JPH0735703A - Image processing method - Google Patents

Image processing method

Info

Publication number
JPH0735703A
JPH0735703A JP15672493A JP15672493A JPH0735703A JP H0735703 A JPH0735703 A JP H0735703A JP 15672493 A JP15672493 A JP 15672493A JP 15672493 A JP15672493 A JP 15672493A JP H0735703 A JPH0735703 A JP H0735703A
Authority
JP
Japan
Prior art keywords
signal
shading correction
inspected
reference signal
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15672493A
Other languages
Japanese (ja)
Inventor
Osamu Sonobe
治 園部
Hiroyuki Uchida
洋之 内田
Riyouichi Danki
亮一 段木
Satoshi Maruyama
智 丸山
Susumu Moriya
進 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP15672493A priority Critical patent/JPH0735703A/en
Publication of JPH0735703A publication Critical patent/JPH0735703A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a defection signal, from which fluctuation in the irradiation and sensitivity is removed while leaving useful signal components, by employing a detection signal subjected to flaw check as a reference signal for shading correction. CONSTITUTION:A light flux 3 is projected from a light source 1 to a hot rolled steel plate 2 and the image at a projected part 4 is picked up by means of a one-dimensional CCD camera 5. Output signal from the camera 5 is converted through an A/D converter 6 and fed to a signal processor 7 for extracting a defect signal. Thus extracted signal at detective part is delivered to an image processor 8 for deciding the type and rank of defect, which are subsequently presented on a display 9. The processor 7 uses a detection signal subjected to flaw check as a reference signal for shading correction. Alternatively, a reference signal determined during the pause of transfer of steel plate 2 is employed for shading correction. This method realizes shading correction reflecting the surface of the steel plate 2 faithfully.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、順次搬送される被検査
材表面で反射した反射光を受光することにより得られた
信号にシェーディング補正を施す画像処理方法に関し、
詳細には、例えば熱延鋼板などの高速移動する帯状の被
検査材の表面の信号を受光装置によって得、その信号に
基づいて表面欠陥を検出する表面欠陥検査装置等に用い
るのに好適な画像処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image processing method for performing shading correction on a signal obtained by receiving reflected light reflected by the surface of a material to be inspected which is successively conveyed,
In detail, for example, an image suitable for use in a surface defect inspection device or the like that obtains a signal of the surface of a strip-shaped inspected material that moves at high speed such as a hot-rolled steel plate by a light receiving device and detects surface defects based on the signal Regarding processing method.

【0002】[0002]

【従来の技術】従来より、画像処理の分野においてシェ
ーディング補正処理が広く行なわれている。シェーディ
ング補正処理とは、被検査材からの反射光を受光して得
られた信号に含まれる、光の照射ムラや撮像素子の感度
ムラ等を補正するための処理である。
2. Description of the Related Art Conventionally, shading correction processing has been widely performed in the field of image processing. The shading correction process is a process for correcting light irradiation unevenness, sensitivity unevenness of the image pickup device, and the like included in the signal obtained by receiving the reflected light from the inspection material.

【0003】従来、画像処理などで行なわれているシェ
ーディング補正方法は、補正用のテーブルを持ち、テー
ブル内のデータと被検査材から得たデータとの間で演算
を行なうことによりシェーディングの影響を取り除いて
いるが、その方法の1つとして、例えば補正用テーブル
データとして入力信号の移動平均を求めたものを用い、
入力信号からテーブルデータを引く引算や、或いは、入
力信号をテーブルデータで割る割算などの演算を行い、
その出力信号にオフセット分を加えたり、又は出力信号
を定数倍したりして、シェーディング補正を行う方法が
ある。
Conventionally, a shading correction method that has been performed in image processing has a correction table, and the shading effect is affected by performing an operation between the data in the table and the data obtained from the material to be inspected. As one of the methods, the data obtained by calculating the moving average of the input signal is used as the correction table data, for example.
The table data is subtracted from the input signal, or the input signal is divided by the table data.
There is a method of performing shading correction by adding an offset amount to the output signal or multiplying the output signal by a constant.

