JPS6134447A - Optical flaw detector for continuously cast slab - Google Patents

Optical flaw detector for continuously cast slab

Info

Publication number
JPS6134447A
JPS6134447A JP15504284A JP15504284A JPS6134447A JP S6134447 A JPS6134447 A JP S6134447A JP 15504284 A JP15504284 A JP 15504284A JP 15504284 A JP15504284 A JP 15504284A JP S6134447 A JPS6134447 A JP S6134447A
Authority
JP
Japan
Prior art keywords
signal
circuit
correction
shading correction
flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15504284A
Other languages
Japanese (ja)
Inventor
Shinji Nishiyama
西山 眞次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15504284A priority Critical patent/JPS6134447A/en
Publication of JPS6134447A publication Critical patent/JPS6134447A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

PURPOSE:To maintain stable, highly accurate flaw detecting capability all the time, by outputting the optimum shading-correction objective-level value and operation timing to a correction-factor operating circuit in correspondence with the change in shape of a picked up image signal. CONSTITUTION:The picked up image signal from a camera 4 is inputted to a signal smoothing and operating circuit 7 and a shading correcting circuit 10. In the signal smoothing and operating circuit 7, smoothing operation of the signal of each element of light receiving elements is carried out. The result of operation is outputted to a correction factor operating circuit 8. A shading correction control circuit 9 outputs an objective level and operation timing to the correcting-factor operating circuit 8 in correspondence with the shape of the picked up image signal. A constant is operated and the correcting constant is computed for every element. The signal from each corresponding element from the camera 4 is multiplied by the constant in the shading correcting circuit 10. The output of the correcting circuit 10 is inputted to a flaw judging circuit 11, where the flaw is judged.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、連続鋳造設備においてスラブの疵、を探傷す
る光学探傷装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical flaw detection device for detecting flaws in slabs in continuous casting equipment.

従来技術 連続鋳造設備においては、スラブ表面品質を確実に保証
しスラブの完全無手入れ圧延による歩留向上、熱片化に
よる省エネルギーを推進するために光学探傷装置による
スラブ表面状況検出及び疵判別処理が行なわれている。
In conventional continuous casting equipment, in order to reliably guarantee slab surface quality, improve yield through completely maintenance-free rolling of slabs, and promote energy savings through thermal flaking, optical flaw detection equipment is used to detect slab surface conditions and perform flaw discrimination processing. It is being done.

この発明が解決すべき問題点 こうした光学探傷装置において、高精度で安定した疵判
別能力を発揮、維持するためには撮像装置であるCOD
カメラ等の撮像信号の基底レベルがスラブ幅方向に対し
一定していることが重要である。
Problems to be solved by this invention In order to demonstrate and maintain high-accuracy and stable flaw discrimination ability in such optical flaw detection equipment, it is necessary to use the COD, which is an imaging device.
It is important that the base level of an imaging signal from a camera or the like is constant in the slab width direction.

しかしながら、実際には第4図(a)に示した様にスラ
ブ幅方向に対して信号レベルにバラツキがあり、このよ
うな信号から従来の信号処理回路を使つて疵と見なした
部分だけを取出すと第4図(′b)の様に疵判定レベル
に達し得ず探傷もれとなる場合があった。
However, in reality, as shown in Figure 4(a), there are variations in the signal level in the width direction of the slab, and from such signals, conventional signal processing circuits are used to identify only the portions that are considered to be defects. When taken out, as shown in FIG. 4('b), there were cases where the flaw detection level could not be reached and the flaw detection was omitted.

こうした探傷もれを解決する手段として、疵判定レベル
を下げ、小さな信号をも疵として判定する手段もあるが
、他の疵でない部分の信号の影響が大きく実用的ではな
い。これに対し、撮像装置であるCODカメラからの基
底信号を補正しである一定のレベルに調整し、その後の
疵判別処理において高精度で安定した疵検比が行なえる
様に信号の補正処理を行なうことができる。
As a means of solving such flaw detection omissions, there is a method of lowering the flaw determination level and determining even a small signal as a flaw, but this is not practical because the influence of signals from other parts that are not flaws is large. In contrast, the base signal from the COD camera, which is an imaging device, is corrected and adjusted to a certain level, and the signal is corrected so that a highly accurate and stable flaw inspection ratio can be performed in the subsequent flaw discrimination process. can be done.

