JPH08128965A - Surface inspection device - Google Patents

Surface inspection device

Info

Publication number
JPH08128965A
JPH08128965A JP28875694A JP28875694A JPH08128965A JP H08128965 A JPH08128965 A JP H08128965A JP 28875694 A JP28875694 A JP 28875694A JP 28875694 A JP28875694 A JP 28875694A JP H08128965 A JPH08128965 A JP H08128965A
Authority
JP
Japan
Prior art keywords
reflected light
light
inspected
line sensor
optical line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28875694A
Other languages
Japanese (ja)
Inventor
Rikichi Murooka
利吉 室岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tektronix Japan Ltd
Original Assignee
Sony Tektronix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Tektronix Corp filed Critical Sony Tektronix Corp
Priority to JP28875694A priority Critical patent/JPH08128965A/en
Publication of JPH08128965A publication Critical patent/JPH08128965A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To easily inspect the surface and rotating state of a subject by emitting a band light onto the surface of the rotatable subject at a fixed incident angle, successively measuring the illuminance change of the reflected light to determine a standard characteristic as a function of reflecting angle, and providing an optical line sensor out of the maximum illuminance position. CONSTITUTION: A light source 10 emits a light made into band by a slit onto the inspection line on a disc 2 to be inspected at a prescribed incident angle. The image of the reflected light is taken by an optical line sensor 14 consisting of CCD, and the illuminance is successively measured as a function to reflecting angle. From the result, the standard characteristic of illuminance change of the reflected light is determined as the function of reflecting angle and stored. The sensor 14 is situated in a position having a level lower than 1/2 of the maximum illuminance value in the standard characteristic. The reflected light scanned by the band light is then measured during the rotation of the disc 12, and compared with the standard characteristic to inspect the surface state and rotating state of the disc 12. The processing therefor is performed by an image processing device 16 and a computer 18.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気ディスク又は光デ
ィスク等の表面の状態等を検査する表面検査方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface inspection method for inspecting the surface condition of a magnetic disk or optical disk.

【0002】[0002]

【従来技術及び発明が解決しようとする課題】従来、コ
ンピュータ用の磁気ディスク等の表面の状態を検査する
方法としては、特公昭63−19001号公報に記載さ
れているような、いわゆる魔鏡の原理を利用した方法が
知られている。この方法は、被検査対象物の表面に光を
照射し、この光の反射光を受光レンズで集光し、受光面
上に投像し、被検査対象物表面の凹凸を明暗像として検
出するものである。
2. Description of the Related Art Conventionally, as a method of inspecting the state of the surface of a magnetic disk for a computer, a so-called magic mirror as disclosed in Japanese Patent Publication No. 63-19001 is used. A method utilizing the principle is known. This method irradiates the surface of the object to be inspected with light, collects the reflected light of this light with a light receiving lens, projects the image on the light receiving surface, and detects the unevenness of the surface of the object to be inspected as a light and dark image. It is a thing.

【0003】しかし、この方法では、被検査対象物表面
上の凹みを凹面鏡と等価なものと考えるので、凹面鏡と
みなした場合の焦点距離がバラバラであると、検出感度
が低下するという問題がある。
However, in this method, since the depression on the surface of the object to be inspected is considered to be equivalent to a concave mirror, there is a problem that if the focal lengths are regarded as concave mirrors, the detection sensitivity decreases. .

【0004】別の表面検査方法として、特開昭62−2
35511号公報に開示されたように、レーザー光を被
検査対象物の表面上に照射し、その反射光を検出して解
析する方法がある。しかし、この方法では、スポット・
ビームで被検査対象物であるディスク表面の全領域を走
査するのに長い時間がかかるという問題がある。
Another surface inspection method is disclosed in Japanese Patent Laid-Open No. 62-2.
As disclosed in Japanese Patent No. 35511, there is a method of irradiating the surface of an object to be inspected with laser light and detecting and analyzing the reflected light. However, this method
There is a problem that it takes a long time to scan the entire area of the disk surface, which is the object to be inspected, with the beam.