【0004】また他の方法として、予め、オフライン
で、所定の参照材から参照信号を得ておき、その参照信
号をテーブルデータとして用い、オンライン中に入力信
号との間で上記と同様の演算を行う方法も知られてい
る。
As another method, a reference signal is obtained in advance from a predetermined reference material offline, the reference signal is used as table data, and the same operation as the above is performed with the input signal while online. It is also known how to do it.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
移動平均型のシェーディング補正方法は被検査体から得
られた信号の本来の形がどのようになっているかをまる
で考慮せずに信号を一様に補正してしまうため、なだら
かな変化を持つ信号成分が重要な意味を持つ場合にはそ
の有用な信号を消滅させてしまう可能性がある。
However, according to the conventional moving average type shading correction method, the signal is made uniform without considering the original shape of the signal obtained from the object to be inspected. Therefore, when a signal component having a gentle change has an important meaning, there is a possibility that the useful signal will be erased.

【0006】また、上記参照信号を用いる方法は、オン
ライン中に生じる光源強度や受光素子感度の経時変化に
対応できず、また例えば順次搬送される被検査材の表面
欠陥を検査するようなオンライン装置では、経時変化に
対応するためにその装置でオフラインで参照信号を得て
もとの参照信号と入れ替えることは困難である。本発明
は、上記問題点を解決し、なだらかな変化をもつ有用な
信号成分を残したまま光源からの光の照射ムラや撮像素
子の感度ムラを取り除いた被検査材の検出信号を得るこ
とができ、しかも光源強度,受光素子感度の経時変化に
も対応し得るシェーディング補正を施す画像処理方法を
提供することを目的とする。
Further, the method using the above-mentioned reference signal cannot cope with changes with time in the intensity of the light source and the sensitivity of the light receiving element which occur online, and for example, an on-line apparatus for inspecting surface defects of the materials to be inspected successively conveyed. Then, it is difficult to replace the original reference signal by obtaining the reference signal off-line with the device in order to cope with the change over time. The present invention solves the above problems, and obtains a detection signal of a material to be inspected in which uneven illumination of light from a light source and uneven sensitivity of an image sensor are removed while leaving a useful signal component having a gentle change. It is an object of the present invention to provide an image processing method that can perform shading correction that can be performed even when the intensity of a light source and the sensitivity of a light receiving element are changed.

【0007】[0007]

【課題を解決するための手段】上記目的を達成する本発
明は、順次搬送される被検査材表面で反射した反射光を
所定の受光装置により受光することにより得られた、そ
の被検査材表面を所定の一次元方向に或いは二次元的に
検出した検出信号に、その被検査材が搬送されるオンラ
イン中に順次シェーディング補正を施す画像処理方法に
関するものである。
The present invention for achieving the above object provides a surface of a material to be inspected, which is obtained by receiving reflected light reflected by the surface of the material to be inspected successively conveyed by a predetermined light receiving device. The present invention relates to an image processing method in which shading correction is sequentially performed on a detection signal obtained by detecting in a predetermined one-dimensional direction or two-dimensionally while the material to be inspected is conveyed online.

【0008】本発明のうち、第1の画像処理方法は、上
記受光装置の視野内に、順次搬送される被検査材と段差
をもって所定の参照材を配置しておき、1つの被検査材
がその視野から外れた後、次の被検査材がその視野に現
われる前に上記参照材表面で反射した反射光を上記受光
装置で受光することにより参照信号を得、その参照信号
に基づいてその参照信号よりも後に得られた検出信号に
シェーディング補正を施すことを特徴とするものであ
る。
In the first image processing method of the present invention, a predetermined reference material is arranged in the visual field of the light-receiving device at a level difference from the material to be inspected that is successively conveyed, and one material to be inspected is After leaving the field of view, the reference light is received by the light receiving device to receive the reflected light reflected by the surface of the reference material before the next material to be inspected appears in the field of view, and the reference signal is obtained based on the reference signal. It is characterized in that the detection signal obtained after the signal is subjected to shading correction.

【0009】また、本発明のうち、第2の画像処理方法
は、上記検出信号に基づいて被検査材表面の疵の有無を
判定し、疵が無いと判定された検出信号に基づいて、そ
の検出信号よりも後から得られた検出信号にシェーディ
ング補正を施すことを特徴とするものである。
In the second image processing method of the present invention, the presence or absence of a flaw on the surface of the material to be inspected is determined based on the detection signal, and based on the detection signal determined to be free of flaws, It is characterized in that the detection signal obtained later than the detection signal is subjected to shading correction.

