JPS6133437Y2 - - Google Patents

Info

Publication number
JPS6133437Y2
JPS6133437Y2 JP1981082193U JP8219381U JPS6133437Y2 JP S6133437 Y2 JPS6133437 Y2 JP S6133437Y2 JP 1981082193 U JP1981082193 U JP 1981082193U JP 8219381 U JP8219381 U JP 8219381U JP S6133437 Y2 JPS6133437 Y2 JP S6133437Y2
Authority
JP
Japan
Prior art keywords
flue
heat
temperature
exhaust gas
breathable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981082193U
Other languages
Japanese (ja)
Other versions
JPS57195573U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981082193U priority Critical patent/JPS6133437Y2/ja
Publication of JPS57195573U publication Critical patent/JPS57195573U/ja
Application granted granted Critical
Publication of JPS6133437Y2 publication Critical patent/JPS6133437Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)

Description

【考案の詳細な説明】 本考案は例えば鋼片等を加熱する燃焼炉の排気
設備である煙道に関するものである。
[Detailed Description of the Invention] The present invention relates to a flue that is exhaust equipment for a combustion furnace that heats, for example, steel pieces.

一般に、ビレツト、ブルーム、スラブの如き鋼
片を圧延工程に供する場合には、鋼片を圧延に適
した所要温度に加熱する必要があり、この鋼片加
熱のためにプツシヤ型、ウオーキングビーム型等
の連続式加熱炉が用いられる。このような加熱炉
においては副生ガス、重油等の燃料を空気と混合
してバーナを介して炉内に吹き込んで燃焼させて
いるが、該炉には燃焼排ガスを排出のための排気
設備が連設される。
Generally, when subjecting steel billets, blooms, slabs, etc. to a rolling process, it is necessary to heat the steel billets to a required temperature suitable for rolling. A continuous heating furnace is used. In such a heating furnace, fuel such as by-product gas and heavy oil is mixed with air and blown into the furnace through a burner for combustion, but the furnace is equipped with exhaust equipment to discharge combustion exhaust gas. Continuously installed.

第3図に加熱炉に連設した排気設備の代表的な
例を示すが、図において5は加熱炉、6は加熱炉
5の装入口側端部に連設された排ガス煙道、7は
該煙道6の中間に設置した熱交換装置(レキユペ
レータ)、8は煙道6終端に連設された煙突であ
る。炉内で材料の加熱に供されたガスは、高温の
排ガスとなつて煙道6に送り込まれ、レキユペレ
ータ7にてエヤーブロワ9によつて供給された空
気と熱交換され、温度降下した後煙突8から排出
される。レキユペレータ7において昇温された空
気は、炉に設けたバーナ10の予熱空気として利
用される。
FIG. 3 shows a typical example of exhaust equipment connected to a heating furnace. In the figure, 5 is a heating furnace, 6 is an exhaust gas flue connected to the charging port side end of the heating furnace 5, and 7 is an exhaust gas flue connected to the heating furnace 5. A heat exchange device (requioperator) 8 is installed in the middle of the flue 6, and a chimney 8 is connected to the end of the flue 6. The gas used to heat the material in the furnace becomes high-temperature exhaust gas and is sent into the flue 6, where it is exchanged with the air supplied by the air blower 9 in the requilifier 7, and after its temperature is lowered, it is sent into the chimney 8. is discharged from. The air heated in the recuperator 7 is used as preheated air for a burner 10 provided in the furnace.

しかして、上記煙道6に設置された熱交換装置
7では、燃焼排ガスから熱交換装置への熱移動
は、対流伝熱が主体であるため伝熱効率は一般に
低いとされていた。このため熱交換装置を通過し
た排ガス温度はそれ程低下しないことから、伝熱
効率面での問題点と共に、熱交換装置以後の煙道
ライニング材も比較的高品質の耐火物で構成しな
ければならない。
However, in the heat exchange device 7 installed in the flue 6, heat transfer from the combustion exhaust gas to the heat exchange device is mainly performed by convection heat transfer, and therefore the heat transfer efficiency is generally considered to be low. For this reason, the temperature of the exhaust gas passing through the heat exchanger does not drop that much, which poses problems in terms of heat transfer efficiency, and the flue lining material after the heat exchanger must also be made of a relatively high-quality refractory.