この補正処理を行なう前処理として、補正定数演算処理
の必要がちシ、この補正定数演算処理を行なうためには
オペレータがCODカメラ等のピントをポカし、それに
よって得ることのできた信号全体のイメージを元に手動
介入により演算処理を行ない、再度カメラのピントを調
整する必要があった。
As pre-processing for this correction process, it is necessary to perform a correction constant calculation process. In order to perform this correction constant calculation process, the operator focuses a COD camera, etc., and then obtains an image of the entire signal. Originally, it was necessary to manually perform calculation processing and adjust the camera focus again.

例えば、スラブ幅方向全域にわたり数センチ以上の疵を
探傷しようとする場合、シェーディング補正を行なうだ
めの補正定数演算は、オペレータによシ20〜30分周
期で、約5分根度の中断時間を取って行なっていた。
For example, when attempting to detect flaws of several centimeters or more across the entire width of a slab, the operator must calculate the correction constant for shading correction at intervals of 20 to 30 minutes, with an interruption time of approximately 5 minutes. I was taking it and doing it.

しだがって、この作業中探傷が中断するばかりでなく作
業効率も悪く実用上問題があった。
Therefore, not only the flaw detection is interrupted during this work, but also the work efficiency is poor, which is a practical problem.

そこで、本発明は前記のような従来のスラブ光学探傷に
おける信号処理上の技術的問題点を解決して、補正定数
演算処理をオペレータの手動介入なしで自動的、かつ周
期的に信号処理器に行なわせることによシ探傷を中断す
ることなく、常に安定した高精度の探傷能力を維持でき
るスラブ光学探傷装置を提供することを目的とする。
Therefore, the present invention solves the above-mentioned technical problems in signal processing in conventional slab optical flaw detection, and enables correction constant calculation processing to be performed automatically and periodically in a signal processor without manual intervention by an operator. It is an object of the present invention to provide a slab optical flaw detection device that can always maintain stable and highly accurate flaw detection ability without interrupting flaw detection.

問題点を解決するための手段 本発明によるスラブ光学探傷装置は、シェープインク補
正を行なう際に、入力する撮像信号の所定の標本点間毎
の信号レベルを平均化して平滑化信号を出力する信号平
滑演算回路を備え、との平ゆイ、信っヵ、ら補正定数演
算。路におい、ッ、  、=      iイング補正
目標レベル値と比較した補正係数を算出し、シェーディ
ング補正回路で撮像信号に前記補正係数を乗じてシェー
ディング補正を行なうよう構成されると共に、撮像信号
の形状変化に対応して最適なシェーディング補正目標レ
ベル値及び演算タイミングを補正係数演算回路に出力す
るシェーディング補正制御回路を備えた点て特徴がある
0 実施例 以下、図示する本発明の実施例により説明する。
Means for Solving the Problems The slab optical flaw detection apparatus according to the present invention averages the signal level between predetermined sample points of the input imaging signal and outputs a smoothed signal when performing shape ink correction. Equipped with a smoothing calculation circuit, and can perform correction constant calculations. A correction coefficient is calculated in comparison with the i-ing correction target level value, and a shading correction circuit multiplies the image signal by the correction coefficient to perform shading correction. The present invention is characterized in that it is equipped with a shading correction control circuit that outputs an optimal shading correction target level value and calculation timing to a correction coefficient calculation circuit in accordance with the above.

第1図に本装置の制御ブロック図を、第2図及び第3図
(a) 、 Cb)m缶処理段階での波形を例示した。
FIG. 1 shows a control block diagram of this apparatus, and FIGS. 2 and 3 (a) and 3(a) and 3(b) illustrate waveforms at the can processing stage.