【0010】[0010]

【作用】本発明の画像処理方法は、疵が無いと判定され
た検出信号を参照信号として用いて、もしくは、被検査
材の搬送の切れ間を狙って参照信号を求めてその参照信
号を用いて、検出信号にシェーディング補正を施すよう
にしたものであるため、被検査材の表面を極めて忠実に
反映させたままシェーディング補正が行なわれ、したが
って例えば信号変化の緩やかな部分に重要な意味をもつ
欠陥の抽出等も可能となる。
According to the image processing method of the present invention, a detection signal determined to have no flaw is used as a reference signal, or a reference signal is obtained by aiming at a gap between conveyances of a material to be inspected and the reference signal is used. Since the detection signal is subjected to the shading correction, the shading correction is performed while the surface of the material to be inspected is extremely faithfully reflected, and therefore, for example, a defect having a significant meaning in a portion where the signal change is gentle. Can be extracted.

【0011】尚、本発明においては、上記第1および第
2の画像処理方法を組合せてもよいことはもちろんであ
り、またさらに従来公知の方法と組合せてよいこともも
ちろんであり、例えば最初はオフラインで求めた参照信
号を用いてシェーディング補正を行ない、途中では疵が
ないと判定された検出信号を用いてシェーディング補正
を行ない、被検査材どうしの搬送の間隙ではあらかじめ
配置しておいた参照材からの参照信号を得て校正するよ
うな方法を採用してもよい。
In the present invention, it goes without saying that the first and second image processing methods described above may be combined, and further, it may be combined with a conventionally known method. Shading correction is performed using the reference signal obtained off-line, shading correction is performed using the detection signal that is determined to have no flaws on the way, and the reference material that was placed in advance in the gap between the conveyances of the inspected materials. It is also possible to adopt a method of calibrating by obtaining a reference signal from.

【0012】[0012]

【実施例】次に本発明の実施例を図面を参照して説明す
る。図1は本発明の一実施例を適用した表面欠陥検査装
置の概略構成図であり、高速で移動する熱延鋼板の表面
を検査している状態を示す。光源1から熱延鋼板2に光
束3が照射され、熱延鋼板2の照射部分4を一次元CC
Dカメラ5で撮像する。一次元CCDカメラ5から出力
された一次元信号は高速A/D変換装置6で高速にA/
D変換され、欠陥抽出用信号処理装置7に信号入力さ
れ、欠陥信号の抽出が行われる。更に、欠陥抽出用信号
処理装置7で抽出された欠陥部分の信号は欠陥判別用画
像処理装置8に転送され欠陥種類・欠陥ランクの判別が
行われ、その出力結果が表示装置9に送られ表示され
る。光源への電力供給は光源用電源10によって行われ
る。この時本発明の一実施例に対応するシェーディング
補正処理は欠陥抽出用信号処理装置7内で行われ、した
がって欠陥判別用画像処理装置8、表示装置9に転送さ
れる一次元信号はシェーディング補正演算処理が施され
た信号である。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a surface defect inspection apparatus to which an embodiment of the present invention is applied, showing a state in which the surface of a hot-rolled steel sheet moving at high speed is inspected. The light flux 1 is emitted from the light source 1 to the hot-rolled steel sheet 2, and the irradiated portion 4 of the hot-rolled steel sheet 2 is subjected to one-dimensional CC.
The D camera 5 takes an image. The one-dimensional signal output from the one-dimensional CCD camera 5 is A / D converted at high speed by the high-speed A / D converter 6.
The signal is D-converted, and the signal is input to the defect extraction signal processing device 7, and the defect signal is extracted. Further, the signal of the defective portion extracted by the signal processing device for defect extraction 7 is transferred to the image processing device 8 for defect determination, the defect type and defect rank are determined, and the output result is sent to the display device 9 for display. To be done. Power supply to the light source is performed by the light source power source 10. At this time, the shading correction processing corresponding to the embodiment of the present invention is performed in the defect extraction signal processing device 7, and therefore the one-dimensional signal transferred to the defect discrimination image processing device 8 and the display device 9 is subjected to the shading correction calculation. The processed signal.

