【考案の詳細な説明】[Detailed explanation of the idea]
本考案は通気性固体を利用した排熱回収用熱交
換装置に関し、特に加熱流体(一次流体)出口部
での結露防止および伝熱面積の低減を計るのに適
した熱交換装置に係る。
排熱回収熱交換器は、加熱流体としての一次流
体,被加熱流体としての二次流体及び伝熱面積と
で構成され、比較的低温域で流入する一次流体顕
熱を有効に二次流体へ伝達させるものである。こ
の時、一次流体は比較的低温域であり且つ、熱効
率向上の点で殆どこの種の熱交換器は対向流型を
採用している、という2点から一定伝熱面積を経
た一次流体温度はかなり低下され、二次流体入口
部近傍の伝熱パイプ周辺では一次流体はその露点
に達することがある。一次流体は伝熱パイプに有
害なSを含有しており、露点に達するとH2SO4が
生成され、このSO4-2イオンが伝熱パイプの腐蝕
をもたらす。さらに一次流体顕熱を最大限有効に
回収する目的で伝熱面積は最大になるよう設計す
るのが通常であり、この場合、一次流体出口温度
はさらに低下され、従つて腐蝕という悪循環を繰
り返している。即ち現状では熱効率向上の目的で
伝熱面積を増大する一方、一次流体出口に於ける
酸露点による腐蝕防止というのが大きな課題とな
つており、回収メリツトという観点をも考え合わ
せれば、酸露点による腐蝕というのが設計上の重
要な解決課題となつている。
本考案は従来設備に見られるような有害成分を
含んだ一次流体の酸露点腐蝕を防止すべく通気性
固体を設置して、一次流体出側顕熱をさらに有効
に利用することを目的とするものである。この通
気性固体設置により回収される一次流体出口顕熱
(輻射熱として回収)を二次流体入口伝熱パイプ
へ照射し、パイプを昇温せしめることが主要目的
である。さらに別の目的として設備全体の熱効率
の向上、伝熱面積の低減及び設備費の低減が挙げ
られる。
なお、ここでいう通気性固体壁とは通気性と適
度の圧損を有する多孔質材のことで金属系では、
発泡金属、焼結金属等があり、耐火物系ではポー
ラスSiC、アルミナボール結合体等のものがあ
る。
本考案の内容を説明する前に、前記通気性固体
に関する原理を、公知文献である“日径メカニカ
ル”1980,4,14「固体の輻射エネルギーを使つ
て炉の燃料消費率を60%改善」(越後亮三氏)に
基いて以下に説明する。
第1図において燃焼炉煙道のある断面(X=
X1〜X2)に通気性固体壁を設置した場合の熱バラ
ンスを考える。
煙道入り口(X=0)で作動ガス(燃焼ガス)
のもつエンタルピρoCpToUo(ただし、ρ:作
動ガス密度、CP:作動ガスの比熱、T:温度、
U:流速)は定常加熱の場合、通気性固体がなけ
れば炉壁貫流熱損失Lwと排ガス損失ρeCpTeUe
となる。一方、通気性固体のある場合、作動ガス
により加熱されて強いふく射エネルギーとして周
囲に射出する。(射出するふく射エネルギーの密
度は一般に気体より固体の方がはるかに大き
い。)
ここで通気性固体層の流れの方向の光学的厚さ
τ0を適当に選び、かつ圧力損失が過大にならな
いよう配慮すると、この系は次のような特徴をも
つ。
1 作動ガスは通気性固体の層を横切るときに非
常に大きなエンタルピ降下を生じ、排ガス温度
を著しく下げる。
2 エンタルピ降下に相当するエネルギーは通気
性固体の層からふく射エネルギーとして射出す
るが、その主要部が作動ガスの上流方向に向き
被熱物の加熱や上流部での作動ガスに吸収され
て有効に利用できる。
3 通気性固体の層での流動抵抗(圧力損失)は
数mmAqのオーダであり、炉操作上の障害には
ならず、むしろ炉内ガス流の流動を適正化(流
量配分)する。
4 通気性固体の層の厚さ(寸法)は材質、幾何
学的構成(充てん率、平均孔径)により決まり
実際には約10mm程度になる。
一般にこの種の通気性固体は多孔質であるため
通気性固体と通過ガス間の熱移動現象は粉粒体の
充填層伝熱に略近似しており、通気性固体の相当
直径が0.1〜0.01mm程度であれば103〜104Kcal/m2
h℃といつた大きな対流熱伝達係数が得られるた
めガス入口側の通気性固体壁表面温度は略瞬間的
にガス温度近くまで加熱されるという特徴を有す
るものである。
したがつて、作動ガスの温度は通気性固体を横
切つて流れるとき急激に降下することになる。
一方、この層内のふく射エネルギーの伝搬は第
2図のようにX軸方向に急激な温度勾配がある場
合、X軸方向だけを考えればよく、X軸に直角な
面内での輪送は無視できる(1次元伝搬近似とい
う)。この層内のふく射エネルギーの輪送は吸
収、散乱、再射出の複雑な過程によつて決まり、
射出エネルギーは局所の温度によつて決まる。高
温の部分から下流方向へ射出されるふく射エネル
ギーは通気性固体の層によつてしや断されるた
め、この層全体から射出するふく射エネルギーの
主要部が流れと逆方向に向く。この傾向は温度降
下が大きいほど強くなる。
本考案は、排熱回収型熱交換器出口側に上述し
た通気性固体を設置することにより一次流体出側