【0005】また、被検査対象物であるディスクは回転
させて使用するものなので、単に表面上にキズや凹みが
ないだけでなく、ディスク表面全体としての回転ブレ等
も問題となるが、従来の表面検査方法では、ディスクの
回転ブレを検出することができず、全く別の検出方法を
採用しなければならなかった。
Further, since the disc to be inspected is used by rotating it, not only are there no scratches or dents on the surface, but there are problems such as rotational blurring of the entire disc surface. The surface inspection method cannot detect the rotational shake of the disk, and thus has had to adopt a completely different detection method.

【0006】本発明の目的は、短時間にかつ容易にディ
スク媒体のような被検査対象物の表面の状態を検出する
と共に、ディスクの回転ブレも同時に検出可能な表面検
査方法を提供することである。
An object of the present invention is to provide a surface inspection method capable of easily detecting the state of the surface of an object to be inspected such as a disk medium in a short time and simultaneously detecting the rotational shake of the disk. is there.

【0007】[0007]

【課題を解決する為の手段】本発明の表面検査方法は、
回転可能な円盤状の被検査対象物の主表面上の所定の検
査ラインに所定入射角で帯状の光を照射し、上記検査ラ
インからの反射光の輝度を反射角の関数として順次測定
し、この測定結果から上記反射光の輝度変化の基準特性
を反射角の関数として求め、上記反射光線の輝度変化の
基準特性において、最大輝度位置から所定角度外れた位
置に上記光ライン・センサを配置し、上記円盤状の被検
査対象物が回転中に上記帯状の光により走査された上記
被検査対象物の表面状態及び回転状態を検査することを
特徴とする。
The surface inspection method of the present invention comprises:
Irradiate a strip-shaped light at a predetermined incident angle on a predetermined inspection line on the main surface of the rotatable disc-shaped object to be inspected, and sequentially measure the brightness of the reflected light from the inspection line as a function of the reflection angle, From this measurement result, the reference characteristic of the luminance change of the reflected light is obtained as a function of the reflection angle, and in the reference characteristic of the luminance change of the reflected light beam, the optical line sensor is arranged at a position deviated from the maximum luminance position by a predetermined angle. The surface state and the rotation state of the object to be inspected, which is scanned by the band-shaped light while the disk-shaped object to be inspected is rotating, are inspected.

【0008】特に、光ライン・センサを、反射光線の輝
度変化の基準特性において、半明視野領域内の位置に配
置することにより、効果的に表面の状態及び回転ブレを
検出できる。$また、光ライン・センサを、上記上記反
射光線の輝度変化の基準特性において、最大輝度値の2
分の1以下のレベルとなる位置に配置することを特徴と
する。
In particular, by arranging the optical line sensor at a position within the semi-bright field region in the reference characteristic of the brightness change of the reflected light beam, the surface condition and rotational blur can be effectively detected. $ Also, the optical line sensor is set to the maximum luminance value of 2 in the reference characteristic of the luminance change of the reflected light beam.
It is characterized in that it is arranged at a position where the level is one-half or less.

【0009】[0009]

【実施例】図2は、本発明に係る一実施例の構成を示す
ブロック図である。また、図3は、図2の装置の構成の
要部を模式的に表す斜視図である。光源10は、スリッ
トにより帯状に成形した光を、被検査対象物であるディ
スク12の表面に照射する。ディスク12の外周と内周
の間の直線上(以下、検査ラインという)に光が照射さ
れ、この検査ラインからの反射光をCCD撮像装置であ
るライン・センサ14により撮像する。このライン・セ
ンサは、複数のCCD撮像セルを一列に配列したもので
あり、例えば、5000個のCCDセルを一列に配置し
た装置である。従って、このライン・センサ14の1ク
ロック動作により、ディスク12上の検査ラインを同時
に撮像し、5000ピクセル分の画像サンプルが得られ
る。このような構成により、ディスク12を1周回転さ
せるだけで表面上の全検査領域の画像を撮像することが
できるので、検査時間を格段に短縮することができる。
FIG. 2 is a block diagram showing the configuration of an embodiment according to the present invention. Further, FIG. 3 is a perspective view schematically showing a main part of the configuration of the apparatus of FIG. The light source 10 irradiates the surface of the disk 12, which is the object to be inspected, with the light shaped into a band by the slit. Light is irradiated on a straight line (hereinafter referred to as an inspection line) between the outer circumference and the inner circumference of the disk 12, and the reflected light from this inspection line is imaged by a line sensor 14 which is a CCD imaging device. This line sensor is a device in which a plurality of CCD image pickup cells are arranged in a line, and for example, 5000 CCD cells are arranged in a line. Therefore, by operating the line sensor 14 for one clock, the inspection lines on the disk 12 are simultaneously imaged, and image samples of 5000 pixels are obtained. With such a configuration, an image of the entire inspection area on the surface can be captured by simply rotating the disk 12 once, so that the inspection time can be significantly shortened.

