JPS6134403A - Optical interferometer - Google Patents

Optical interferometer

Info

Publication number
JPS6134403A
JPS6134403A JP15614684A JP15614684A JPS6134403A JP S6134403 A JPS6134403 A JP S6134403A JP 15614684 A JP15614684 A JP 15614684A JP 15614684 A JP15614684 A JP 15614684A JP S6134403 A JPS6134403 A JP S6134403A
Authority
JP
Japan
Prior art keywords
light
optical fiber
optical
output
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15614684A
Other languages
Japanese (ja)
Inventor
Nagamitsu Oki
大木 永光
Motoo Shimizu
清水 基夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15614684A priority Critical patent/JPS6134403A/en
Publication of JPS6134403A publication Critical patent/JPS6134403A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02002Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
    • G01B9/02003Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies using beat frequencies

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To improve the freedom of an installed place, by using optical fibers for light paths, utilizing the free bending characteristic, and combining the parts of an optical interferometer. CONSTITUTION:Light, which is emitted from a light source 1 is split into two light beams by a half mirror 2. One light passes a lens 10 and is converged at the end surface of an optical fiber 11. The light is converted into parallel light, totally reflected by a corner cube 4, which is provided in front of an object material 3, and returned. The other light is totally reflected by a mirror 6, shifted by a frequency (f) by an optical frequency converter 7, converged at the end surface of an optical fiber 14 by a lens 13 and collimated by a lens 15. The light is further relfected by a total reflecting mirror 16 and synthesized with the reflected light from the corner cube 4 by a half mirror 17 after transmitted through a half mirror 22 so as to interfere with the reflected light from the corner cube 4. The synthesized light is guided to a light detector 9 through a condenser lens 18, an optical fiber 19 and a lens 20. The amount of change in phase of the output signal is measured with the output signal of a light detector as a reference.

Description

【発明の詳細な説明】 (′技術分野) 本発明は光干渉計に関し、%に光ファイバを用いること
により、光キ渉検出部、光諒および測定機器をそれぞれ
分離設置できるようにした光干渉計に関する。
Detailed Description of the Invention ('Technical Field) The present invention relates to an optical interferometer, in which an optical interferometer, an optical interference detector, and a measuring device can be installed separately by using optical fibers. Regarding the meter.

(従来技術) 従来、光干渉法により距離測定や他の物理量を測定する
ことが行われている。第1図はある対象物までの距離(
全反射ミラー5から対象物3までの距離)ノを測定する
従来の光干渉計を示すブロック図である。図において光
源1よシ出射された光は、ハーフミラ第2で2分され、
その一方は対象物3の前方のコーナーキューブ4で反射
して折返す。(この折返し光を信号光と呼ぶものとする
)。
(Prior Art) Conventionally, optical interferometry has been used to measure distances and other physical quantities. Figure 1 shows the distance to a certain object (
FIG. 2 is a block diagram showing a conventional optical interferometer that measures the distance (distance from a total reflection mirror 5 to an object 3). In the figure, the light emitted from light source 1 is divided into two by the second half mirror,
One of them is reflected by the corner cube 4 in front of the object 3 and turned back. (This reflected light is called signal light).

またもう一方の光は全反射ミラー6で反射され。The other light is reflected by the total reflection mirror 6.

光周波数変調器(通常、超音波光変調器が用いられる)
7によって周波数fだけシフトされる(シフトされた光
を参照光と呼ぶものとする)。互いに周波数fだけ異な
った2つの光は全反射ミ2−5、ハーフミラ−8によっ
て合成され、光検出器9で受信される。
Optical frequency modulator (usually an ultrasonic optical modulator)
7, the light is shifted by the frequency f (the shifted light is referred to as a reference light). Two lights that differ from each other by a frequency f are combined by a total reflection mirror 2-5 and a half mirror 8, and are received by a photodetector 9.

光検出器9で受信される光の振幅は、光源lの出射光の
角周波数をω(=2π、、 c :光速、λ:光波数)
とすると次式となる。
The amplitude of the light received by the photodetector 9 is determined by the angular frequency of the light emitted from the light source l by ω (=2π, c: speed of light, λ: light wave number)
Then, the following formula is obtained.