顕熱を輻射熱に還元し、二次流体入口パイプで周
辺に照射することにより該パイプ周辺に従来見ら
れた酸露点腐蝕を防止するものである。
まず従来設備の構成、機能を説明する(第3図
参照)。加熱流体としての一次流体1は巾広い温
度域で熱交換器2へ流入する。この一次流体1は
排熱回収設備では、250〜300℃の温度域のものも
ある。熱交換器2へ流入した一次流体1は熱交換
器内部3に設置された伝熱パイプ4と熱交換を行
う。伝熱パイプ4は熱効率向上のため低沸点流体
が二次流体として使用される(例えばフロン,サ
ームSなど)。所定の熱交換を終えた一次流体は
熱交換器出口5に達し、排ガス管6へ流れる。熱
交換器出口5に於いては、二次流体7が約100℃
でパイプ8より送り込まれ、伝熱パイプ9を通過
する。伝熱パイプ9の周辺に於ける一次流体1は
既に熱放出を終えた後のため温度は150℃位迄降
下している。この状態の一次流体とほぼ100℃の
伝熱パイプ9とが接触すると、一次流体はさらに
温度降下する。一次流体1は有害成分としてSを
含有しており、この流体の露点は100℃位であ
る。従つて伝熱パイプ9との接触により温度降下
させられた一次流体は100℃を下回ると一次流体
中の水蒸気が飽和水蒸気となり、さらに進めば結
露状態を誘発する。
第4図は、対向流型熱交換器2に於ける温度降
下特性を示す。第4図に於いてT1は一次流体1
の熱交換器入口10に於ける温度、T2は一次流
体1の熱交換器出口5に於ける温度、T1′は二次
流体7の熱交換器入口伝熱パイプ9での温度及び
T2′は二次流体7の熱交換器出口25に於ける温
度を示す。この図に於いて、熱効率(即ち温度効
率φ)は、
φT1−T2/T1−T1′
で表わされ、この熱効率を向上させるめにはT2
を下げることが重要である。T2の降下は即ち伝
熱パイプ9周辺にて結露状態を誘発する危険を有
している。従つて、設備の熱効率を上げるために
伝熱面積(伝熱パイプ9及び4により確保される
一次流体1との接触面積)を増加する必要がある
反面、これは又、T2の降下を促進し、結露によ
る伝熱パイプ9の酸腐蝕を助長することになる。
本考案の熱交換装置の構成を第5図に基いて説
明する。
第5図の熱交換器12は第3図のものと同様な
構造の対向流型であり、熱交換器入口から一次流
体(加熱流体)11が供給され、熱交換器出口1
4より排ガス管16を経て排出される。この一次
流体11の通過する容器内部には伝熱パイプ13
が配設され、その入口パイプ18より二次流体
(被加熱流体)17が導入され、出口パイプ20
から排出される。本考案では上記の熱交換器にお
いて、前記熱交換器出口14における伝熱パイプ
13の入口部近傍に通気性固体壁15を設置す
る。該通気性固体壁15は必ず出口15部分に設
けることが必要であるが、それ以外にも伝熱パイ
プの中間位置に配設してもよい。
通気性固体壁15は第8図に示すように、取付
ボルト22および取外し可能な固定板23によつ
て熱交換器内壁に対して着脱可能な構造とするこ
とにより、一次流体11中に含まれるダスト等に
よる目詰りに起因する設備トラブル等を容易に解
決し得る。また、伝熱パイプ13上の最も結露頻
度の高い部分は、風向調整板21を通気性固体1
5上に取付けることにより、効率よく結露防止を
行うことができる(第7図参照)。更に、第9図
に示す如く通気性固体15を分割線24にて複数
個に分割することにより、部分的な取替を可能と
することもできる。
次に本考案の作用を説明する。
一次流体11は対向流型熱交換器12に入り、
伝熱パイプ13と熱交換を行なつた後熱交換器出
口14に達する。ここでさらに新らしく設置され
た通気性固体15を通過し排ガス管16へ抜け出
る。一方、被加熱流体としての二次流体17は入
口パイプ18より送り込まれ、伝熱パイプ19及
び13を経て出口パイプ20より次のシステムへ
供給される。本考案の特徴は、通気性固体15の
設置であり、これにより、熱交換器出口14に達
した一次流体11の保有する顕熱は輻射熱に変換
されこの輻射熱は伝熱パイプ19を加熱し、従つ
て従来、この伝熱パイプ19により誘発された一
次流体11の酸露点到達は回避されることにな
る。第6図は本発明の場合の温度特性を示す。こ
の図に於いてT1,T2,T1′,T2′は従来の熱交換
器特性と同一である。T1″は本発明での二次流体
17の伝熱パイプ19に於ける温度を示す。通気
性固体15を設置することにより伝熱パイプ19
が加熱され、従つて二次流体温度は急上昇し、さ
らにT2はT2″へ降下する。この時温度効率φは
φ=T1−T2″/T1−T1′>T1−T2/T
1−T1′
となつて、従来法より高くなる。
さらに従来法と同一の効率を採用するとすれば