【0010】図2において、ライン・センサ14により
得られた画像サンプルは、画像処理装置16に送られ、
デジタル・アナログ変換され、当業者には周知の画像処
理を施して欠陥部分を検出してメモリに蓄積し、コンピ
ュータ18により所定の解析を行う。
In FIG. 2, the image sample obtained by the line sensor 14 is sent to the image processor 16.
Digital / analog conversion is performed, image processing well known to those skilled in the art is performed to detect a defective portion, the defective portion is stored in a memory, and a predetermined analysis is performed by the computer 18.

【0011】図4は、被検査対象物表面上からの反射光
の輝度と反射角度との関係を表すグラフである。被検査
対象物の表面は、略鏡面状態なので、入射角度θiで照
射された光線の大部分は、反射角度θr=θiで反射され
るが、表面上の僅かな凹凸に起因する乱反射等により、
反射光の輝度は図4に示すような曲線の分布となる。本
明細書では、最大輝度値Imaxの反射角度θrから最大輝
度値の2分の1のレベル(Imax/2)までの範囲内を
明視野領域と呼び、この最大輝度値の2分の1のレベル
から最大輝度値の10分の1(Imax/10)までの輝
度範囲を半明視野領域と呼び、最大輝度値の10分の1
のレベルより低い輝度の領域を暗視野領域と呼ぶ。ただ
し、この視野領域の区分は便宜的なものであり、別の輝
度レベルを基準にして区分しても良い。
FIG. 4 is a graph showing the relationship between the brightness of the light reflected from the surface of the object to be inspected and the reflection angle. Since the surface of the object to be inspected is a substantially mirror surface state, most of the light rays irradiated at the incident angle θi are reflected at the reflection angle θr = θi, but due to irregular reflection due to slight irregularities on the surface,
The brightness of the reflected light has a curve distribution as shown in FIG. In the present specification, the range from the reflection angle θr of the maximum brightness value Imax to the level (Imax / 2) of the maximum brightness value is called a bright field area, and the bright field area is half the maximum brightness value. The brightness range from the level to one-tenth of the maximum brightness value (Imax / 10) is called a semi-bright field area, and is one-tenth of the maximum brightness value.
An area having a luminance lower than the level of is called a dark field area. However, the division of the visual field area is convenient, and the division may be performed on the basis of another luminance level.