(信号光)=A6cos(ωを一ψ8第2π・T )−
(1)(参照光)=Arcos((ω+2πf)t−ψ
、)・・・(2)ζこで、2π・ダは対象物3までの光
の往復によシ与えられる位相量、φS、ψrは各光学部
品間の距離で決定される位相量であF)、As 、 A
rはそれぞれの光の振幅を示している。これら2つの光
はバー7ミ2−8によって合成され干渉する。
(Signal light) = A6cos (ω is - ψ8th 2π・T) −
(1) (Reference light)=Arcos((ω+2πf)t−ψ
,)...(2)ζHere, 2π・da is the phase amount given by the round trip of the light to the object 3, and φS and ψr are the phase amounts determined by the distance between each optical component. F), As, A
r indicates the amplitude of each light. These two lights are combined and interfered by the bar 7mi 2-8.

その干渉光の強度は次の様に表わすことができる。The intensity of the interference light can be expressed as follows.

AB  +Ar+2ABA1CO8(2πft+2π・
が−(ψ8−ψr))・・・(3) (3)式よシ光検出器9の出力信号のAC成分は周波数
fの信号であシ、その位相が距離lによシ変化する。こ
のため、光検出器9の周波数fの出力信号の位相を測定
することKより、位相量2π・7を検出することが可能
になル、この位相量から距離lが測定できる0 しかし、上述の光干渉計では、対象物3(コーナーキエ
ー、7・4)の位置によって、光源lの出射方向とハー
フミラ第2,全反射ミラー6の位置、全反射ミラー5と
ハーフミラ−8とを含む光結合部の位置および光検出器
9の位置カニ決められる0したがりてハーフミラ第2,
8、ミラー5.6の設置スペースを確保できない等の理
由で、光干渉計の各部を所定の設定位置とは別の場所に
設置して光干渉計を組立てようとする場合各光学系の位
置合せが非常に困難となる。 、 以上説明したように、従来は光干渉計の設置場所を自由
に選択することができないという欠点があった0 (発明の目的) 本発明の目的は、前述した従来方式の欠点を除去したも
ので、光路に光7アイバを用い、その自由な曲げ特性を
利用して光干渉計の各部分を結合することによシ設置場
所の自由度を改善した光干渉計を提供することにある0 (発明の構成) 本発明によれば、第1、第2、第3および第4の光ファ
イバと、互いに所定の周波数差fを有する第1および第
2の光をそれぞれ前記第1および第2の光ファイバに導
びく第1の光結合部と、前記第1の光ファイバからの出
力が所定距離伝搬して戻ってきた信号光と前記第2の光
ファイバから出力とを干渉するように合成し前記第4の
光7ア   −イバに導く第2の光結合部と、前記第3
の光7アイバから出力する干渉光を検出する第1の光検
出器と、前記第4の光ファイバから出力する干渉光を検
出する第2の検出器とを含み、前記第1.第2の光検出
器から出力する周波数fの電気信号の位相を測定するこ
とによって伝搬路の物理量を測定する干渉計が得られる
AB +Ar+2ABA1CO8(2πft+2π・
-(ψ8-ψr)) (3) According to equation (3), the AC component of the output signal of the photodetector 9 is a signal with a frequency f, and its phase changes with the distance l. Therefore, by measuring the phase of the output signal of the frequency f of the photodetector 9, it is possible to detect the phase amount 2π·7, and from this phase amount the distance l can be measured. In the optical interferometer, depending on the position of the object 3 (corner keys 7 and 4), the emission direction of the light source 1, the position of the second half mirror, the total reflection mirror 6, and the light including the total reflection mirror 5 and the half mirror 8 are determined. Therefore, the position of the coupling part and the position of the photodetector 9 are determined.
8. If you are trying to assemble an optical interferometer by installing each part of the optical interferometer in a different location from the predetermined setting position due to reasons such as not being able to secure the installation space for the mirror 5.6, the position of each optical system. It becomes very difficult to match. , As explained above, the conventional method has the drawback that the installation location of the optical interferometer cannot be freely selected0 (Object of the invention) The object of the present invention is to eliminate the drawbacks of the conventional method described above The object of the present invention is to provide an optical interferometer in which the degree of freedom in installation location is improved by using an optical fiber in the optical path and utilizing its free bending characteristics to connect each part of the optical interferometer. (Structure of the Invention) According to the present invention, the first, second, third and fourth optical fibers transmit the first and second lights having a predetermined frequency difference f from each other to the first and second optical fibers, respectively. a first optical coupling section leading to an optical fiber, and a signal light whose output from the first optical fiber propagates a predetermined distance and returns and combines the output from the second optical fiber so as to interfere with each other. a second optical coupling portion that guides the fourth light beam to the fourth optical fiber 7 arbor;
a first photodetector that detects the interference light output from the optical fiber 7; and a second detector that detects the interference light output from the fourth optical fiber; An interferometer that measures the physical quantity of the propagation path can be obtained by measuring the phase of the electrical signal of frequency f output from the second photodetector.