The present invention relates to a heat exchange device for exhaust heat recovery using a breathable solid, and particularly to a heat exchange device suitable for preventing dew condensation at the outlet of a heating fluid (primary fluid) and reducing the heat transfer area. The exhaust heat recovery heat exchanger is composed of a primary fluid as a heating fluid, a secondary fluid as a heated fluid, and a heat transfer area, and effectively transfers the sensible heat of the primary fluid flowing in at a relatively low temperature to the secondary fluid. It is something that is communicated. At this time, the temperature of the primary fluid after a certain heat transfer area is The primary fluid may reach its dew point around the heat transfer pipe near the secondary fluid inlet. The primary fluid contains S, which is harmful to heat transfer pipes, and when the dew point is reached, H 2 SO 4 is produced, and this SO 4-2 ion causes corrosion of heat transfer pipes. Furthermore, in order to recover primary fluid sensible heat as effectively as possible, the heat transfer area is usually designed to be maximized, and in this case, the primary fluid outlet temperature is further reduced, resulting in a repeating vicious cycle of corrosion. There is. In other words, at present, while increasing the heat transfer area for the purpose of improving thermal efficiency, preventing corrosion due to the acid dew point at the primary fluid outlet is a major issue. Corrosion has become an important design issue. The purpose of this invention is to install a breathable solid to prevent acid dew point corrosion of the primary fluid containing harmful components, which is seen in conventional equipment, and to make more effective use of the sensible heat on the outlet side of the primary fluid. It is something. The main purpose is to irradiate the primary fluid outlet sensible heat (recovered as radiant heat) recovered by this air-permeable solid installation to the secondary fluid inlet heat transfer pipe to raise the temperature of the pipe. Further objectives include improving the thermal efficiency of the entire equipment, reducing the heat transfer area, and reducing equipment costs. Note that the breathable solid wall here refers to a porous material that has good air permeability and moderate pressure loss.