【0013】図2は欠陥抽出用信号処理装置7の概略図
である。高速A/D変換装置6によって変換されたデジ
タル信号は、一次元CCDカメラの素子ピッチに対応す
るようにデジタル化されており、したがってデジタル入
力信号11の1ライン分の信号数nは、一次元CCDカ
メラの画像数に相当する。このデジタル入力信号11
は、シェーディング補正演算モジュール14に伝送さ
れ、このシェーディング補正演算モジュール14内で、
カメラからの入力信号f(x)と参照信号保存メモリ内
13にある参照信号r(x)とを用いた演算処理が行わ
れる。参照信号r(x)の初期値はオフラインで得られ
たものを用いる。オフラインで得られた参照信号の初期
値は外部インターフェース12を介して外部から入力が
可能である。シェーディング補正を施された出力信号
は、欠陥抽出モジュール15に伝送され、そこで欠陥信
号の抽出が行われる。参照信号保存用メモリ13には光
源強度の経時変化などに対応出来るように、参照信号の
更新を行う機能が付属しており、この更新は、外部イン
ターフェース(外部I/F)を介して機能選定モジュー
ル17を制御することにより、二種類の更新機能を切り
替えることが出来る。
FIG. 2 is a schematic diagram of the defect extraction signal processing device 7. The digital signal converted by the high-speed A / D converter 6 is digitized so as to correspond to the element pitch of the one-dimensional CCD camera. Therefore, the number n of signals for one line of the digital input signal 11 is one-dimensional. It corresponds to the number of images of the CCD camera. This digital input signal 11
Is transmitted to the shading correction calculation module 14, and in the shading correction calculation module 14,
A calculation process is performed using the input signal f (x) from the camera and the reference signal r (x) in the reference signal storage memory 13. As the initial value of the reference signal r (x), the one obtained offline is used. The initial value of the reference signal obtained offline can be externally input via the external interface 12. The output signal subjected to the shading correction is transmitted to the defect extraction module 15, where the defect signal is extracted. The reference signal storage memory 13 is provided with a function for updating the reference signal so as to cope with a change with time of the light source intensity, and this updating is performed by selecting a function via an external interface (external I / F). By controlling the module 17, two types of update functions can be switched.

【0014】第一の機能は、熱延鋼板2の欠陥検出中
に、欠陥抽出モジュール15にて欠陥が検出されなかっ
た信号の元信号を参照信号とする機能であり、欠陥抽出
モジュール15を通った信号は判定モジュール16に伝
送され、欠陥が検出されなかった信号は判定モジュール
16から機能選定モジュール17を通り参照信号保存用
メモリ13に伝送され参照信号の更新が行われる。
The first function is to use the original signal of the signal in which no defect is detected by the defect extraction module 15 as a reference signal during the defect detection of the hot-rolled steel sheet 2, and the signal passes through the defect extraction module 15. The determined signal is transmitted to the determination module 16, and the signal in which no defect is detected is transmitted from the determination module 16 to the reference signal storage memory 13 through the function selection module 17 to update the reference signal.

【0015】第二の機能は、熱延鋼板2が走行するテー
ブル上の欠陥検出位置に、被検査材である熱延鋼板を図
3のようにサンプルコイル20としてホットランテーブ
ル19上に置いておき、一つの熱延鋼板2の検査が終了
し次の熱延鋼板2が流れてくるまでの間にこのサンプル
コイル20から参照信号を得る機能である。サンプルコ
イル20には最も一般的に流れてくる熱延鋼板2と同一
のものが用いられる。また被検査材である熱延鋼板2と
の位置の差からくるカメラレンズの焦点のズレを補うた
めに、カメラレンズ21には焦点深度の深いものが用い
られている。また、第二の機能におけるサンプルコイル
20からの信号は、第一の機能と同様の経路を通って参
照信号保存用メモリ13にフィードバックされるので、
サンプルコイル20に欠陥部分などが生じた場合にはサ
ンプリングは行われない。サンプルコイル20は定期的
に交換することにより表面状態を良好に保つようにす
る。また、被検査材である熱延鋼板2がサンプルコイル
20と表面性状が明らかに違う材料である場合には、機
能選定モジュール17を外部I/Fを介してアクセス
し、第一の機能を用いれば良い。
The second function is to place the hot-rolled steel sheet, which is the material to be inspected, on the hot run table 19 as a sample coil 20 at a defect detection position on the table on which the hot-rolled steel sheet 2 travels. The function is to obtain a reference signal from the sample coil 20 until the inspection of one hot rolled steel sheet 2 is completed and the next hot rolled steel sheet 2 flows. As the sample coil 20, the same one as the hot-rolled steel sheet 2 which is most commonly used is used. Further, in order to compensate for the focus shift of the camera lens due to the position difference from the hot-rolled steel plate 2 which is the material to be inspected, a camera lens 21 having a deep depth of focus is used. Further, since the signal from the sample coil 20 in the second function is fed back to the reference signal storage memory 13 through the same path as in the first function,
If the sample coil 20 has a defective portion, sampling is not performed. The sample coil 20 is regularly replaced so as to maintain a good surface condition. When the hot-rolled steel sheet 2 which is the material to be inspected is a material whose surface property is obviously different from that of the sample coil 20, the function selecting module 17 is accessed through the external I / F to use the first function. Good.