さらに本発明によれば、第1、第2および第3の光ファ
イバと、互いに所定の周波数差fを有する□第1および
第2の光をそれぞれ前記第1および第2の光ファイバに
導び〈第1の一光結合部と、前記第1の光ファイバから
の出力が所定距離伝搬して戻ってきた信号光と前記第2
の光ファイバからの出力とを干渉するよりに合成し前記
第3の光7 、アイパに導く第2の光結合部と、前記第
3の光ファイバから出力する干渉光を検出する光検出器
とを含み、前記、前記光検出器から出力する周波数fの
電気信号の位相を測定することによって伝搬路の物理量
を測定する干渉計が得られる。
Furthermore, according to the present invention, the first and second lights having a predetermined frequency difference f from each other are guided to the first and second optical fibers, respectively. <The first optical coupling part, the signal light which the output from the first optical fiber has propagated a predetermined distance and returned, and the second
a second optical coupling unit which combines the output from the optical fibers of the optical fibers 7 and 7 by interfering with the output from the optical fibers, and guides the third light 7 to the IPA; and a photodetector which detects the interference light output from the third optical fibers. An interferometer is obtained which measures the physical quantity of the propagation path by measuring the phase of the electrical signal of frequency f output from the photodetector.

(実施例の鋭IgJ) 次に本発明の実施例を図面を参照して詳細に説明する。(Example acute IgJ) Next, embodiments of the present invention will be described in detail with reference to the drawings.

第2図は、本発明の第1の実施例を示すプロ。FIG. 2 is a diagram showing a first embodiment of the present invention.

り図である。以下図中、矢印を附した集線は光、矢印の
内含は光の進行方向を示すものとする。光源1よシ出射
された光はハーフミラ第2で2分され、その一方がレン
ズ10を通して光ファイバ11(第1の光ファイバ)の
端面に集光される。
This is a diagram. In the figures below, concentrated lines with arrows indicate light, and the content of the arrow indicates the traveling direction of the light. The light emitted from the light source 1 is divided into two parts by the second half mirror, and one of the parts is focused on the end face of the optical fiber 11 (first optical fiber) through the lens 10.

光ファイバ11を伝播した光はレンズ12で平行光に変
換され、対象物3の前方(設置されたコーナーΦユープ
4で全反射して戻ってくる。−一7ξラー2で2分され
た奄う一方の光は、ミラー6で全反射され、光周波数変
換器(たとえば超音波光変1Ill器)7で周波数fだ
けシフトする。シフトした光はレンズ13によって光フ
ァイバ14(第2の光ファイバ)の端面に集光され、光
7アイバ14を伝播vk、レンズ15によってコリメー
トされる。さらに全反射ミ2−16で反射されバー7ミ
ーラー22を透過後、ハーフミラ−17によってコーナ
キへ−プ4からの反射光と干渉するよう合成される0合
成された光#i集光レンズ18.光ファイバ19(第3
の光ファイバ)、レンズ20を通って纂1の光検出器9
へ導かれ、その合成光の強度が検出される。
The light propagated through the optical fiber 11 is converted into parallel light by the lens 12, and is totally reflected at the corner Φ 4 in front of the object 3 (installed) and returns. The other light is totally reflected by the mirror 6, and shifted by the frequency f by the optical frequency converter (for example, an ultrasonic light converter) 7.The shifted light is transferred to the optical fiber 14 (second optical fiber) by the lens 13. ) is focused on the end face of the beam 7, propagates through the eyeglass 14, and is collimated by the lens 15.Furthermore, it is reflected by the total reflection mirror 2-16, and after passing through the bar 7 mirror 22, it is reflected by the half mirror 17 into the corner beam 4. 0 Combined light #i is combined so as to interfere with the reflected light from the condenser lens 18. Optical fiber 19 (third
optical fiber), passes through the lens 20 to the photodetector 9
The intensity of the combined light is detected.