【0012】本発明は、この特性曲線の中で、半明視野
領域内にライン・センサを配置することを特徴としてい
る。この領域は、輝度の変化率(傾き)が比較的大き
く、輝度レベルの変化が検出し易いという特徴があるの
で、被検査表面の状態が最も顕著に反映し、欠陥を検出
し易いからである。また、被検査対象であるディスクが
回転したとき、回転ブレが生じると、反射光の反射角度
も変化するので、その時の輝度変化も効率よく検出でき
る。ディスク12の表面の凹凸による輝度変化と、ディ
スク12の回転ブレに基づく輝度変化は、時間に対する
輝度の変化割合が異なるので簡単に判別することができ
る。すなわち、表面の凹凸に基づく輝度変化の周波数は
高いので、高域通過フィルタで簡単に検出できるし、他
方、ディスクの回転ブレに基づく輝度変化の周波数は低
くいので、低域通過フィルタで容易に検出できる。本発
明の実施例では、種々の実験に基づき、最大輝度値Ima
xの5分の1のレベルとなる反射角度の位置にライン・
センサ14を配置している。ただし、この位置に限定さ
れるものではなく、最大輝度値の2分の1以下のレベル
であればどのレベルの位置にライン・センサ14を配置
しても良い。この様子を図2に示しており、光源10か
らの光が最も強く反射する方向を実線の矢線で示し、半
明視野領域で、最大輝度レベルの5分の1となる位置へ
の反射光を破線の矢線で示している。図2には図示して
いないが、ライン・センサ14は、光が照射されるディ
スク表面上の検査ラインに対する相対的な位置(反射角
度に基づく位置)を任意に調整できるような調整機構を
設けている。この調整は、コンピュータ18の制御によ
り自動的に行われることが望ましいが、手動で順次行う
ことも可能である。
The invention is characterized in that the line sensor is arranged in the semi-bright field region in the characteristic curve. This area is characterized in that the rate of change (gradient) in luminance is relatively large and the change in luminance level is easy to detect, so the state of the surface to be inspected is most prominently reflected, and defects are easy to detect. . Further, when the disc to be inspected rotates, if the rotation blur occurs, the reflection angle of the reflected light also changes, so that the change in luminance at that time can also be efficiently detected. The luminance change due to the unevenness of the surface of the disk 12 and the luminance change due to the rotational blur of the disk 12 can be easily discriminated because the rate of change of the luminance with respect to time is different. That is, since the frequency of the luminance change based on the unevenness of the surface is high, it can be easily detected by the high-pass filter, and on the other hand, the frequency of the luminance change based on the rotational shake of the disc is low, so the low-pass filter can easily Can be detected. In the embodiment of the present invention, the maximum brightness value Ima is based on various experiments.
A line is placed at the position of the reflection angle where the level is 1/5 of x.
The sensor 14 is arranged. However, the position is not limited to this position, and the line sensor 14 may be arranged at any level position as long as it is at a level equal to or lower than ½ of the maximum brightness value. This state is shown in FIG. 2, and the direction in which the light from the light source 10 is most strongly reflected is indicated by the solid arrow, and the reflected light to the position where the light intensity is one fifth of the maximum brightness level in the semi-bright field region. Is indicated by a dashed arrow. Although not shown in FIG. 2, the line sensor 14 is provided with an adjusting mechanism capable of arbitrarily adjusting the relative position (the position based on the reflection angle) with respect to the inspection line on the disk surface irradiated with light. ing. This adjustment is preferably performed automatically under the control of the computer 18, but can also be performed manually sequentially.

【0013】図5は、図2の画像処理装置16の一実施
例の構成を示すブロック図である。ライン・センサ14
により撮像された画像サンプルは、増幅器40により所
望レベルまで増幅され、アナログ・デジタル変換器42
によりデジタル・データに変換される。次に、フィルタ
処理回路44により、フィルタ処理が実行される。この
時、検出対象に応じて高域通過フィルタ又は低域通過フ
ィルタの各処理が実行される。この処理済データを適当
な閾値と比較して2値化データとして、被検査表面の欠
陥を表す欠陥データを検出する。これらの欠陥データ
は、各撮像ライン毎の連続データで表されるが、ディス
ク表面の欠陥は、隣接する検査ライン間で相互に関連し
ているのが普通なので、欠陥部分を表す隣接データ群を
抽出して、各隣接データ群毎に欠陥部分の参照番号を付
与する操作をラベリング処理と呼んでいる。この処理を
ブロック48で実行した後、処理済データをメモリ50
に記憶する。このメモリ50の中のデータがコンピュー
タ18により解析される。
FIG. 5 is a block diagram showing the configuration of an embodiment of the image processing apparatus 16 shown in FIG. Line sensor 14
The image sample captured by the amplifier is amplified to a desired level by the amplifier 40, and the analog-digital converter 42 is used.
Is converted into digital data by. Next, the filter processing is performed by the filter processing circuit 44. At this time, each processing of the high pass filter or the low pass filter is executed according to the detection target. This processed data is compared with an appropriate threshold value to be binarized data, and defect data representing a defect on the surface to be inspected is detected. These defect data are represented by continuous data for each imaging line, but since defects on the disk surface are usually related to each other between adjacent inspection lines, an adjacent data group representing a defective portion is set. The operation of extracting and assigning the reference number of the defective portion to each adjacent data group is called labeling processing. After performing this processing in block 48, the processed data is stored in the memory 50.
To memorize. The data in the memory 50 is analyzed by the computer 18.

