region is formed by ion implantation by using the PSG film 14 as a mask. The patterned film 14 is coated with a polycrystalline Si film and then made to have conductivity by phosphorus diffusion. The second photo resist is formed out of the remaining pattern at the time of forming this transistor gate, and the polycrystalline Si film is patterned by being masked with this resist, resulting in the formation of the transistor gate 16.

Description

【発明の詳細な説明】 本発明は半導体集積回路装置、特に短チャネルMO8)
ランリスタの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated circuit device, particularly a short channel MO8).
The present invention relates to a method for manufacturing a run lister.

第1図(a)〜(d)に従来のMOB型トランジスタの
製造工程断面図を示す。
FIGS. 1(a) to 1(d) show cross-sectional views of the manufacturing process of a conventional MOB transistor.

従来、MO8型トランジスタの製造方法は、第1図(a
)に示されるようIC導電性を有する7リコン基板1上
にゲート絶縁酸化膜2を形成する。次に第1図Φ)に示
されるようにトランジスタゲートを形成するための多結
晶シリコン膜3をCVD法により成長し、これにリン拡
散を行って導電性をもたせた後、リングラフィ技術を用
い、ゲートを形成する部分のみにフォト・レジスト4を
残す。次に第1図(e)に示、されるように、前記の7
オト・レジスト4をマスクにして、前記の多結晶シリコ
ン膜3をドライ・エツチング法により不要部分、を除・
去し、トランジスタ・ゲートが作られる。このトランリ
スタ・ゲートをマスクに熱拡散やイオン押込み法などを
用いて基板と逆極性の導電型を有する不純物を基板表面
近傍に拡散し、ソース、ドレイン領域5を形成する。以
上の方法で製造されたMO8型トランジスタの断面図を
第1図(d)に示す。
Conventionally, the manufacturing method of MO8 type transistor is shown in Fig. 1(a).
), a gate insulating oxide film 2 is formed on a silicon substrate 1 having IC conductivity. Next, as shown in Fig. 1 Φ), a polycrystalline silicon film 3 for forming a transistor gate is grown by the CVD method, phosphorus is diffused into this film to make it conductive, and then phosphorography technology is used to make it conductive. , the photoresist 4 is left only in the portion where the gate will be formed. Next, as shown in FIG. 1(e), the above 7
Using the photoresist 4 as a mask, the unnecessary portions of the polycrystalline silicon film 3 are removed by dry etching.
and the transistor gate is created. Using this transristor gate as a mask, impurities having a conductivity type opposite to that of the substrate are diffused near the surface of the substrate using thermal diffusion, ion intrusion, etc., to form source and drain regions 5. A cross-sectional view of the MO8 type transistor manufactured by the above method is shown in FIG. 1(d).

今日の半導体集積回路は、技術の開発、発展や市場の要
求に応えるべく、それまでの時代に比べ1チップ当りの
トランジスタ集積能力が飛躍的に向上した。また今後も
微細化は進められるが、従来技術では上記したようeζ
7オト・レジストの残存パターンをマスクにして多結晶
シリコン膜をエツチングし、トランジスタ・ゲートを形
成していた。このためゲート長が1μmを割るような、
いわゆる超微細パターンのトランジスタのゲート電極を
形成するためにフォト・レジストを非常に薄くする必要
がある。こうなるとパターン形成は非常に困難になるば
かりでガく、7オト・レジストの機械的強度不足の問題
も発生する。また、トランジスタ・ゲート形成後、セル
フアライメント方式を用いて基板にN型不純物をイオン
押込みし、トランジスタのソース、ドレイン領域を形成
しても、この領域の横方向拡散も生じ領域間の耐圧が下
るという欠点があった。
In today's semiconductor integrated circuits, the ability to integrate transistors per chip has improved dramatically compared to previous eras in order to respond to technological development, development, and market demands. In addition, although miniaturization will continue in the future, the conventional technology
7 Using the remaining pattern of the photoresist as a mask, the polycrystalline silicon film was etched to form a transistor gate. For this reason, when the gate length is less than 1 μm,
In order to form the gate electrode of a transistor with a so-called ultra-fine pattern, it is necessary to make the photoresist very thin. In this case, pattern formation becomes extremely difficult and difficult, and the problem arises that the mechanical strength of the resist is insufficient. Furthermore, even if N-type impurity ions are implanted into the substrate using a self-alignment method after forming the transistor gate to form the source and drain regions of the transistor, lateral diffusion of these regions also occurs, lowering the breakdown voltage between the regions. There was a drawback.