一方、光ファイバ11及び14を伝播してきた光の一部
がハーフミ5第21.22で分離され、ハーフミラ第2
3で合成される。その合成光は集光レンズ24、光ファ
イバ25(第4の元ファイバ)、レンズ26を通じて、
第2の光検出器27へ入射する。
On the other hand, a part of the light propagating through the optical fibers 11 and 14 is separated by the half mirror 5 No. 21 and 22, and the half mirror 2
It is synthesized in 3. The combined light passes through the condensing lens 24, the optical fiber 25 (fourth original fiber), and the lens 26.
The light is incident on the second photodetector 27.

光検出器9.27の出力線(4)式に示すような周波数
fの信号である。
The output line of the photodetector 9.27 is a signal with a frequency f as shown in equation (4).

たとえば光検出器9の出力は、対象物3までの距離を全
反射ミラー17から対象物3までの距離!1 として表
わすと、次式のように表わされる。
For example, the output of the photodetector 9 is the distance from the total reflection mirror 17 to the object 3! 1, it can be expressed as follows.

As、 +As、+2As、As、cos(2gft+
〉’7’−にφS、→rρ)・・・(4) ただし、All、:コーナーキ、−プ4で折返される信
号光の振幅、A@、:全反射ミラー16で反射される参
照光の振幅、ψ111eψr1:信号光、参照光の光路
中の各光学部品間の距離で定まる位相量。
As, +As, +2As, As, cos(2gft+
〉'7'-φS, →rρ)...(4) However, All,: Corner key, -amplitude of signal light reflected at -p 4, A@,: Reference reflected by total reflection mirror 16 Light amplitude, ψ111eψr1: phase amount determined by the distance between each optical component in the optical path of the signal light and reference light.

λ:光源1の出射光の波長である。光検出器9の出力信
号の位相は、対象物3とハーフミラ−17間の距離11
によって変化するが、光検出器27の出力信号の位相は
常に一定である。したがうて検出器9の出力信号の位相
変化量を、光検出器27の出力信号を基準として測定す
れば、対象物3までの距離を精度よく測ることができる
λ: Wavelength of the light emitted from the light source 1. The phase of the output signal of the photodetector 9 is determined by the distance 11 between the object 3 and the half mirror 17.
However, the phase of the output signal of the photodetector 27 is always constant. Therefore, by measuring the amount of phase change of the output signal of the detector 9 using the output signal of the photodetector 27 as a reference, the distance to the object 3 can be measured with high accuracy.

本実施例では4本の光ファイバを使用しているが、これ
らを1本の光フアイバケーブル28にまとめれば、配線
が容易とカシ、光源1.ミラー6゜ハーフミラ=1光周
波数変調器7およびレンズ10.13から成る第1の光
結合部と、光検出器9.27およびレンズ20.26か
ら成る光検出部と、レンズ12.15.1B、24.ハ
ーフミラ−17,21,22,23およびミラー16か
ら成る第2の光結合部とをそれぞれ分離設置する事がで
き、かつ能動素子を用いていない光結合部は小型化する
ことができるため、光干渉計の設置の自由率は飛躍的に
向上する。
In this embodiment, four optical fibers are used, but if they are combined into one optical fiber cable 28, wiring will be easier. Mirror 6° half mirror = 1 A first optical coupling section consisting of an optical frequency modulator 7 and a lens 10.13, a photodetecting section consisting of a photodetector 9.27 and a lens 20.26, and a lens 12.15.1B , 24. The second optical coupling section consisting of the half mirrors 17, 21, 22, 23 and the mirror 16 can be installed separately, and the optical coupling section that does not use active elements can be downsized. The freedom of interferometer installation is dramatically improved.