本考案は上述した現状に鑑み熱交換装置の伝熱
効率の改専を図ると共に、熱交換装置通過後の燃
焼排ガスの温度を低下せしめて煙道に対する熱負
荷を低減させることができる燃焼炉の煙道を提供
することを目的とするものである。しかしてこの
目的を達成するための本考案の燃焼炉の煙道は、
排ガス煙道に設置した熱交換装置の下流側に通気
性固体壁を配設し、該通気性固体壁を排ガス流出
路として利用し、ガス通過時の通気性固体壁から
の輻射熱を熱交換装置に受熱せしめると共に、通
気性固体壁下流側の排ガス温度低下を図り、煙道
ライニング材の材質ダウン可能にしたことを特徴
としたものである。
In view of the above-mentioned current situation, the present invention aims to improve the heat transfer efficiency of the heat exchange device, and also reduces the temperature of the combustion exhaust gas after passing through the heat exchange device, thereby reducing the heat load on the flue. The purpose is to provide a path. However, the flue of the combustion furnace of the present invention to achieve the purpose of leverage is
A breathable solid wall is installed on the downstream side of the heat exchange device installed in the exhaust gas flue, and the breathable solid wall is used as an exhaust gas outlet path, and the radiant heat from the breathable solid wall when the gas passes through the heat exchange device. In addition to receiving heat from the air permeable solid wall, the exhaust gas temperature on the downstream side of the permeable solid wall is lowered, and the material of the flue lining material can be reduced.

なお、ここでいう通気性固体壁とは通気性と適
度の圧損を有する多孔質材のことで金属系では発
泡金属、焼結金属等があり、耐火物系ではポーラ
スsic、アルミナボール結合体等のものがある。
Note that the breathable solid wall here refers to a porous material that has good air permeability and moderate pressure loss.Metallic materials include foamed metal, sintered metal, etc., and refractory materials include porous SIC, alumina ball bonding, etc. There is something.

本考案の内容を説明する前に前記通気性固体に
関する原理を、公知文献である“白径メカニカ
ル”1980.4.14「固体の輻射エネルギーを使つて
炉の燃料消費率を60%改善」(越後亮三氏)に基
いて以下に説明する。
Before explaining the content of the present invention, we will explain the principle behind the above-mentioned breathable solids in the well-known document "White Diameter Mechanical", April 14, 1980, "Improving the Fuel Consumption Rate of Furnaces by 60% Using Radiant Energy of Solids" (Ryozo Echigo). The following is an explanation based on Mr.

第1図において燃焼炉煙道のある断面(x=x1
〜x2)に通気性固体壁を設置した場合の熱バラン
スを考える。
In Figure 1, the cross section of the combustion furnace flue (x = x 1
~ x 2 ) Consider the heat balance when a breathable solid wall is installed.

煙道入り口(x=O)で作動ガス(燃焼ガス)
のもつエンタルピρ0CpToUo(ただし、ρ:作
動ガス密度、Cp:作動ガスの比熱、T:温度、
U:流速)は定常加熱の場合、通気性固体がなけ
れば炉壁貫流熱損失Lwと排ガス損失ρeCpTeUe
とになる。一方、通気性固体のある場合、作動ガ
スにより加熱されて強い輻射エネルギーとして周
囲に射出する。(射出する輻射エネルギーの密度
は一般に気体より固体の方がはるかに大きい) ここで通気性固体層の流れ方向の光学的厚さτ
を適当に選び、かつ圧力損失が過大にならない
よう配慮するとこの系は次のような特徴をもつ。
Working gas (combustion gas) at the flue entrance (x=O)
Enthalpy ρ 0 CpToUo (where ρ: working gas density, Cp: specific heat of working gas, T: temperature,
In the case of steady heating, if there is no permeable solid, heat loss through the furnace wall Lw and exhaust gas loss ρeCpTeUe
It becomes. On the other hand, if there is a breathable solid, it will be heated by the working gas and emit strong radiant energy to the surroundings. (The density of the emitted radiant energy is generally much higher in solids than in gases.) Here, the optical thickness of the breathable solid layer in the flow direction τ
If 0 is selected appropriately and care is taken to ensure that the pressure loss does not become excessive, this system has the following characteristics.