There are foamed metals, sintered metals, etc., and refractory materials such as porous SiC and alumina ball composites. Before explaining the content of the present invention, we will explain the principle behind the above-mentioned air permeable solids in the well-known document "Nichisai Mechanical" 1980, 4, 14 "Improving the fuel consumption rate of furnaces by 60% using radiant energy of solids". (Mr. Ryozo Echigo) is explained below. In Figure 1, a cross section with a combustion furnace flue (X=
Consider the heat balance when a breathable solid wall is installed between X 1 and X 2 ). Working gas (combustion gas) at the flue entrance (X=0)
The enthalpy of ρoCpToUo (where ρ: working gas density, CP: specific heat of working gas, T: temperature,
In the case of steady heating, if there is no permeable solid, heat loss through the furnace wall Lw and exhaust gas loss ρeCpTeUe
becomes. On the other hand, if there is a breathable solid, it will be heated by the working gas and emitted into the surroundings as strong radiant energy. (The density of emitted radiant energy is generally much higher in solids than in gases.) Here, the optical thickness τ 0 of the air-permeable solid layer in the flow direction is appropriately selected, and the pressure loss is not excessive. Considering this, this system has the following characteristics. 1 The working gas undergoes a very large enthalpy drop as it traverses the layer of breathable solids, significantly lowering the exhaust gas temperature. 2 The energy corresponding to the enthalpy drop is emitted as radiant energy from the breathable solid layer, but the main part of it is directed upstream of the working gas and is absorbed by the working gas in the upstream area to heat the heated object and become effective. Available. 3. The flow resistance (pressure loss) in the breathable solid layer is on the order of several mmAq, which does not impede the operation of the furnace, but rather optimizes the flow of gas in the furnace (flow distribution). 4. The thickness (dimensions) of the breathable solid layer is determined by the material and geometric configuration (filling ratio, average pore size) and is actually about 10 mm. In general, this type of breathable solid is porous, so the heat transfer phenomenon between the breathable solid and the passing gas is approximately similar to the heat transfer in a packed bed of powder and granules, and the equivalent diameter of the breathable solid is 0.1 to 0.01. If it is about mm, it is 10 3 to 10 4 Kcal/m 2
Since a large convective heat transfer coefficient of h° C. is obtained, the surface temperature of the gas-permeable solid wall on the gas inlet side is heated almost instantaneously to near the gas temperature. Therefore, the temperature of the working gas will drop rapidly as it flows across the breathable solid. On the other hand, when there is a sharp temperature gradient in the X-axis direction as shown in Figure 2, the propagation of radiant energy within this layer only needs to be considered in the X-axis direction; It can be ignored (referred to as one-dimensional propagation approximation). The transport of radiant energy within this layer is determined by a complex process of absorption, scattering, and re-emission.
The injection energy depends on the local temperature. The radiant energy emitted downstream from the hot section is cut off by the layer of breathable solid, so that the main part of the radiant energy emitted from this entire layer is directed in the opposite direction to the flow. This tendency becomes stronger as the temperature drop increases. This invention reduces the sensible heat on the primary fluid outlet side to radiant heat by installing the above-mentioned air permeable solid on the outlet side of the exhaust heat recovery type heat exchanger, and irradiates it to the surrounding area with the secondary fluid inlet pipe. This prevents the acid dew point corrosion that was previously seen in the surrounding area. First, the configuration and functions of conventional equipment will be explained (see Figure 3). The primary fluid 1 as a heating fluid flows into the heat exchanger 2 in a wide temperature range. In some exhaust heat recovery equipment, this primary fluid 1 has a temperature range of 250 to 300°C. The primary fluid 1 that has flowed into the heat exchanger 2 exchanges heat with a heat transfer pipe 4 installed inside the heat exchanger 3. In the heat transfer pipe 4, a low boiling point fluid is used as a secondary fluid to improve thermal efficiency (for example, Freon, Therm S, etc.). The primary fluid that has undergone predetermined heat exchange reaches the heat exchanger outlet 5 and flows into the exhaust gas pipe 6. At the heat exchanger outlet 5, the secondary fluid 7 is at about 100°C.