カラスを素材とする光ファイバは一般に温度、外圧によ
ってその長さ、及び屈折率が変化するので、対象物3が
移動しなくても反射光の位相が変化してしまう0この割
合は1.仰えば石英ガラスの屈折率の温度変化は10−
5/”Oであるため、光ファイバの長さを100mとす
ると1度の温度変化に対して1μmの波長誤差を生じる
。信号光の光路と参照光の光路にそれぞれ光ファイバ1
1.14を配置したこの実施例ではおのおのの光フアイ
バ特性の変動に基づく位相量の変動を補償することがで
きる。
Since the length and refractive index of optical fibers made of glass generally change depending on temperature and external pressure, the phase of reflected light changes even if the object 3 does not move.This ratio is 1. In other words, the temperature change in the refractive index of silica glass is 10-
5/"O, so if the length of the optical fiber is 100 m, a wavelength error of 1 μm will occur for 1 degree temperature change. Optical fiber 1 is installed in the optical path of the signal light and the optical path of the reference light.
In this embodiment in which 1.14 is arranged, it is possible to compensate for variations in the phase amount due to variations in the characteristics of each optical fiber.

ところで第1の実施例では光ファイバ11.14の特性
の相違が、光検出器9の出力信号の位相変化として現れ
る。しかし光検出器27も光ファイバ11.14の出力
光、を合成して干渉した光を検出するので、光検出器2
7の出力信号の位相を基準として光検出器90位相変化
を測定すれば、自と光ファイバ11.14の特性の相違
にもとづくを通過したことKよる位相変化は完全に補償
されるO なお光ファイバ19.25を配置したことによる光検出
器9.27それぞれの出力信号に現れる位相変化の差は
、光ファイバ11.14を通過したことKよる位相変化
の差に比べれば無視できる程小さい。
By the way, in the first embodiment, the difference in the characteristics of the optical fibers 11 and 14 appears as a phase change in the output signal of the photodetector 9. However, since the photodetector 27 also combines the output lights of the optical fibers 11 and 14 and detects the interfered light, the photodetector 27
If the phase change of the photodetector 90 is measured using the phase of the output signal of the optical fiber 11 and 14 as a reference, the phase change due to the optical fiber passing through the optical fiber 11 and 14 will be completely compensated for. The difference in phase changes appearing in the output signals of the photodetectors 9.27 due to the arrangement of the fibers 19.25 is so small that it can be ignored compared to the difference in phase changes caused by passing through the optical fibers 11.14.

第3図は本発明の第2の実施例を示すプロ、り図である
FIG. 3 is a diagram showing a second embodiment of the present invention.

本実施例では、第1の光ファイバ11.第2の光ファイ
バ14を通過する光周波数差fの2つの光を第2の光結
合部であるハーフミラ−17で合成し、第3の光ファイ
バ19を介して光検出器9で受光する。この光検出器9
の出力信号の位相を検出して対象物3までの距離を測定
する0第1゜第2の光ファイバ11.14を用いた効果
は第1の実施例と同じである0 本実施例では光ファイバ11.14の特性の相違かはと
んど無視できる場合、光検出器27は光周波数変調器7
の温度特性によって現われる光検出器9の出力信号位相
の変動を補償するために使用されている。すなわち、ハ
ーフミラ−31,32゜34と全反射ミラー33で、周
波数差f02つの光信号の一部を取り出して合成し干渉
させ、その合成光を光検出器27で受光する。その出力
信号位相量には光周波数変調器7の特性変動による変化
分も含まれるので、光検出器27の出力信号の位相を基
準として光検出器9の出力信号位相変化を測定すれば、
自と光周波数変調器7を通過したことによる位相変化は
完全に補償される。もし、光周波数変調器7の特性が安
定していれば、光検出器27は不要である。
In this embodiment, the first optical fiber 11. Two lights having an optical frequency difference f passing through the second optical fiber 14 are combined by a half mirror 17, which is a second optical coupling part, and received by the photodetector 9 via a third optical fiber 19. This photodetector 9
The effect of using the second optical fiber 11.14 is the same as in the first embodiment.In this embodiment, the optical If the difference in the characteristics of the fibers 11 and 14 can be ignored, the photodetector 27 is the optical frequency modulator 7.
This is used to compensate for fluctuations in the output signal phase of the photodetector 9 caused by the temperature characteristics of the photodetector 9. That is, the half mirrors 31, 32° 34 and the total reflection mirror 33 take out a part of the two optical signals with a frequency difference f0, combine them, interfere with each other, and the combined light is received by the photodetector 27. Since the output signal phase amount includes changes due to characteristic fluctuations of the optical frequency modulator 7, if the output signal phase change of the photodetector 9 is measured using the phase of the output signal of the photodetector 27 as a reference,
The phase change caused by passing through the optical frequency modulator 7 is completely compensated for. If the characteristics of the optical frequency modulator 7 are stable, the photodetector 27 is not necessary.