本発明の目的は超微細なトランジスタゲート電極であっ
ても、リース・ドレイン領域間の絶縁耐圧が下りにくい
半導体回路装置を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor circuit device in which the dielectric strength between the lease and drain regions does not easily drop even with ultra-fine transistor gate electrodes.

この発明の半導体装置の製造方法は、具体的にはたとえ
ば一導電型を有する半導体基板の一主表面に第1の絶縁
膜を形成する工程と、半導体基板と逆極性の導電型を有
する不純物を半導体基板へ押込む工程と、前記第1の絶
縁膜上に第2の絶縁膜を被着する工程と、この第2の絶
縁膜を所望の形状にパターニングする工程と、この第2
の絶縁膜をマスクに半導体基板と同一極性を有する不純
物を押込み、チャネル領域を形成する工程と、第2の絶
縁膜上に多結晶シリコン膜を被着し、これにリン拡散を
行って導電性を持せる工程と、この多結晶シリコン膜を
所望の形状にパターニングし、トランジスタ・ゲートを
形成する工程と、このパターニングされた多結晶シリコ
ン膜をマスクにトランジスタのンース―ドレインを形成
する工程を含むことを特徴とする。
Specifically, the method for manufacturing a semiconductor device of the present invention includes, for example, a step of forming a first insulating film on one main surface of a semiconductor substrate having one conductivity type, and a step of forming an impurity having a conductivity type opposite to that of the semiconductor substrate. a step of pressing into a semiconductor substrate, a step of depositing a second insulating film on the first insulating film, a step of patterning the second insulating film into a desired shape, and a step of patterning the second insulating film into a desired shape;
Using the second insulating film as a mask, impurities having the same polarity as the semiconductor substrate are injected to form a channel region, and a polycrystalline silicon film is deposited on the second insulating film, and phosphorus is diffused into this to make it conductive. A process of patterning this polycrystalline silicon film into a desired shape to form a transistor gate, and a process of forming a drain of a transistor using this patterned polycrystalline silicon film as a mask. It is characterized by

本発明に従えば、トランジスタ・ゲートを7オトレジス
トの開孔パターンで形成するために、フォト−レジスト
の残しパターンに比べより微細か寸法でゲートのパター
ンができ、またソース・ドレイン領域の不純密度に濃淡
をもたせた、いわゆルLDD (Lightly Do
ped Drain)構造が実現できるため、トランジ
スタ・ゲート長が短かくなってもソース・ドレイン間耐
圧が下りにくいという利点がある。
According to the present invention, since the transistor gate is formed with a pattern of openings in the photoresist, the gate pattern can be formed with finer dimensions than the remaining photoresist pattern, and the impurity density in the source and drain regions can be reduced. Lightly Do
Since a ped drain structure can be realized, there is an advantage that the source-drain breakdown voltage does not easily drop even if the transistor gate length is shortened.

次に本発明の実施例を図面を用いて説明する。Next, embodiments of the present invention will be described using the drawings.

まず、第2図(a)のように、P型巣結晶シリコン基板
11の一主表面に熱酸化法により第一の絶縁膜であるシ
リコン酸化膜12を被着する。次にこの酸化膜を通して
熱拡散又はイオン打込法により、N型で不純物濃度の低
い、一様な領域13を基板表面に形成する。
First, as shown in FIG. 2(a), a silicon oxide film 12, which is a first insulating film, is deposited on one main surface of a P-type nested crystalline silicon substrate 11 by thermal oxidation. Next, a uniform N-type region 13 with a low impurity concentration is formed on the substrate surface by thermal diffusion or ion implantation through this oxide film.

次に、第2図伽)に示されるように、第2の絶縁膜であ
るリンケイ素ガラス(PSG)膜14を成長する。その
後、トランジスタのチャネル領域になる部分を、前記P
Sc+膜14に開孔するために、第1のフォト・レジス
トを塗布しりソグラフイ技術を用いてPEG膜14をエ
ツチングする。このとき、ウェット・エッチ法を用いる
と、前記PSG膜は未だ熱処理が施されていないため、
前記シリコン酸化膜12とPSG膜13の間にはエツチ
ングレートの違いが生じ、PSG膜のみを除去すること
ができる。この後筒1の7オトレジスト15を除去する
Next, as shown in FIG. 2, a phosphorus silicon glass (PSG) film 14, which is a second insulating film, is grown. After that, the portion that will become the channel region of the transistor is
To open holes in the Sc+ film 14, a first photoresist is applied and the PEG film 14 is etched using lithographic techniques. At this time, if the wet etch method is used, the PSG film has not been subjected to heat treatment yet, so
There is a difference in etching rate between the silicon oxide film 12 and the PSG film 13, and only the PSG film can be removed. After this, the 7th photoresist 15 of the cylinder 1 is removed.