連続鋳造ラインの所定位置には、スラブ2表面に対して
斜め上方からスラブ幅方向に光を照射する光源3が設け
られ、当該光源3の照射方向と対向するスラブ2の斜め
上方からスラブ2表面を撮像するCCDカメラ4が備え
られている。
A light source 3 is installed at a predetermined position on the continuous casting line to emit light from diagonally above the slab 2 surface in the slab width direction. A CCD camera 4 is provided to take images.

このCCDカメラ4は2048bit の受光素子を有
しており、スラブ2表面状況を2048個のエレメント
信号に分割されて信号処理回路IK大入力れる。
This CCD camera 4 has a 2048-bit light receiving element, and the surface condition of the slab 2 is divided into 2048 element signals and input to the signal processing circuit IK.

信号処理回路1は信号平滑演算回路7.補正係数演算回
路8.シェーディング補正回路10.シェーディング補
正制御回路9及び疵判別回路11とで構成される。
The signal processing circuit 1 includes a signal smoothing calculation circuit 7. Correction coefficient calculation circuit 8. Shading correction circuit 10. It is composed of a shading correction control circuit 9 and a flaw discrimination circuit 11.

この中で、CCI)カメラ4からの撮像信号は信号平滑
演算回路7とシェーディング補正回路10とに入力され
る。前述した様に、CCDカメラ4は受光素子として2
048 bitのシリコン受光素子を使用しているため
CCDカメラ4の信号は2048個のエレメント信号に
分割されている。
Among these, an image signal from the CCI camera 4 is input to a signal smoothing calculation circuit 7 and a shading correction circuit 10. As mentioned above, the CCD camera 4 has two light receiving elements.
Since a 048-bit silicon light receiving element is used, the signal from the CCD camera 4 is divided into 2048 element signals.

ここで、信号平滑演算回路7ではCCDカメラ4のピン
トをポカスことなく撮像信号全体のイメージを得るため
、受光素子の各エレメントの信号の平滑化演算が行なわ
れる。
Here, in the signal smoothing calculation circuit 7, a smoothing calculation is performed on the signals of each element of the light receiving element in order to obtain an image of the entire imaging signal without losing focus of the CCD camera 4.

この平滑化演算では、第2図に示したように撮像生信号
aの近接する11エレメントの信号を平均化し、その値
を11エレメント中、中心にあたるエレメントの代表値
すとする。この平均処理を200工レメント間隔で行な
い、こうして得ることのできた約10点の各代表値を結
ぶことによりCの様に全体のイメージを算出する。
In this smoothing operation, as shown in FIG. 2, the signals of 11 adjacent elements of the imaging raw signal a are averaged, and the resulting value is taken as the representative value of the central element among the 11 elements. This averaging process is performed at intervals of 200 elements, and the overall image as shown in C is calculated by connecting the representative values of about 10 points obtained in this way.

こうして行なわれだ平滑化演算の結果は補正係数演算回
路8に出力されて、各エレメント毎に計2048個の補
正定数が算出される。例えば第2図において、シェーデ
ィング補正の目標レベルをCpと設定していたならば第
n番目のエレメントに関しては信号イメージのレベルが
CnであるからKn=Cp/Cn (Kn>1) 、第
n′ 番目のエレメントに関してはKm’ =Cp /
Cn’  (Kn’ (1)となる。  − こうして得られたに1〜に2048までの定数は次段に
接続されたシェーディング補正回路10内でCCDカメ
ラ4からの各々に対応するエレメントの信号と乗算され
て、第3図(a)に示した一定レベルの信号に生成され
る。
The results of the smoothing calculation thus performed are output to the correction coefficient calculation circuit 8, and a total of 2048 correction constants are calculated for each element. For example, in FIG. 2, if the target level of shading correction is set as Cp, the level of the signal image for the nth element is Cn, so Kn=Cp/Cn (Kn>1), n'th element. For the th element, Km' = Cp /
Cn'(Kn' (1). - The constants from 1 to 2048 thus obtained are used as signals from the corresponding elements from the CCD camera 4 in the shading correction circuit 10 connected to the next stage. After being multiplied, a signal of a constant level as shown in FIG. 3(a) is generated.