以上述べた第1.第2の実施例の光ファイバ11.14
としては位相特性のよいシングルモード光ファイバを使
用すれば、光検出部での信号の特性を改善することがで
きる。
The first point mentioned above. Optical fiber 11.14 of the second embodiment
However, if a single mode optical fiber with good phase characteristics is used, the characteristics of the signal at the photodetector can be improved.

なお、第2の結合、部で信号光と参照光を干渉させるた
め、光周波数変調器7で与える周波数差fはあまル大き
くてはいけない。たとえば光源1にHe−Neレーザ(
出射光の周波数を約400テラHz )を使用するとき
、fは40MHzとする。
Note that the frequency difference f provided by the optical frequency modulator 7 must not be too large in order to cause interference between the signal light and the reference light in the second coupling section. For example, the light source 1 is a He-Ne laser (
When the frequency of the emitted light is approximately 400 terahertz (400 terahertz), f is 40 MHz.

また、第1の結合部に使用した光源11d、Jl、−波
長の光を発生するものであったが、光源1が所定の周波
数差fを有する第1.第2の光を発生するものであれば
、光周波数変調器7は不要となる。
Furthermore, although the light source 11d used in the first coupling section generates light with a wavelength of -Jl, the light source 1 has a predetermined frequency difference f. If the second light is generated, the optical frequency modulator 7 is not necessary.

上記実施例では、対象物までの距離を光検出器9の出力
信号位相iiに対応させて距離測定する場合について説
明したが、測定対象内の光路に温度変化によって光の位
相に変化を与える物体を配置すれば、塩度の測定ができ
、外部圧力によって光の位相が変化するものを配置すれ
ば、その圧力の測定が可能である。
In the above embodiment, the case where the distance to the object is measured by making it correspond to the output signal phase ii of the photodetector 9 has been explained. If you place one, you can measure the salinity, and if you put one that changes the phase of light depending on the external pressure, you can measure the pressure.

(発明の効果) 以上詳述したように本発明によれば、一定の周波数差を
もった2種類の光を送出する光発生部と、参照光と信号
光とを干渉するよう合成する光結合部と、合成光を検出
する光検出部とがそれぞれ第1、第2.第3の光ファイ
バで分離されるので、光干渉計設置の自由度が増す。ま
た、使用する光7、アイバの特性変化が測定結果に及ぼ
すことがほとんどなく、高精度な測定が保証される。
(Effects of the Invention) As detailed above, according to the present invention, there is provided a light generating section that sends out two types of light having a certain frequency difference, and an optical coupling that combines a reference light and a signal light so as to interfere with each other. and a light detection section for detecting the combined light, respectively. Since it is separated by the third optical fiber, the degree of freedom in installing the optical interferometer increases. Furthermore, changes in the characteristics of the light 7 and the eyeglass used have almost no effect on the measurement results, ensuring highly accurate measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光干渉計を示すプロ、り図、第2図は本
発明の第1の実施例を示すプロ、り図、第3図は本発明
の第2の実施例を示すブロック図である。      
Figure 1 is a diagram showing a conventional optical interferometer, Figure 2 is a diagram showing a first embodiment of the present invention, and Figure 3 is a block diagram showing a second embodiment of the present invention. It is a diagram.