【0016】図4は一次元撮像装置を用いて取得した参
照信号r(x)の例であり、図5は表面欠陥のある熱延
鋼板2のサンプルから参照信号を取得した際と同じ条件
で得た欠陥部分の検出信号であり、図6はシェーディン
グ補正を行った後の出力信号である。ここでは、以下の
演算によりシェーディング補正を行なった。
FIG. 4 is an example of the reference signal r (x) obtained by using the one-dimensional image pickup device, and FIG. 5 is under the same conditions as when the reference signal was obtained from the sample of the hot-rolled steel sheet 2 having surface defects. FIG. 6 shows the obtained detection signal of the defective portion, and FIG. 6 shows the output signal after the shading correction. Here, shading correction was performed by the following calculation.

【0017】図4に示すような参照信号をr(x)と
し、図5に示すような熱延鋼板表面の検出信号をf
(x)とし、シェーディング補正後の出力信号をo
(x)とすると o(x)=f(x)/r(x) …(1) の演算を行なうことにより、図6に示すようなシェーデ
ィング補正後の出力信号が得られる。
The reference signal as shown in FIG. 4 is r (x), and the detection signal on the surface of the hot rolled steel sheet as shown in FIG. 5 is f.
(X) and the output signal after shading correction is o
Assuming that (x), the output signal after shading correction as shown in FIG. 6 is obtained by performing the calculation of o (x) = f (x) / r (x) (1).

【0018】また、 o(x)=kf(x)/r(x)−θ …(2) とすれば、出力信号のダイナミックレンジを大きくと
り、出力信号レベルを所望の範囲内に納めることが可能
である。kは定数とし、θは出力信号o(x)を検出信
号f(x)、若しくは参照信号r(x)のレベルと合わ
せるような範囲内に納めるように決定すれば良い。
If o (x) = kf (x) / r (x) -θ (2), the dynamic range of the output signal can be increased and the output signal level can be kept within the desired range. It is possible. k may be a constant, and θ may be determined so that the output signal o (x) falls within a range that matches the level of the detection signal f (x) or the reference signal r (x).

【0019】図6に示すように、きれいにシェーディン
グ補正され、かつ欠陥部分がきちんとあらわれた出力信
号が得られる。
As shown in FIG. 6, it is possible to obtain an output signal in which shading correction has been performed neatly and a defective portion is properly displayed.

【0020】[0020]

【発明の効果】以上説明したように、本発明の画像処理
方法によれば、欠陥などの無い部分の信号を実際の検査
を行う際と同様の条件で取得して参照信号とするため、
被検査材の表面の状態を検出信号に反映する事が出来、
信号変化のある部分のダイナミックレンジを大きくとる
ことが出来る。
As described above, according to the image processing method of the present invention, the signal of a portion having no defect is acquired as the reference signal under the same condition as in the actual inspection.
The state of the surface of the material to be inspected can be reflected in the detection signal,
A large dynamic range can be secured in the part where the signal changes.

【0021】また、参照信号を順次新しいものと入れ換
えることにより、光源の劣化による光源強度の経時変化
や検出素子の感度変化などにも対応する事が可能であ
る。
Further, by sequentially replacing the reference signal with a new one, it is possible to deal with a change with time in the light source intensity due to deterioration of the light source, a change in the sensitivity of the detection element, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を適用した表面欠陥検査装置
の概略構成図である。
FIG. 1 is a schematic configuration diagram of a surface defect inspection apparatus to which an embodiment of the present invention is applied.

【図2】欠陥抽出信号処理装置の概略図である。FIG. 2 is a schematic diagram of a defect extraction signal processing device.