シェーディング補正回路10の出力は次段に接続された
疵判別回路11に入力される。この疵判別回路11はシ
ェーディング補旧回路10から入力されるシェーディン
グ補正された撮像信号を第3図(b)に示した様に疵判
定レベルdに基づいて疵の有無を判定する。
The output of the shading correction circuit 10 is input to a flaw discrimination circuit 11 connected to the next stage. The flaw determination circuit 11 determines the presence or absence of flaws based on the flaw determination level d of the shading-corrected imaging signal inputted from the shading correction circuit 10, as shown in FIG. 3(b).

この疵判別回路11の出力はプリンタ5と加算点12に
並列に出力され、プリンタ5は疵の判別結果をプリント
・アウトする。また、加算点12のもう一つの入力には
CCDカメラ4からの撮像信号が直接入力されており、
スラブ2映像に疵の判別結果が重合されてモニタ6上に
表示される。
The output of the flaw discrimination circuit 11 is output in parallel to the printer 5 and the addition point 12, and the printer 5 prints out the flaw discrimination results. Furthermore, the imaging signal from the CCD camera 4 is directly input to the other input of the addition point 12.
The flaw determination results are superimposed on the slab 2 image and displayed on the monitor 6.

また、信号処理部1にはシェーディング補正制御回路9
が備えられている。このシェーディング補正制御回路9
は鋳込状況及び環境の変化と共に変化する撮像信号の形
状に応じて、スラブ分子毎に補正係数演算回路8に目標
レベルCp及び演算タイミングを出力して定数演算を行
なわせる。
The signal processing section 1 also includes a shading correction control circuit 9.
is provided. This shading correction control circuit 9
outputs the target level Cp and calculation timing to the correction coefficient calculation circuit 8 for each slab molecule to perform constant calculation in accordance with the shape of the imaging signal that changes with changes in the casting situation and environment.

さらに、信号処理回路1にはスイッチSWが備えられて
おり、このスイッチSWKよりCCDカメラ4からの撮
像信号をシェーディング補正回路10又は疵判別回路1
1の何れか一方に入力する。。
Furthermore, the signal processing circuit 1 is equipped with a switch SW, and this switch SWK transfers the image signal from the CCD camera 4 to the shading correction circuit 10 or the flaw discrimination circuit 1.
Enter either one of 1. .

シェーディング補正を行なう場合は、第1図に示した様
にスイッチSWをシェーディング補正回路10側に切換
えるが、連鋳ライ/後半で被検査材自身の熱による発光
の恐れがない場合にはスイッチSWを疵判別回路11側
に切換えてシェーディング補正を施さない生の撮像信号
を疵判別回路11に直接入力して疵の判別を行なうこと
もできる。     ・ 以上の構成において、CCDカメラ4からの撮像信号は
信号平滑演算回路7で平滑演算されて全体のイメージを
表わす信号Cを算出して補正係数演算回路8に出力する
。この補正係数演算回路8はシェーディング補正制御回
路9から入力される目標レベルCp と演算タイミング
で各エレメント毎の定数に1〜に2048を算出しシェ
ーディング補正回路10に出力する。
When performing shading correction, switch SW is switched to the shading correction circuit 10 side as shown in FIG. It is also possible to switch to the flaw discrimination circuit 11 side and directly input a raw image signal without shading correction to the flaw discrimination circuit 11 to perform flaw discrimination. - In the above configuration, the imaging signal from the CCD camera 4 is smoothed by the signal smoothing calculation circuit 7 to calculate a signal C representing the entire image and output to the correction coefficient calculation circuit 8. The correction coefficient calculation circuit 8 calculates a constant of 1 to 2048 for each element based on the target level Cp inputted from the shading correction control circuit 9 and the calculation timing, and outputs it to the shading correction circuit 10.