(1) 作動ガスは通気性固体の層を横切るときに非
常に大きなエンタルピ降下を生じ、排ガス温度
を著しく下げる。
(1) The working gas undergoes a very large enthalpy drop as it traverses the layer of breathable solids, significantly lowering the exhaust gas temperature.

(2) エンタルピ降下に相当するエネルギーは通気
性固体の層から輻射エネルギーとして射出する
がその主要部が作動ガスの上流方向に向き被熱
物の加熱や上流部での作動ガスに吸収されて温
度降下を防ぎ、有効に利用できる。
(2) The energy corresponding to the enthalpy drop is emitted as radiant energy from the breathable solid layer, but the main part is directed upstream of the working gas and is absorbed by the working gas in the upstream area to heat the heated object and increase the temperature. You can prevent it from falling and use it effectively.

(3) 通気性固体の層での流動抵抗(圧力損失)は
数mmAqのオーダであり、炉操作上の障害には
ならず、むしろ炉内ガス流の流動を適正化(流
量配分)する。
(3) The flow resistance (pressure loss) in the breathable solid layer is on the order of a few mmAq, and does not pose an obstacle to furnace operation, but rather optimizes the gas flow in the furnace (flow distribution).

(4) 通気性固体の層の厚さ(寸法)は材質、幾何
学的構成(充てん率、平均孔径)により決まり
実際には約10mm程度になる。
(4) The thickness (dimensions) of the breathable solid layer is determined by the material and geometric configuration (filling ratio, average pore diameter), and is actually about 10 mm.

一般にこの種の通気性固体は多孔質であるため
通気性固体と通過ガス間の熱移動現象は粉粒体の
充填層伝熱に略近似しており、通気性固体の相当
直径が0.1〜0.01mm程度であれば103〜104Kcal/m2
h℃といつた大きな対流熱伝達係数が得られるた
めガス入口側の通気性固体壁表面温度は略瞬間的
にガス温度近くまで加熱されるという特徴を有す
るものである。
In general, this type of breathable solid is porous, so the heat transfer phenomenon between the breathable solid and the passing gas is approximately similar to the heat transfer in a packed bed of granular material, and the equivalent diameter of the breathable solid is 0.1 to 0.01. If it is about mm, it is 10 3 to 10 4 Kcal/m 2
Since a large convective heat transfer coefficient of h° C. can be obtained, the surface temperature of the gas-permeable solid wall on the gas inlet side is heated almost instantaneously to near the gas temperature.

したがつて作動ガスの温度は通気性固体を横切
つて流れるとき急激に降下することになる。
The temperature of the working gas will therefore drop rapidly as it flows across the permeable solid.

一方、この層内の輻射エネルギーの伝搬は図2
のようにx軸方向に急激な温度勾配がある場合、
x軸方向だけを考えればよく、x軸に直角な面内
での輸送は無視できる(1次元伝搬近似とい
う)。この層内の輻射エネルギーの輸送は吸収、
散乱、再射出の複雑な過程によつて決まり射出エ
ネルギーは局所の温度によつて決まる。高温の部
分から下流方向へ射出される輻射エネルギーは通
気性固体の層によつて遮断されるため、この層全
体から射出する輻射エネルギーの主要部が流れと
逆方向に向く。この傾向は温度降下が大きいほど
強くなる。
On the other hand, the propagation of radiant energy within this layer is shown in Figure 2.
When there is a steep temperature gradient in the x-axis direction, as in
Only the x-axis direction needs to be considered, and transport in a plane perpendicular to the x-axis can be ignored (referred to as one-dimensional propagation approximation). The transport of radiant energy within this layer is absorbed,
It is determined by a complex process of scattering and re-emission, and the emitted energy is determined by the local temperature. Radiant energy emitted downstream from the hot section is blocked by the layer of breathable solid, so that the bulk of the radiant energy emitted from this entire layer is directed against the flow. This tendency becomes stronger as the temperature drop increases.