次に第2図(C)に示されたように前記PSG膜14を
マスクにしてイオン打込法によってP型チャネル領域を
形、成する。この時、イオン打込処理を行う前のチャネ
ル領域にはN型不純物領域13が形成されているから、
N型導電性をP型溝電性に変えるだけの不純物を、この
処理で拡散する必要がある。また、第1の7オト・レジ
スト15をこの処理の後、除去してもよい。また、第1
の酸化膜12をこれらの処理の後、除去し新たに熱酸化
法により酸化膜を被着しても、何ら問題は発生しない。
Next, as shown in FIG. 2C, a P-type channel region is formed by ion implantation using the PSG film 14 as a mask. At this time, since the N-type impurity region 13 is formed in the channel region before the ion implantation process,
This process must diffuse enough impurities to change the N-type conductivity to P-type groove conductivity. Further, the first 7-hole resist 15 may be removed after this process. Also, the first
Even if the oxide film 12 is removed after these treatments and a new oxide film is deposited by thermal oxidation, no problem will occur.

次tζ第2図(d)に示されるようにパターニングされ
た前記P8G膜14上に多結晶シリコン膜をCVD法に
より被着し、これにリン拡散を行い導電性をもたせる。
Next, as shown in FIG. 2(d), a polycrystalline silicon film is deposited on the patterned P8G film 14 by the CVD method, and phosphorus is diffused into the film to make it conductive.

このトランジスタ・ゲート形成時にフォト・レジストの
機械的強度に問題が生じない程度でかつ再現性のある幅
をもち、またLDD構造のN−領域のマージンのある第
2のフォト−レジストを残しパターンで形成し、これを
マスクにドライエツチング法で多結晶シリコン膜をバー
ターニングシ、トランジスタ・ゲート16を形成する。
When forming this transistor gate, a second photoresist is left in the pattern with a width that does not cause problems with the mechanical strength of the photoresist, and a margin of the N-region of the LDD structure. Using this as a mask, the polycrystalline silicon film is patterned by dry etching to form a transistor gate 16.

次に第2図(e)に示されるように前記のトランジスタ
・ゲート16をマスクにしてイオン打込法によりN型不
純物のソース、ドレイン領域17を形成する。この時の
N型不純物濃度は現在のトランジスタ形成に使用される
。通常N+で表わされる濃度で、第2図(a)に示され
るN型領琥13よりも濃度が高くなっている。
Next, as shown in FIG. 2(e), N-type impurity source and drain regions 17 are formed by ion implantation using the transistor gate 16 as a mask. The N-type impurity concentration at this time is used for the current transistor formation. The concentration is usually expressed as N+, and the concentration is higher than that of the N-type phosphorus 13 shown in FIG. 2(a).

次に第2図(f)に示されるようにトランジスタゲート
16である多結晶シリコン膜をエッチバックしてチャネ
ル領域からソース、ドレイン領域へ広がった部分を除去
する。辷れによりゲート−拡散層間の浮遊容量が減少し
、トランジスタのスイッチングが向上し、素子の平担化
が計れる。
Next, as shown in FIG. 2(f), the polycrystalline silicon film that is the transistor gate 16 is etched back to remove the portion extending from the channel region to the source and drain regions. The sliding reduces the stray capacitance between the gate and the diffusion layer, improving the switching of the transistor and making the device planar.

以上、本発明による製法及び構造によって、現在ある技
術力で超微細なトランジスタ・ゲートを形成することが
でき、またLDD構造も実現できるため、ソース、ドレ
イン耐圧マージンの高い、品質の優れたMO8型トラン
ジスタを実現することが可能で、その効果は太きい。
As described above, by using the manufacturing method and structure according to the present invention, it is possible to form ultra-fine transistor gates with existing technology, and also to realize an LDD structure. It is possible to realize a transistor, and its effects are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はMO8型トランジスタの従来技術による製造方
法を示す断面図、第2図は本発明の実施例によるMO8
型トランジスタの製造方法を示す断面図である5、 記号の説明 l、11・・・・・・シリコン基板、2.12・・・・
・・熱酸化膜、4.15・・・・・・フォト・レジスト
、3,16・・・・・・多結晶シリコン膜(ゲー))、
5.13.17・・・・・・N型不純物拡散層、14・
旧・・PSG膜。 ((1〕 1 ↓ +++ (C)                 −(θう <b) CC) 第2図 JJJ  JJJ (ナノ 第2図
FIG. 1 is a cross-sectional view showing a method of manufacturing an MO8 type transistor according to the prior art, and FIG.
5. Explanation of symbols 1, 11...Silicon substrate, 2.12...
...Thermal oxide film, 4.15...Photoresist, 3,16...Polycrystalline silicon film (Ga)),
5.13.17...N-type impurity diffusion layer, 14.
Old...PSG film. ((1) 1 ↓ +++ (C) −(θu<b) CC) Figure 2 JJJ JJJ (Nano Figure 2