シェーディング補正回路10は撮像信号の各エレメント
に対応する定数に1〜に2048を乗算してシェーディ
ング補正を行ない疵判別回路11で疵判定レベルdに基
づいて疵の判別を行なう。
The shading correction circuit 10 performs shading correction by multiplying constants corresponding to each element of the image pickup signal by 1 to 2048, and the flaw discrimination circuit 11 discriminates flaws based on the flaw determination level d.

疵判別回路11の判別結果はプリンタ5にプリント・ア
ウトされると共に、加算点12で撮像信号と重合されて
モニタ6に表示される。
The determination result of the flaw determination circuit 11 is printed out on the printer 5, and is superimposed with the imaging signal at the addition point 12 and displayed on the monitor 6.

発明の効果 本発明による連続鋳造設備におけるスラブ光学探傷装置
実施例は以上の通りであり、次に述べる効果を挙げるこ
とができる。
Effects of the Invention The embodiment of the slab optical flaw detection device for continuous casting equipment according to the present invention is as described above, and can bring about the following effects.

シェーディング補正の補正定数の演算を自動かつ周期的
に信号処理器に行なわせることにより、オペレータの作
業中断時間及び探傷装置の探傷中断時間皆無になるばか
りでなく、鋳込状況、環境の変化に関係なく、スラブ幅
方向全域に亘って常に安定かつ高精度の探傷能力が維持
できる。
By having a signal processor automatically and periodically calculate the correction constant for shading correction, not only is there no interruption in the operator's work and no interruption in the flaw detection of the flaw detection equipment, but there is also no need to worry about changes in the casting situation or environment. Therefore, stable and highly accurate flaw detection ability can always be maintained over the entire slab width direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のスラブ光学探傷装置実施例を示す制御
ブロック図、第2図は撮像信号から信号イメージを抽出
した例を示す波形図、第3図(a)はシェーディング補
正後の波形図、第3図(b)は疵判別回路内での波形例
図、第4図(a) 、 (b)は従来方による波形例図
である。 l・・信号処理回路、2・・スラブ、 3・・光源、4・・CODカメラ、 5・・プリンタ、6・・モニタ、 7・・信号平滑演算回路、8・・補正係数演算回路、9
・・シェーディング補正制御回路、10・・シェーディ
ング補正回路、 11・・疵判別回路、12・・加算点、S、、S2・・
疵、a・・撮像信号、b・・代表値、C・・信号イメー
ジ、d・・疵判定レベル、Cp・・目標レベル、W・・
スラブ幅。 第2g 第 (a) 第3図 (a) (b) 4図 (b)
Fig. 1 is a control block diagram showing an embodiment of the slab optical flaw detection device of the present invention, Fig. 2 is a waveform diagram showing an example of a signal image extracted from an imaging signal, and Fig. 3(a) is a waveform diagram after shading correction. , FIG. 3(b) is a waveform example diagram in the flaw discrimination circuit, and FIGS. 4(a) and (b) are waveform example diagrams according to the conventional method. l...Signal processing circuit, 2...Slab, 3...Light source, 4...COD camera, 5...Printer, 6...Monitor, 7...Signal smoothing calculation circuit, 8...Correction coefficient calculation circuit, 9
...Shading correction control circuit, 10...Shading correction circuit, 11...Flaw discrimination circuit, 12...Addition point, S,, S2...
Defect, a...Image signal, b...Representative value, C...Signal image, d...Flaw determination level, Cp...Target level, W...
Slab width. 2g (a) Figure 3 (a) (b) Figure 4 (b)

Claims (1)