Claims (2)

【特許請求の範囲】[Claims] (1)第1、第2、第3および第4の光ファイバと、互
いに所定の周波数差fを有する第1および第2の光をそ
れぞれ前記第1および第2の光ファイバに導びく第1の
光結合部と、前記第1の光ファイバからの出力が所定距
離伝搬して戻ってきた信号光と前記第2の光ファイバか
らの出力とを干渉するように合成し前記第3の光ファイ
バに導き、また前記第1の光ファイバからの出力と前記
第2の光ファイバからの出力とを干渉するように合成し
前記第4の光ファイバに導く第2の光結合部と、前記第
3の光ファイバから出力する干渉光を検出する第1の光
検出器と、前記第4の光ファイバから出力する干渉光を
検出する第2の検出器とを含み、前記第1、第2の光検
出器から出力する周波数fの電気信号の位相を測定する
ことによって伝搬路の物理量を測定する干渉計。
(1) first, second, third, and fourth optical fibers, and a first light beam that guides first and second lights having a predetermined frequency difference f to the first and second optical fibers, respectively; and an optical coupling unit that combines the output from the first optical fiber after propagating a predetermined distance and returning the signal light and the output from the second optical fiber so as to interfere with each other, and connects the third optical fiber to the third optical fiber. a second optical coupling section that combines the output from the first optical fiber and the output from the second optical fiber so as to interfere with each other and guides the output to the fourth optical fiber; a first photodetector that detects interference light output from the fourth optical fiber; and a second detector that detects interference light output from the fourth optical fiber; An interferometer that measures physical quantities in a propagation path by measuring the phase of an electrical signal of frequency f output from a detector.
(2)第1、第2および第3の光ファイバと、互いに所
定の周波数差fを有する第1および第2の光をそれぞれ
前記第1および第2の光ファイバに導びく第1の光結合
部と、前記第1の光ファイバからの出力が所定距離伝搬
して戻ってきた信号光と前記第2の光ファイバからの出
力とを干渉するように合成し前記第3の光ファイバに導
く第2の光結合部と、前記第3の光ファイバから出力す
る干渉光を検出する光検出器とを含み、前記光検 出器から出力する周波数fの電気信号の位相を測定する
ことによって伝搬路の物理量を測定する干渉計。
(2) a first optical coupling with a first, second, and third optical fiber and guiding first and second lights having a predetermined frequency difference f to the first and second optical fibers, respectively; a third optical fiber that combines the signal light from the first optical fiber that has propagated a predetermined distance and returned and the output from the second optical fiber so as to interfere with each other, and guides the signal light to the third optical fiber; 2, and a photodetector for detecting the interference light output from the third optical fiber, and detects the propagation path by measuring the phase of the electrical signal of frequency f output from the photodetector. An interferometer that measures physical quantities.
JP15614684A 1984-07-26 1984-07-26 Optical interferometer Pending JPS6134403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15614684A JPS6134403A (en) 1984-07-26 1984-07-26 Optical interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15614684A JPS6134403A (en) 1984-07-26 1984-07-26 Optical interferometer

Publications (1)

Publication Number Publication Date
JPS6134403A true JPS6134403A (en) 1986-02-18

Family

ID=15621332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15614684A Pending JPS6134403A (en) 1984-07-26 1984-07-26 Optical interferometer

Country Status (1)