Claims (1)

【特許請求の範囲】[Claims] 一導電型を有する半導体基板の一主表面に逆導電型の不
純物領域が形成され該一主表面上に設けられた第1の絶
縁膜上に該第1の絶縁膜上とは材質の異なる第2の絶縁
膜を被着し、該第2の絶縁膜の所定部を除去し、残余せ
る該第2の絶縁膜をマスクに該半導体基板と同一極性の
導電型を有する不純物を該半導体基板に導入することに
より前記逆導電型の不純物領域の一部を一導電型として
そこをチャネル領域とをし、次にゲート電極を該チャネ
ル領域上からその周囲の前記第2の絶縁膜上に一部延在
して形成し、該ゲート電極をマスクとして逆導電型の不
純物を半導体基板に導入することによってソース、ドレ
イン領域の深い接合部分を形成することを特徴とする半
導体装置の製造方法。
An impurity region of an opposite conductivity type is formed on one main surface of a semiconductor substrate having one conductivity type, and an impurity region of a different material from that on the first insulating film is formed on a first insulating film provided on the one main surface. A predetermined portion of the second insulating film is removed, and an impurity having the same conductivity type as that of the semiconductor substrate is applied to the semiconductor substrate using the remaining second insulating film as a mask. By introducing a part of the impurity region of the opposite conductivity type into one conductivity type, it is used as a channel region, and then a gate electrode is partially formed from above the channel region onto the second insulating film around it. 1. A method of manufacturing a semiconductor device, comprising: forming a deep junction between source and drain regions by introducing impurities of opposite conductivity type into a semiconductor substrate using the gate electrode as a mask.
JP12322084A 1984-06-15 1984-06-15 Manufacture of semiconductor device Pending JPS613457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12322084A JPS613457A (en) 1984-06-15 1984-06-15 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12322084A JPS613457A (en) 1984-06-15 1984-06-15 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS613457A true JPS613457A (en) 1986-01-09

Family

ID=14855171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12322084A Pending JPS613457A (en) 1984-06-15 1984-06-15 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS613457A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5688704A (en) * 1995-11-30 1997-11-18 Lucent Technologies Inc. Integrated circuit fabrication

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5688704A (en) * 1995-11-30 1997-11-18 Lucent Technologies Inc. Integrated circuit fabrication

Similar Documents

Publication Publication Date Title
KR100445904B1 (en) Extended drain MOSFET(EDMOSFET) having the source field plate and method for fabricating the same
KR0177785B1 (en) Transistor with offset structure and method for manufacturing the same
US4992388A (en) Short channel IGFET process
JPS6150394B2 (en)
JPS6249750B2 (en)
US4520553A (en) Process for manufacturing an integrated insulated-gate field-effect transistor
KR0175119B1 (en) Manufacturing Method of Recessed Channel MOSFET Using Reverse Side Wall
US5567965A (en) High-voltage transistor with LDD regions
US5731240A (en) Manufacturing method for semiconductor depositing device
KR0154306B1 (en) Method of fabricating mosfet
JPS613457A (en) Manufacture of semiconductor device
JPH0918003A (en) Manufacture of field effect transistor
JPS5952878A (en) Manufacture of semiconductor device
JPH07115195A (en) Mos transistor and its manufacture
KR0166888B1 (en) Thin film transistor &amp; its making method
KR100296506B1 (en) Method for forming asymmetry junction of mos transistor
JPS6211516B2 (en)
JPS6229165A (en) Manufacture of vertical semiconductor device
KR100221613B1 (en) Manufacturing method of a semiconductor device
JPS6016469A (en) Manufacture of mis semiconductor device
JPH0260131A (en) Manufacture of field-effect semiconductor device
KR100280490B1 (en) Manufacturing method for isolation structure of semiconductor device
KR100194655B1 (en) Semiconductor device and manufacturing method thereof
KR19990004943A (en) Transistor Formation Method With Low Doping Drain Structure
JPH0529624A (en) Thin film transistor and manufacture thereof