【特許請求の範囲】 スラブ表面を撮像装置で撮像し、その撮像信号をシェー
ディング補正処理した後に疵判別を行なう光学探傷装置
において、 前記撮像信号を入力し、所定の標本点区間毎の信号レベ
ルを平均化して平滑化信号を出力する信号平滑演算回路
と、 当該信号平滑演算回路から平滑化信号を入力し、シェー
ディング補正目標レベル値と比較した補正係数を算出す
る補正係数演算回路と、 当該補正係数演算回路からの前記補正係数を入力して前
記撮像信号にシェーディング補正を行なうシェーディン
グ補正回路と、 前記撮像信号の形状変化に対応して最適なシェーディン
グ補正目標レベル値及び演算タイミングを算出して前記
補正係数演算回路に出力するシェーディング補正制御回
路を備えたことを特徴とする連続鋳造スラブ光学探傷装
置。
[Scope of Claims] In an optical flaw detection device that images the surface of a slab with an imaging device and performs shading correction processing on the imaged signal and then performs flaw determination, the imaged signal is input and the signal level for each predetermined sample point section is determined. a signal smoothing calculation circuit that averages and outputs a smoothed signal; a correction coefficient calculation circuit that receives the smoothed signal from the signal smoothing calculation circuit and calculates a correction coefficient by comparing it with a shading correction target level value; and the correction coefficient. a shading correction circuit that performs shading correction on the image signal by inputting the correction coefficient from an arithmetic circuit; and a shading correction circuit that performs the correction by calculating an optimal shading correction target level value and calculation timing in response to a change in the shape of the image signal. A continuous casting slab optical flaw detection device characterized by being equipped with a shading correction control circuit that outputs to a coefficient calculation circuit.
JP15504284A 1984-07-25 1984-07-25 Optical flaw detector for continuously cast slab Pending JPS6134447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15504284A JPS6134447A (en) 1984-07-25 1984-07-25 Optical flaw detector for continuously cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15504284A JPS6134447A (en) 1984-07-25 1984-07-25 Optical flaw detector for continuously cast slab

Publications (1)

Publication Number Publication Date
JPS6134447A true JPS6134447A (en) 1986-02-18

Family

ID=15597396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15504284A Pending JPS6134447A (en) 1984-07-25 1984-07-25 Optical flaw detector for continuously cast slab

Country Status (1)

Country Link
JP (1) JPS6134447A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143646A (en) * 1976-04-22 1986-03-03 バイエル・アクチエンゲゼルシヤフト Acrylonitrile/vinyl acetate/styrene terpolymer mixture
JPH0340178A (en) * 1989-07-07 1991-02-20 Omron Corp Image shading correcting method
JPH03190391A (en) * 1989-12-04 1991-08-20 Allen Bradley Co Inc Lighting-change compensator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143646A (en) * 1976-04-22 1986-03-03 バイエル・アクチエンゲゼルシヤフト Acrylonitrile/vinyl acetate/styrene terpolymer mixture
JPH0340178A (en) * 1989-07-07 1991-02-20 Omron Corp Image shading correcting method
JPH03190391A (en) * 1989-12-04 1991-08-20 Allen Bradley Co Inc Lighting-change compensator

Similar Documents

Publication Publication Date Title
JPS6134447A (en) Optical flaw detector for continuously cast slab
JPH05261564A (en) Manufacture of electric resistance welded tube
JP2556894B2 (en) Print quality inspection device and method
JPS61219648A (en) Inspecting device for printed matter
JPH0257772B2 (en)
JPH07260696A (en) Method for detecting slag run-off when unloading steel from converter
JPH0694660A (en) Method and device for surface defect inspection
JPS61191905A (en) Beveling position detecting device
JPH09182953A (en) Method for detecting slag
JPH09304033A (en) Method and apparatus for optically detecting shape of rolled plate
JP2001330566A (en) Surface flaw inspection method by ccd camera
JPS6250775B2 (en)
JP2996868B2 (en) Printing paper surface inspection equipment
KR20000042521A (en) Method for detecting surface defect over steel plate
JPS6191544A (en) Automatic exposure control for surface defect detection of hot metal material
JPH0735703A (en) Image processing method
JPH08220001A (en) Surface-flam inspecting method
JP3022627B2 (en) Defect inspection equipment
JPH10158717A (en) Detection of slag when tapping molten steel in converter
JP2003298781A (en) Image processor
JPH0961373A (en) Method for inspecting surface defect, and device therefor
JPH09292213A (en) Road surface photographing device
JPH098383A (en) Laser power measuring apparatus
JPH06323956A (en) Detection method for foreign matter in prism
JPH09192821A (en) Detection of slag