【0014】上述のように、ディスク表面の凹凸に基づ
く欠陥データは、メモリ50に記憶されたデータ中に隣
接データ群として点在するものであり、他方、ディスク
12の回転ブレに基づく輝度変化の欠陥は、ディスクの
1回転分のアドレス範囲を周期とする変化となって検出
される。上述のように、図4に示すような基準特性を予
め検出し、コンピュータ18の有するメモリの中に記憶
しておくので、この基準特性と欠陥データとを比較して
解析することにより、ディスク12の表面上の欠陥の程
度及びディスク12の回転ブレの程度を検査することが
できる。なお、表面上の各欠陥部分に関しては、個別に
評価すれば良いが、ディスクの回転ブレに起因する輝度
変化では、ディスクの外周付近に回転ブレの効果が顕著
に反映することから、ディスクの外周付近に対応する複
数のデータを各検査ライン毎に平均化する等の処理をし
てディスクの回転ブレの評価をすることができる。
As described above, the defect data based on the unevenness of the disk surface is scattered in the data stored in the memory 50 as a group of adjacent data. The defect is detected as a change having a cycle of the address range for one rotation of the disk. As described above, since the reference characteristic as shown in FIG. 4 is detected in advance and stored in the memory of the computer 18, the reference characteristic and the defect data are compared and analyzed to disc The degree of defects on the surface of the disk and the degree of rotational blur of the disk 12 can be inspected. It should be noted that each defective portion on the surface can be evaluated individually, but the effect of rotational blur is significantly reflected in the vicinity of the outer circumference of the disc in the change in luminance caused by the rotational shake of the disc. The rotation blur of the disk can be evaluated by performing processing such as averaging a plurality of data corresponding to the vicinity for each inspection line.

【0015】また、図2において、ライン・センサ14
には、通常のカメラ等で使用するいわゆるしぼり機構を
設けている。しぼり機構とは、ライン・センサのCCD
セルに入射する光量を調整するものであり、しぼり機構
をしぼって光量を減少させると、いわゆるピントのずれ
が起こり難くなる。これは、ライン・センサ14の位置
の微調整が困難な場合に特に有効である。この結果、ラ
イン・センサ14の位置の調整も楽になるという効果が
ある。したがって、このしぼり機構の調整は、ライン・
センサ14のディスク12の表面上の検査ラインに対す
る相対位置を微調整することと等価な効果が得られるこ
とになる。
Further, in FIG. 2, the line sensor 14
Is provided with a so-called squeezing mechanism used in a normal camera or the like. The squeezing mechanism is the CCD of the line sensor
The amount of light incident on the cell is adjusted, and when the amount of light is reduced by narrowing the squeezing mechanism, so-called focus shift is less likely to occur. This is particularly effective when it is difficult to finely adjust the position of the line sensor 14. As a result, the position of the line sensor 14 can be easily adjusted. Therefore, adjustment of this squeezing mechanism is
An effect equivalent to finely adjusting the relative position of the sensor 14 with respect to the inspection line on the surface of the disk 12 will be obtained.

【0016】上述の検査手順を図1の流れ図で示す。ブ
ロック1では、ディスク12の表面上の所定の検査ライ
ンに所定入射角で帯状の光を照射する。次のブロック2
では、検査ラインからの反射光の輝度を反射角に対する
関数として順次測定する。その後、ブロック3では、ブ
ロック2の測定結果から反射光の輝度変化の基準特性を
反射角の関数として求めて記憶する。次のブロック4で
は、反射光線の輝度変化の基準特性において、最大輝度
位置から所定角度外れた位置にライン・センサを配置す
る。最後のブロック5で、ディスク12の回転中に帯状
の光により走査されたディスク表面からの反射光を測定
し、その測定結果を基準特性と比較することにより、デ
ィスク12の表面状態及び回転状態を検査する。
The above inspection procedure is shown in the flow chart of FIG. In block 1, a predetermined inspection line on the surface of the disk 12 is irradiated with band-shaped light at a predetermined incident angle. Next block 2
Then, the brightness of the reflected light from the inspection line is sequentially measured as a function of the reflection angle. Then, in block 3, the reference characteristic of the luminance change of the reflected light is obtained from the measurement result of block 2 as a function of the reflection angle and stored. In the next block 4, the line sensor is arranged at a position deviated from the maximum brightness position by a predetermined angle in the reference characteristic of the brightness change of the reflected light beam. In the last block 5, the reflected light from the disk surface scanned by the band-shaped light during the rotation of the disk 12 is measured, and the measurement result is compared with the reference characteristic to determine the surface state and the rotating state of the disk 12. inspect.