Country Link
JP (1) JPS6134403A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6407244B1 (en) 2000-01-26 2002-06-18 Gemin X Biotechnologies Inc. Pyrrole-type compounds, compositions, and methods for treating cancer or viral diseases
US7425553B2 (en) 2003-05-30 2008-09-16 Gemin X Pharmaceuticals Canada Inc. Triheterocyclic compounds, compositions, and methods for treating cancer or viral diseases
US7491745B2 (en) 2000-01-26 2009-02-17 Gemin X Pharmaceuticals Canada Inc. Pyrrole-Type compounds, compositions and methods for treating cancer or viral disease
JP2009109393A (en) * 2007-10-31 2009-05-21 Yokogawa Electric Corp Interferometer and wavelength measurement device
WO2013082247A1 (en) * 2011-12-01 2013-06-06 University Of Rochester Interferometer, system, and method of use
JP2019523403A (en) * 2016-07-29 2019-08-22 シャンハイ マイクロ エレクトロニクス イクイプメント(グループ)カンパニー リミティド Diffraction grating measuring device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54156661A (en) * 1978-05-31 1979-12-10 Hiroshi Takasaki Twoowave rectangular straight polarization beat counting type light wave interferometer
JPS57173704A (en) * 1981-04-20 1982-10-26 Nippon Telegr & Teleph Corp <Ntt> Highly stable interferometer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54156661A (en) * 1978-05-31 1979-12-10 Hiroshi Takasaki Twoowave rectangular straight polarization beat counting type light wave interferometer
JPS57173704A (en) * 1981-04-20 1982-10-26 Nippon Telegr & Teleph Corp <Ntt> Highly stable interferometer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6407244B1 (en) 2000-01-26 2002-06-18 Gemin X Biotechnologies Inc. Pyrrole-type compounds, compositions, and methods for treating cancer or viral diseases
US6602879B2 (en) 2000-01-26 2003-08-05 Gemin X Biotechnologies Inc. Pyrrole-type compounds, compositions, and methods for treating cancer or viral diseases
US7491745B2 (en) 2000-01-26 2009-02-17 Gemin X Pharmaceuticals Canada Inc. Pyrrole-Type compounds, compositions and methods for treating cancer or viral disease
US7425553B2 (en) 2003-05-30 2008-09-16 Gemin X Pharmaceuticals Canada Inc. Triheterocyclic compounds, compositions, and methods for treating cancer or viral diseases
US7709477B2 (en) 2003-05-30 2010-05-04 Gemin X Pharmaceuticals Canada Inc. Methods for treating cancer
US8420638B2 (en) 2003-05-30 2013-04-16 Gemin X Pharmaceuticals Canada Inc. Triheterocyclic compounds and compositions thereof
JP2009109393A (en) * 2007-10-31 2009-05-21 Yokogawa Electric Corp Interferometer and wavelength measurement device
WO2013082247A1 (en) * 2011-12-01 2013-06-06 University Of Rochester Interferometer, system, and method of use
US9518816B2 (en) 2011-12-01 2016-12-13 University Of Rochester Dual beam splitter interferometer measuring 3 degrees of freedom, system and method of use
JP2019523403A (en) * 2016-07-29 2019-08-22 シャンハイ マイクロ エレクトロニクス イクイプメント(グループ)カンパニー リミティド Diffraction grating measuring device

Similar Documents

Publication Publication Date Title
JP4316691B2 (en) Device for measuring excursion
JP2015111160A (en) Compact fiber optic geometry for counter chirp fmcw coherent laser rader
US20230408250A1 (en) Heterodyne fiber interferometer displacement measuring system and method
JPH0353566B2 (en)
JPS62235506A (en) Differential plane-mirror interferometer system
US4818071A (en) Fiber optic doppler anemometer
JPS62233708A (en) Angle measuring plane-mirror interferometer system
JPH03180704A (en) Laser interference gauge
US4380394A (en) Fiber optic interferometer
CN104634370A (en) Laser-based sensor
JPS6134403A (en) Optical interferometer
JPS6018727A (en) Optical interferometer
JPS5948668A (en) Optical fiber speedometer
JPS60138484A (en) Distance measuring device
JPH0464030B2 (en)
JPH11325815A (en) Interference length measuring apparatus
JPH076862B2 (en) Optical fiber pressure sensor
JPS58151509A (en) Optical measuring method of surface roughness
JPS5837496B2 (en) Optical fiber length measurement method
JPS60173429A (en) Method and device for measuring dispersion of polarized wave
JPS63195529A (en) Optical fiber hydrophone
SU1227948A1 (en) Interferometer for measuring displacements
JPS6347602A (en) Wave guide type optical displacement sensor
JPS5960212A (en) Optical fiber gyro system
JPS61196103A (en) Displacement meter