【図3】ホットランテーブル上にサンプルコイルを配置
した状態を示す図である。
FIG. 3 is a diagram showing a state in which sample coils are arranged on a hot run table.

【図4】一次元撮像装置を用いてオフラインで取得した
参照信号の例である。
FIG. 4 is an example of a reference signal acquired offline using a one-dimensional imaging device.

【図5】表面欠陥のある熱延鋼板のサンプルから、参照
信号を取得した際と同じ条件で得た欠陥部分の検出信号
である。
FIG. 5 is a detection signal of a defective portion obtained under the same conditions as when a reference signal was acquired from a sample of hot-rolled steel sheet having a surface defect.

【図6】シェーディング補正を行った後の出力信号であ
る。
FIG. 6 is an output signal after shading correction.

【符号の説明】[Explanation of symbols]

1 光源 2 熱延鋼板 3 光束 4 照射部分 5 一次元CCDカメラ 6 A/D変換装置 7 欠陥抽出用信号処理装置 8 欠陥判別用画像処理装置 9 表示装置 10 光源用電源 13 参照信号保存用メモリ 14 シェーディング補正演算モジュール 15 欠陥抽出モジュール 16 判定モジュール 17 機能選定モジュール 19 ホットランテーブル 20 サンプルコイル 1 Light Source 2 Hot Rolled Steel Plate 3 Luminous Flux 4 Irradiated Area 5 One-dimensional CCD Camera 6 A / D Converter 7 Defect Extraction Signal Processing Device 8 Defect Discrimination Image Processing Device 9 Display Device 10 Light Source Power Supply 13 Reference Signal Storage Memory 14 Shading correction calculation module 15 Defect extraction module 16 Judgment module 17 Function selection module 19 Hot run table 20 Sample coil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 段木 亮一 千葉市中央区川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 丸山 智 千葉市中央区川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 守屋 進 千葉市中央区川崎町1番地 川崎製鉄株式 会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ryoichi Tanaki 1 Kawasaki-cho, Chuo-ku, Chiba City Kawasaki Steel Co., Ltd. Technical Research Division (72) Inventor Satoshi Maruyama 1 Kawasaki-cho, Chuo-ku, Chiba Kawasaki Steel Co., Ltd. Technical Research Headquarters (72) Inventor Susumu Moriya 1 Kawasaki-cho, Chuo-ku, Chiba City Kawasaki Steel Co., Ltd. Technical Research Headquarters

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 順次搬送される被検査材表面で反射した
反射光を所定の受光装置により受光することにより得ら
れた、該被検査材表面を所定の一次元方向に或いは二次
元的に検出した検出信号に、前記被検査材が搬送される
オンライン中に順次シェーディング補正を施す画像処理
方法において、 前記受光装置の視野内に、順次搬送される前記被検査材
と段差をもって所定の参照材を配置しておき、 1つの前記被検査材が前記視野から外れた後次の前記被
検査材が前記視野に現われる前に前記参照材表面で反射
した反射光を前記受光装置で受光することにより参照信
号を得、 該参照信号に基づいて該参照信号よりも後に得られた前
記検出信号にシェーディング補正を施すことを特徴とす
る画像処理方法。
1. The surface of the material to be inspected is detected in a predetermined one-dimensional direction or two-dimensionally, which is obtained by receiving a reflected light reflected by the surface of the material to be inspected, which is successively conveyed, by a predetermined light receiving device. In the image processing method for sequentially performing shading correction on the detected signal while the material to be inspected is conveyed online, a predetermined reference material having a step with the material to be inspected is sequentially conveyed in the visual field of the light receiving device. It is arranged by referring to the light receiving device for receiving the reflected light reflected by the surface of the reference material after one of the inspection materials is out of the visual field and before the next inspection material appears in the visual field. An image processing method, comprising: obtaining a signal, and performing shading correction on the detection signal obtained after the reference signal based on the signal.
【請求項2】 順次搬送される被検査材表面で反射した
反射光を所定の受光装置により受光することにより得ら
れた、該被検査材表面を所定の一次元方向に或いは二次
元的に検出した検出信号に、前記被検査材が搬送される
オンライン中に順次シェーディング補正を施す画像処理
方法において、 前記検出信号に基づいて前記被検査材表面の疵の有無を
判定し、 疵が無いと判定された前記検出信号に基づいて、該検出
信号よりも後から得られた前記検出信号にシェーディン
グ補正を施すことを特徴とする画像処理方法。
2. The surface of the material to be inspected is detected in a predetermined one-dimensional direction or two-dimensionally, which is obtained by receiving a reflected light reflected by the surface of the material to be inspected, which is successively conveyed, by a predetermined light receiving device. In the image processing method, in which shading correction is sequentially performed on the detected signal obtained while the inspection material is being conveyed online, the presence or absence of a flaw on the inspection material surface is determined based on the detection signal, and it is determined that there is no flaw. An image processing method characterized by performing shading correction on the detection signal obtained after the detection signal based on the detected signal.
JP15672493A 1993-06-28 1993-06-28 Image processing method Withdrawn JPH0735703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15672493A JPH0735703A (en) 1993-06-28 1993-06-28 Image processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15672493A JPH0735703A (en) 1993-06-28 1993-06-28 Image processing method