【0017】以上本発明の好適実施例について説明した
が、本発明はここに説明した実施例のみに限定されるも
のではなく、本発明の要旨を逸脱することなく必要に応
じて種々の変形及び変更を実施し得ることは当業者には
明らかである。
Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the embodiments described herein, and various modifications and changes can be made as necessary without departing from the gist of the present invention. It will be apparent to those skilled in the art that changes can be made.

【0018】[0018]

【発明の効果】本発明によれば、ライン・センサを半明
視野領域に配置し、被検査対象物の表面からの反射光を
検出し、予め測定しておいた基準反射特性と比較して解
析することにより、被検査表面の状態のみならず、被検
査対象物の回転ブレの程度まで同時に検査することがで
きる。また、帯状の光を照射し、ライン・センサで検出
する方式なので、被検査対象のディスクを1回転させる
だけで極めて短時間に検査を完了することができる。
According to the present invention, the line sensor is arranged in the semi-bright field region, and the reflected light from the surface of the object to be inspected is detected and compared with the reference reflection characteristic measured in advance. By analyzing, not only the condition of the surface to be inspected but also the degree of rotational blur of the object to be inspected can be inspected at the same time. Further, since the method of irradiating band-shaped light and detecting with a line sensor, the inspection can be completed in a very short time by rotating the disc to be inspected once.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の表面検査方法の手順を示す流れ図であ
る。
FIG. 1 is a flowchart showing a procedure of a surface inspection method of the present invention.

【図2】本発明の表面検査方法を使用するのに好適な表
面検査装置の実施例の構成を示すブロック図である。
FIG. 2 is a block diagram showing a configuration of an embodiment of a surface inspection apparatus suitable for using the surface inspection method of the present invention.

【図3】図1の装置の要部の簡略化した斜視図である。FIG. 3 is a simplified perspective view of a main part of the apparatus shown in FIG.

【図4】被検査対象物の表面からの反射光の輝度と反射
角度との基準となる特性を表すグラフである。
FIG. 4 is a graph showing characteristics as a reference of the brightness and the reflection angle of the reflected light from the surface of the inspection object.

【図5】図1の画像処理装置16の一実施例の構成を表
すブロック図である。
5 is a block diagram showing a configuration of an embodiment of the image processing device 16 of FIG.

【符号の説明】[Explanation of symbols]

10 光源 12 被検査対象物(ディスク) 14 ライン・センサ(CCD撮像装置) 16 画像処理装置 18 コンピュータ 10 light source 12 object to be inspected (disk) 14 line sensor (CCD imaging device) 16 image processing device 18 computer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 回転可能な円盤状の被検査対象物の主表
面上の所定の検査ラインに所定入射角で帯状の光を照射
し、 上記検査ラインからの反射光の輝度を反射角に対する関
数として順次測定し、 この測定結果から上記反射光の輝度変化の基準特性を反
射角の関数として求め、 上記反射光線の輝度変化の基準特性において、最大輝度
位置から所定角度外れた位置に上記光ライン・センサを
配置し、 上記円盤状の被検査対象物が回転中に上記帯状の光によ
り走査された上記被検査対象物の表面状態及び回転状態
を検査することを特徴とする表面検査方法。
1. A predetermined inspection line on a main surface of a rotatable disc-shaped object to be inspected is irradiated with band-shaped light at a predetermined incident angle, and the brightness of the reflected light from the inspection line is a function of the reflection angle. As a function of the reflection angle, the reference characteristic of the luminance change of the reflected light is obtained from the measurement result, and in the reference characteristic of the luminance change of the reflected light beam, the optical line is located at a position deviated from the maximum luminance position by a predetermined angle. A surface inspection method, in which a sensor is arranged and the surface state and rotation state of the inspection target object scanned by the belt-shaped light while the disk inspection target object is rotating are inspected.
【請求項2】 上記光ライン・センサを、上記反射光線
の輝度変化の基準特性において、半明視野領域内の位置
に配置することを特徴とする請求項1記載の表面検査方
法。
2. The surface inspection method according to claim 1, wherein the optical line sensor is arranged at a position within a semi-bright field region in the reference characteristic of the luminance change of the reflected light beam.
【請求項3】 上記光ライン・センサを、上記反射光線
の輝度変化の基準特性において、最大輝度値の2分の1
以下のレベルとなる位置に配置することを特徴とする請
求項1記載の表面検査方法。
3. The optical line sensor is provided with a half of the maximum brightness value in the reference characteristic of the brightness change of the reflected light beam.
The surface inspection method according to claim 1, wherein the surface inspection method is arranged at a position having the following level.
【請求項4】 上記光ライン・センサに入射する光量を
しぼり機構により調整することを特徴とする請求項1記
載の表面検査方法。
4. The surface inspection method according to claim 1, wherein the amount of light incident on the optical line sensor is adjusted by a squeezing mechanism.
JP28875694A 1994-10-28 1994-10-28 Surface inspection device Pending JPH08128965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28875694A JPH08128965A (en) 1994-10-28 1994-10-28 Surface inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28875694A JPH08128965A (en) 1994-10-28 1994-10-28 Surface inspection device