It is sent from pipe 8 and passes through heat transfer pipe 9. Since the primary fluid 1 around the heat transfer pipe 9 has already finished releasing heat, the temperature has dropped to about 150°C. When the primary fluid in this state comes into contact with the heat transfer pipe 9 at approximately 100° C., the temperature of the primary fluid further decreases. The primary fluid 1 contains S as a harmful component, and the dew point of this fluid is about 100°C. Therefore, when the temperature of the primary fluid whose temperature has been lowered by contact with the heat transfer pipe 9 falls below 100° C., the water vapor in the primary fluid becomes saturated water vapor, and if the temperature continues further, dew condensation occurs. FIG. 4 shows the temperature drop characteristics in the counterflow type heat exchanger 2. In Figure 4, T 1 is the primary fluid 1
T 2 is the temperature of the primary fluid 1 at the heat exchanger outlet 5, T 1 ' is the temperature of the secondary fluid 7 at the heat exchanger inlet heat transfer pipe 9, and
T 2 ' indicates the temperature of the secondary fluid 7 at the heat exchanger outlet 25. In this figure, thermal efficiency (that is, temperature efficiency φ) is expressed as φT 1 −T 2 /T 1 −T 1 ′, and in order to improve this thermal efficiency, T 2
It is important to lower the The drop in T 2 therefore has the risk of inducing dew condensation around the heat transfer pipe 9. Therefore, while it is necessary to increase the heat transfer area (the contact area with the primary fluid 1 ensured by the heat transfer pipes 9 and 4) to increase the thermal efficiency of the equipment, this also promotes a decrease in T 2 However, acid corrosion of the heat transfer pipe 9 due to dew condensation is promoted. The configuration of the heat exchange device of the present invention will be explained based on FIG. 5. The heat exchanger 12 in FIG. 5 is a counter-flow type having a structure similar to that in FIG. 3, and the primary fluid (heating fluid) 11 is supplied from the heat exchanger inlet, and
4 through the exhaust gas pipe 16. A heat transfer pipe 13 is provided inside the container through which the primary fluid 11 passes.
A secondary fluid (heated fluid) 17 is introduced from the inlet pipe 18, and the outlet pipe 20
is discharged from. In the present invention, in the heat exchanger described above, a permeable solid wall 15 is installed near the inlet of the heat transfer pipe 13 at the heat exchanger outlet 14. The air permeable solid wall 15 must be provided at the outlet 15, but it may also be provided at an intermediate position of the heat transfer pipe. As shown in FIG. 8, the air permeable solid wall 15 is included in the primary fluid 11 by having a structure that can be attached to and detached from the inner wall of the heat exchanger using mounting bolts 22 and a removable fixing plate 23. Equipment troubles caused by clogging due to dust etc. can be easily resolved. In addition, in the area on the heat transfer pipe 13 where dew condensation occurs most frequently, the air direction adjusting plate 21 is
5, it is possible to efficiently prevent condensation (see Fig. 7). Furthermore, as shown in FIG. 9, by dividing the breathable solid 15 into a plurality of pieces along a dividing line 24, partial replacement can be made possible. Next, the operation of the present invention will be explained. The primary fluid 11 enters the counterflow heat exchanger 12;