本考案は上記の通気性固体の輻射エネルギーを
利用すべく、煙道に設置した熱交換装置の下流側
に、通気性固体壁を設けて熱交換装置のエレメン
トと通気性固体壁との形態係数が大きくなるよう
に工夫すれば熱交換装置の伝熱効率を大巾に改善
することができることを見い出したものである。
In order to utilize the radiant energy of the above-mentioned breathable solid, the present invention provides a breathable solid wall on the downstream side of the heat exchange device installed in the flue, and the form factor of the heat exchange device element and the breathable solid wall is It has been discovered that the heat transfer efficiency of the heat exchange device can be greatly improved by devising ways to increase the value.

以下本考案を図面に示す実施例に基いて説明す
る。
The present invention will be explained below based on embodiments shown in the drawings.

第4図は本考案の一例を示す横断面であり、1
は煙道壁、2は該煙道内に配置された熱交換装置
のエレメントであり、その内部を例えば空気が流
通自在になつている。3は前記エレメント2の近
傍でかつ煙道内の排ガス流れ方向の下流側および
側方に設置した通気性固体壁、4は燃焼排ガスの
流れを示している。このようにエレメント2の下
流側を通気性固体壁3で包囲する如く構成する
と、燃焼炉から排出され煙道1中を流れる排ガス
は矢印4の如くエレメント2部分を通つて通気性
固体壁3を通過する。前述した通気性固体の性質
により、排ガスと接した通気性固体壁3の表面は
瞬間的に排ガスと同一温度となり、ガス流れと逆
方向に輻射熱を発し、これがエレメント2に受熱
される。エレメント2内の空気は上流から流れる
排ガスおよび通気性固体壁3からの輻射熱によつ
て加熱されて昇温し、燃焼炉のバーナの予熱空気
として利用される。他方、通気性固体壁3を通過
した排ガスは温度降下し、ダンパを経て煙突から
排出される。
FIG. 4 is a cross section showing an example of the present invention, and 1
2 is a flue wall, and 2 is an element of a heat exchange device disposed within the flue, through which air, for example, can freely flow. Reference numeral 3 indicates a permeable solid wall installed near the element 2 and on the downstream side and side of the exhaust gas flow direction in the flue, and 4 indicates the flow of combustion exhaust gas. When the downstream side of the element 2 is surrounded by the air permeable solid wall 3, the exhaust gas discharged from the combustion furnace and flowing through the flue 1 passes through the element 2 part as shown by the arrow 4 and passes through the air permeable solid wall 3. pass. Due to the above-mentioned properties of the breathable solid, the surface of the breathable solid wall 3 in contact with the exhaust gas instantaneously reaches the same temperature as the exhaust gas, and emits radiant heat in the opposite direction to the gas flow, which is received by the element 2. The air within the element 2 is heated by the exhaust gas flowing from upstream and the radiant heat from the air-permeable solid wall 3 to raise its temperature, and is used as preheating air for the burner of the combustion furnace. On the other hand, the exhaust gas that has passed through the breathable solid wall 3 has a reduced temperature and is discharged from the chimney through the damper.