Publications (1)

Publication Number Publication Date
JPH08128965A true JPH08128965A (en) 1996-05-21

Family

ID=17734305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28875694A Pending JPH08128965A (en) 1994-10-28 1994-10-28 Surface inspection device

Country Status (1)

Country Link
JP (1) JPH08128965A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6548821B1 (en) 1999-06-21 2003-04-15 Komag, Inc. Method and apparatus for inspecting substrates
US6566674B1 (en) 1999-06-21 2003-05-20 Komag, Inc. Method and apparatus for inspecting substrates
JP2008020431A (en) * 2006-06-12 2008-01-31 Sharp Corp End tilt angle measuring method, system and method for inspection of undulating object
US7889358B2 (en) 2006-04-26 2011-02-15 Sharp Kabushiki Kaisha Color filter inspection method, color filter manufacturing method, and color filter inspection apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6548821B1 (en) 1999-06-21 2003-04-15 Komag, Inc. Method and apparatus for inspecting substrates
US6566674B1 (en) 1999-06-21 2003-05-20 Komag, Inc. Method and apparatus for inspecting substrates
US7889358B2 (en) 2006-04-26 2011-02-15 Sharp Kabushiki Kaisha Color filter inspection method, color filter manufacturing method, and color filter inspection apparatus
JP2008020431A (en) * 2006-06-12 2008-01-31 Sharp Corp End tilt angle measuring method, system and method for inspection of undulating object
JP4597946B2 (en) * 2006-06-12 2010-12-15 シャープ株式会社 End tilt angle measuring method, inspection method and inspection apparatus for inspected object having undulations

Similar Documents

Publication Publication Date Title
JP4351522B2 (en) Pattern defect inspection apparatus and pattern defect inspection method
JP2904069B2 (en) Method for inspecting appearance of spherical object and inspection apparatus therefor
JP2009020000A (en) Inspection device and method
JPH11311510A (en) Method and apparatus for inspection of very small uneven part
US6735333B1 (en) Pattern inspection apparatus
JP4215220B2 (en) Surface inspection method and surface inspection apparatus
JPH08128965A (en) Surface inspection device
JPH04216445A (en) Device for inspecting bottle
JP3025946B2 (en) Method and apparatus for measuring surface roughness of object
JP3314923B2 (en) Road surface moisture detection method and road surface moisture detection device
JP2990820B2 (en) Surface defect inspection equipment
US20010043736A1 (en) Method and system for detecting a defect in projected portions of an object having the projected portions formed in the same shape with a predetermined pitch along an arc
JPH11230912A (en) Apparatus and method for detection of surface defect
JPH0311403B2 (en)
JP2982473B2 (en) Painted surface inspection equipment
JP2002214155A (en) Flaw inspecting device for test object
JP2005077272A (en) Method for inspecting defect
JP2001235428A (en) Visual examination instrument
JPH0735703A (en) Image processing method
JP4216062B2 (en) Defect inspection method
JPH063279A (en) Method and device for inspecting hard disc or wafer
JPH0470555A (en) Apparatus for inspecting surface of sphere
JPH01214743A (en) Optical apparatus for checking
JPH10307011A (en) Method and apparatus for surface inspection
JPH06249785A (en) Method and apparatus for inspecting pellet edge