After exchanging heat with the heat transfer pipe 13, it reaches the heat exchanger outlet 14. Here, the gas passes through the newly installed gas permeable solid 15 and exits to the exhaust gas pipe 16. On the other hand, a secondary fluid 17 as a fluid to be heated is sent from an inlet pipe 18, passes through heat transfer pipes 19 and 13, and is supplied to the next system from an outlet pipe 20. A feature of the present invention is the installation of a breathable solid 15, whereby the sensible heat possessed by the primary fluid 11 that has reached the heat exchanger outlet 14 is converted into radiant heat, and this radiant heat heats the heat transfer pipe 19. Conventionally, therefore, the reaching of the acid dew point of the primary fluid 11 induced by this heat transfer pipe 19 is avoided. FIG. 6 shows the temperature characteristics in the case of the present invention. In this figure, T 1 , T 2 , T 1 ′, and T 2 ′ are the same as the conventional heat exchanger characteristics. T 1 ″ indicates the temperature of the secondary fluid 17 in the heat transfer pipe 19 in the present invention. By installing the breathable solid 15, the heat transfer pipe 19
is heated, so the secondary fluid temperature rises rapidly, and T 2 further drops to T 2 ″. At this time, the temperature efficiency φ is φ=T 1 −T 2 ″/T 1 −T 1 ′>T 1 − T 2 /T
1 - T 1 ', which is higher than that of the conventional method. Furthermore, if we adopt the same efficiency as the conventional method,
【表】
法と同一効率を採用し
た時の一次流体出口理
論温度
となり一次流体11の熱交換器出口14に於け
る温度T2″は通気性固体15の設置によりその上
昇分だけ高く設定出来ることになる(上昇分=
T2−T2″)。これは即ち伝熱パイプ13の伝熱
面積の低減が可能であることを示す。
このように本考案によれば、
(1) 伝熱面積を従来法と同一とすれば一次流体1
1の結露防止を達成することが出来、熱効率の
向上を確保出来る。
(2) 熱効率を従来法と同一とすれば、伝熱面積の
低減即ち設備費の低減が達成できる。などのメ
リツトが確保されることになる。[Table] Using the same efficiency as the method
Primary fluid outlet treatment when
The temperature T 2 ″ at the heat exchanger outlet 14 of the primary fluid 11 can be set higher by the increase by installing the breathable solid 15 (increase =
T 2 −T 2 ″). This shows that it is possible to reduce the heat transfer area of the heat transfer pipe 13. As described above, according to the present invention, (1) the heat transfer area is the same as the conventional method; Then, primary fluid 1
It is possible to achieve the prevention of dew condensation (1), and it is possible to ensure an improvement in thermal efficiency. (2) If the thermal efficiency is the same as that of the conventional method, a reduction in the heat transfer area and hence a reduction in equipment costs can be achieved. Benefits such as these will be secured.
【図面の簡単な説明】[Brief explanation of the drawing]
第1図は本考案において用いる通気性固体の原
理を説明するためのモデル図、第2図は通気性固
体層内の輻射の射出,減衰過程を示す模式図、第
3図は従来の排熱回収熱交換器の概略側面図、第
4図は従来の熱交換器における温度特性グラフ、
第5図は本考案の概略側面図、第6図は本考案に
おける温度特性グラフ、第7図は風向調整板付通
気性固体例を示す部分側面図、第8図は通気性固
体取付構造を示す第5図部詳細図、第9図は通
気性固体の正面図である。
11……一次流体、12……対向流型熱交換
器、13,19……伝熱パイプ、14……熱交換
器出口、15……通気性固体、16……排ガス
管、17……二次流体、18……入口パイプ、2
0……出口パイプ、21……風向調整板、22…
…取付ボルト、23……固定板、24……分割
線。
Figure 1 is a model diagram to explain the principle of the breathable solid used in the present invention, Figure 2 is a schematic diagram showing the emission and attenuation process of radiation within the breathable solid layer, and Figure 3 is a diagram of the conventional method for exhaust heat. A schematic side view of a recovery heat exchanger, Figure 4 is a temperature characteristic graph of a conventional heat exchanger,
Fig. 5 is a schematic side view of the present invention, Fig. 6 is a temperature characteristic graph of the present invention, Fig. 7 is a partial side view showing an example of a breathable solid body with a wind direction adjustment plate, and Fig. 8 is a structure for mounting the breathable solid body. FIG. 5 is a detailed view of the section, and FIG. 9 is a front view of the breathable solid. 11...Primary fluid, 12...Counter flow heat exchanger, 13, 19...Heat transfer pipe, 14...Heat exchanger outlet, 15...Breathable solid, 16...Exhaust gas pipe, 17...2 Next fluid, 18... Inlet pipe, 2
0...Outlet pipe, 21...Wind direction adjustment plate, 22...
...Mounting bolt, 23...fixing plate, 24...dividing line.