なお、熱交換装置のエレメントは伝熱効率を考
えて千鳥状配置が好ましい。また、通気性固体壁
3設置以後の煙道壁は上流側と異なり、、排ガス
温度が著しく低下することから例えば鉄皮のみと
いうように簡易な構造でその径も小さく絞つても
よい。
Note that the elements of the heat exchange device are preferably arranged in a staggered manner in consideration of heat transfer efficiency. Further, the flue wall after the installation of the permeable solid wall 3 is different from the upstream side, and since the exhaust gas temperature is significantly lowered, the flue wall may have a simple structure, such as only an iron skin, and its diameter may be narrowed down.

第5図は他の実施例を示すもので、熱交換装置
のエレメント2を煙道軸方向に複数列に配列し、
各列毎にその下流側に複数段階に通気性固体壁3
を配設したものである。高温の排ガスは複数列の
通気性固体壁3を通過するごとに、その後方(上
流側)に向つて輻射熱を発生しエレメント2に受
熱される。この第5図の構造ではガス流れ方向に
複数段階に通気性固体壁3を設置しているため、
非常に伝熱効率が良い。
FIG. 5 shows another embodiment, in which the elements 2 of the heat exchange device are arranged in multiple rows in the flue axis direction,
3 Breathable solid walls in multiple stages downstream of each row
is arranged. Every time the high-temperature exhaust gas passes through the plurality of rows of breathable solid walls 3, it generates radiant heat toward the rear (upstream side) thereof, and the heat is received by the element 2. In the structure shown in Fig. 5, the permeable solid walls 3 are installed at multiple stages in the gas flow direction.
Very efficient heat transfer.

さらに、第6図は本考案の別の実施例を示すも
ので、煙道の軸方向にそつて間隔をおいて通気性
固体壁3を配置し、該通気性固体壁3をはさんで
熱交換装置のエレメント2を列設して構成したも
のである。この例においては通気性固体壁3の上
流側にあるエレメント2村については前記の実施
例と同様に、輻射熱による受熱作用が期待される
が、下流側のエレメントについては通気性固体壁
の裏側(低温側)の冷却作用を果たしている。こ
れは通気性固体の厚みをある値以上とれば低温側
をいかに冷却しても、その高温側の温度は変らな
いという知見による。
Furthermore, FIG. 6 shows another embodiment of the present invention, in which air-permeable solid walls 3 are arranged at intervals along the axial direction of the flue, and heat is heated between the air-permeable solid walls 3. It is constructed by arranging elements 2 of a switching device in a row. In this example, the two elements on the upstream side of the air-permeable solid wall 3 are expected to receive heat through radiant heat, as in the previous example, but the elements on the downstream side are expected to receive heat from the back side of the air-permeable solid wall ( It has a cooling effect on the low temperature side). This is based on the knowledge that if the thickness of the breathable solid is set to a certain value or more, no matter how much the low temperature side is cooled, the temperature on the high temperature side will not change.