Publications (1)

Publication Number Publication Date
JPH0735703A true JPH0735703A (en) 1995-02-07

Family

ID=15633951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15672493A Withdrawn JPH0735703A (en) 1993-06-28 1993-06-28 Image processing method

Country Status (1)

Country Link
JP (1) JPH0735703A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020050838A (en) * 2000-12-22 2002-06-28 신현준 Tin coated steel plate defect test system
JP2005316427A (en) * 2004-03-30 2005-11-10 Canon Inc Device and apparatus for discriminating recording material, and image forming apparatus and method using recording material discriminating device
JP2017201315A (en) * 2013-01-07 2017-11-09 アイセンサー・カンパニー・リミテッドIxensor Co., Ltd. Test strips and method for reading test strips
US10921259B2 (en) 2012-12-18 2021-02-16 Ixensor Co., Ltd. Method and apparatus for analyte measurement

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020050838A (en) * 2000-12-22 2002-06-28 신현준 Tin coated steel plate defect test system
JP2005316427A (en) * 2004-03-30 2005-11-10 Canon Inc Device and apparatus for discriminating recording material, and image forming apparatus and method using recording material discriminating device
US8447196B2 (en) 2004-03-30 2013-05-21 Canon Kabushiki Kaisha Recording material determination apparatus and image forming apparatus having a determining unit that determines an attribute of a recording material
US10921259B2 (en) 2012-12-18 2021-02-16 Ixensor Co., Ltd. Method and apparatus for analyte measurement
JP2017201315A (en) * 2013-01-07 2017-11-09 アイセンサー・カンパニー・リミテッドIxensor Co., Ltd. Test strips and method for reading test strips

Similar Documents

Publication Publication Date Title
US5715051A (en) Method and system for detecting defects in optically transmissive coatings formed on optical media substrates
JPH0762868B2 (en) Wiring pattern defect inspection method for printed circuit board
JPH095058A (en) Defect inspection device for regular pattern
JP4680640B2 (en) Image input apparatus and image input method
JPH11211442A (en) Method and device for detecting defect of object surface
JP2001209798A (en) Method and device for inspecting outward appearance
JP4215473B2 (en) Image input method, image input apparatus, and image input program
JPH0735703A (en) Image processing method
JP2000108316A (en) Apparatus for inspecting quality
JPH05180781A (en) Method and apparatus for surface defect inspection
JPH08254499A (en) Displaying/appearance inspection device
JPH04216445A (en) Device for inspecting bottle
JP4162319B2 (en) Defect inspection equipment
JP4549838B2 (en) Glossiness measuring method and apparatus
JPH10206337A (en) Automatic visual inspection device for semiconductor wafer
JPH06118026A (en) Method for inspecting vessel inner surface
JP2010122155A (en) Method for detecting defect in plate-like body and defect detector
JPH05164703A (en) Inspecting method for surface of workpiece
JP2007003332A (en) Method and detector for detecting defect on planar body side face
JP3442199B2 (en) Surface inspection equipment
JP2005201887A (en) Method and apparatus for inspecting glass substrate, and manufacturing method of display panel
JP4585109B2 (en) Steel plate surface flaw detection device, detection method, and storage medium
JPS58153328A (en) Photodetecting sensitivity irregularity correcting system for image sensor
JPH08128965A (en) Surface inspection device
JPH063279A (en) Method and device for inspecting hard disc or wafer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905