以上説明したように本考案の燃焼炉の煙道によ
れば、通気性固体壁の輻射熱を利用できることか
ら、熱交換装置の大巾な伝熱効率の向上が図ら
れ、従来と同一の伝熱面積の場合には従来より非
常に高い伝熱効率が期待でき、又従来と同一の熱
交換率を得ようとする場合には熱交換装置のコン
パクト化が可能となる。さらに、本考案によれば
高温の排ガスを、通気性固体壁を通過後は大巾に
温度降下できるため、以後の煙道壁構造を簡易化
(材質ダウン、耐火物内張りなしの鉄皮のみとい
うように)することができるメリツトもある。
As explained above, according to the flue of the combustion furnace of the present invention, since the radiant heat of the permeable solid wall can be utilized, the heat transfer efficiency of the heat exchange device can be greatly improved, and the heat transfer area is the same as that of the conventional one. In this case, a much higher heat transfer efficiency than before can be expected, and when trying to obtain the same heat exchange rate as before, the heat exchange device can be made more compact. Furthermore, according to this invention, the temperature of high-temperature exhaust gas can be significantly lowered after passing through the permeable solid wall, which simplifies the subsequent structure of the flue wall (down material, only an iron shell without refractory lining). There is also the advantage of being able to do so.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案において用いる通気性固体の原
理を説明するためのモデル図、第2図は通気性固
体層内の輻射の射出、減衰過程を示す模式図、第
3図は燃焼加熱炉の煙道の概略を示す説明図、第
4図、第5図および第6図は本考案のそれぞれ実
施例を示す煙道要部の横断面図である。 1……煙道壁、2……熱交換装置(エレメン
ト)、3……通気性固体壁、4……排ガス流れ、
5……加熱炉、6……煙道、7……レキユペレー
タ、8……煙突、9……エヤーブロウ、10……
バーナ。
Figure 1 is a model diagram to explain the principle of the breathable solid used in the present invention, Figure 2 is a schematic diagram showing the emission and attenuation process of radiation in the breathable solid layer, and Figure 3 is a diagram of the combustion heating furnace. FIGS. 4, 5, and 6 are cross-sectional views of the main parts of the flue, each showing an embodiment of the present invention. 1... Flue wall, 2... Heat exchange device (element), 3... Breathable solid wall, 4... Exhaust gas flow,
5... Heating furnace, 6... Flue, 7... Requiperator, 8... Chimney, 9... Air blow, 10...
Burna.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 燃焼炉の一端に連設され中間に熱交換器を設置
した煙道において、前記熱交換器の下流側に通気
性固体壁を配設し、燃焼排ガスが該通気性固体壁
を通過するようにしたことを特徴とする燃焼炉の
煙道。
In a flue that is connected to one end of the combustion furnace and has a heat exchanger installed in the middle, a breathable solid wall is provided downstream of the heat exchanger so that the combustion exhaust gas passes through the breathable solid wall. The flue of a combustion furnace is characterized by:
JP1981082193U 1981-06-05 1981-06-05 Expired JPS6133437Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981082193U JPS6133437Y2 (en) 1981-06-05 1981-06-05

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981082193U JPS6133437Y2 (en) 1981-06-05 1981-06-05

Publications (2)

Publication Number Publication Date
JPS57195573U JPS57195573U (en) 1982-12-11
JPS6133437Y2 true JPS6133437Y2 (en) 1986-09-30

Family

ID=29877674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981082193U Expired JPS6133437Y2 (en) 1981-06-05 1981-06-05

Country Status (1)

Country Link
JP (1) JPS6133437Y2 (en)

Also Published As

Publication number Publication date
JPS57195573U (en) 1982-12-11

Similar Documents

Publication Publication Date Title
US9611519B2 (en) Process and installation for heating a metallic strip, notably for an annealing
JP2688325B2 (en) Porous matrix, surface combustor-fluid heating device and method for burning gaseous fuel
JP2682361B2 (en) Exhaust heat recovery type combustion device
JP6423102B2 (en) Industrial furnace and its heat utilization method
JPS639002B2 (en)
US4651814A (en) Waste heat recovery apparatus
JPS6133437Y2 (en)
US4249594A (en) High efficiency furnace
US4333524A (en) High efficiency furnace
JPH07305833A (en) Heat-exchanger for radiant tube for heat treatment furnace, and preheating method for combustion air
JPH0735301A (en) Compact-type energy saving boiler
CN103292607B (en) Heat storage and exchange method used for recovering waste heat of smoke with flying ash
CN216408927U (en) Horizontal internal combustion steam boiler with porous ceramic medium combustion
JP5211943B2 (en) Heating furnace exhaust equipment
JPS6021385Y2 (en) Heating furnace with radiant tube
JPH0159520B2 (en)
US3966393A (en) Hot blast stove apparatus
CN2266719Y (en) Screw plate type hot-air furnace
CN208332672U (en) A kind of hot wind furnace structure
US20230324125A1 (en) Heat exchanger and use thereof
JPS6244985Y2 (en)
JPS6042246Y2 (en) radiation tube
TWI640737B (en) Structure of regenerative combustion furnace body
CN2391134Y (en) Atmospheric hot water coal boiler
JPH1150138A (en) Reconstruction of heating furnace and heating furnace