JPH07305833A - Heat-exchanger for radiant tube for heat treatment furnace, and preheating method for combustion air - Google Patents

Heat-exchanger for radiant tube for heat treatment furnace, and preheating method for combustion air

Info

Publication number
JPH07305833A
JPH07305833A JP7000778A JP77895A JPH07305833A JP H07305833 A JPH07305833 A JP H07305833A JP 7000778 A JP7000778 A JP 7000778A JP 77895 A JP77895 A JP 77895A JP H07305833 A JPH07305833 A JP H07305833A
Authority
JP
Japan
Prior art keywords
exhaust gas
heat
combustion air
outer cylinder
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7000778A
Other languages
Japanese (ja)
Inventor
Hiroshi Iida
洋 飯田
Koji Nishimura
幸次 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7000778A priority Critical patent/JPH07305833A/en
Publication of JPH07305833A publication Critical patent/JPH07305833A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Gas Burners (AREA)
  • Air Supply (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

PURPOSE:To realize low NOX combustion and to save energy by a method wherein air preheated at the outer cylinder part of a heat-exchanger is recovered along an inner cylinder and guided to a burner part. CONSTITUTION:Exhaust gas (b) passing the outside of an outer cylinder 10 of a heat- exchanger 4 is heat-exchanged with air (a) for combustion, passing through a space between inner and outer cylinders 11 and 10, in relation of a counterflow. A number of fins 15 on the air side of the outer cylinder 10 are installed on the inner side of the outer cylinder 10 and fins 16 on the exhaust gas side of the outer cylinder 10 are also installed at an exhaust gas discharge part wherein the temperature of exhaust gas is decreased to a comparatively low value. Further, since the temperature of air (a) for combustion is increased to a maximum temperature at the tip part of the heat-exchanger 4, the inner cylinder 11 being a return pipe for the air (a) for combustion forms a double pipe of heat insulation structure, and a takeoff port for the air (a) for combustion is installed adjacently to an exhaust gas discharge port. The air (a) for combustion preheated by the heat-exchanger 4 is fed to a burner through a connection pipe 6 between the heat-exchanger 4 and the burner. This constitution increases the temperature of the air (a) for combustion to a high value and realizes low NOX combustion and saving of energy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コンパクトで高効率な
熱回収を行い、省エネルギーを図るに好適なラジアント
チューブにおける燃焼用空気予熱装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion air preheating device for a radiant tube, which is compact and highly efficient in heat recovery and is suitable for energy saving.

【0002】[0002]

【従来の技術】従来は、金属鋼帯加熱炉等の熱処理炉の
ラジアントチューブ内バーナの燃焼用空気予熱装置は、
図5に示すようにラジアントチューブ1に熱交換器4を
取り付け、熱交換器の内筒11から導入した燃焼用空気
を熱交換器先端部で折り返し伝熱促進用フィンを設置し
た外筒10を流れる際、外筒10の外を流れる高温の排
ガスと並行流で熱交換させて予熱し、バーナに供給する
ようにしていた。(特開昭63−15007号公報) 熱交換器外筒から燃焼用空気を導入し内筒を経由して燃
焼着火バーナへ供給する対向流方式熱交換器も、従来型
熱交換器内の流れ方向を反対方向にしただけのものが一
部実現している。(レキュペレータ付き低NOxラジア
ントチューブバーナ技術資料/(株)OTTOより)
2. Description of the Related Art Conventionally, an air preheating device for combustion of a burner in a radiant tube of a heat treatment furnace such as a metal steel strip heating furnace is
As shown in FIG. 5, the heat exchanger 4 is attached to the radiant tube 1, the combustion air introduced from the inner cylinder 11 of the heat exchanger is folded back at the tip of the heat exchanger, and the outer cylinder 10 having the fins for promoting heat transfer is installed. When flowing, it was preheated by exchanging heat with the high temperature exhaust gas flowing outside the outer cylinder 10 in parallel flow, and supplied to the burner. (Unexamined-Japanese-Patent No. 63-15007) The counterflow type heat exchanger which introduces combustion air from an outer cylinder of a heat exchanger and supplies it to a combustion ignition burner through an inner cylinder also flows in a conventional heat exchanger. Some things have been realized only in the opposite direction. (Technical data of low NOx radiant tube burner with recuperator / from OTTO Co., Ltd.)

【0003】[0003]

【発明が解決しようとする課題】従来のラジアントチュ
ーブの排ガス熱回収部分は(イ)並行流方式での熱回収
であることから予熱空気温度での回収に限度があるこ
と。(ロ)NOxの規制値から燃焼用空気の温度を余り
上げられない。という制限から燃焼用空気は400℃程
度、排熱回収後の排ガス温度も600数十℃であり、エ
ネルギー利用効率の改善という観点からは改善余地が大
いに有る。(図10) すなわち、これまでの熱交換器は燃焼バーナのNOx値
の制約、熱交換方式が並行流であること等により熱交換
器の熱回収率は30%程度であった。
The exhaust gas heat recovery portion of the conventional radiant tube is (a) heat recovery by a parallel flow system, and therefore there is a limit to recovery at the preheated air temperature. (B) The temperature of the combustion air cannot be raised too much from the regulated value of NOx. Due to this limitation, the combustion air has a temperature of about 400 ° C., and the exhaust gas temperature after exhaust heat recovery is 600 tens of degrees Celsius, and there is considerable room for improvement from the viewpoint of improving energy utilization efficiency. (FIG. 10) That is, in the conventional heat exchanger, the heat recovery rate of the heat exchanger was about 30% due to the limitation of the NOx value of the combustion burner, the parallel heat exchange method, and the like.

【0004】このようなラジアントチューブにおいて、
燃焼用空気でもって熱回収強化をはかろうとすれば、従
来の熱交換器内の流れが並行流であることから熱交換器
出口では燃焼用空気温度は排ガス温度を越えられないと
いう限界があり(図10)、これを対向流方式に変え熱
交面積を増大し、熱回収強化に伴うNOx増大に対して
は、燃焼用空気側に排ガスを自己循環することによりN
Ox低減をはかる。また、燃焼用空気取り出し口は熱交
換器の途中のバーナに最も近い部分とし、しかも空気戻
り管部は2重管の断熱構造とし燃焼用空気温度の低下を
防止すると共に、空気取り入れ口から取り出し部までの
間は単純1重管とし熱交換効率を高め、約700℃まで
の排熱回収を可能とする。(図11)
In such a radiant tube,
If it is attempted to enhance the heat recovery with combustion air, there is a limit that the temperature of the combustion air cannot exceed the exhaust gas temperature at the heat exchanger outlet because the flow inside the conventional heat exchanger is a parallel flow. (FIG. 10), the heat exchange area is increased by changing the method to the counter flow method, and the NOx is increased by self-circulation of the exhaust gas to the combustion air side in order to increase NOx due to the enhanced heat recovery.
Aim to reduce Ox. In addition, the combustion air outlet should be located closest to the burner in the middle of the heat exchanger, and the air return pipe should have a double-tube heat insulation structure to prevent the combustion air temperature from dropping and remove it from the air intake. A simple single tube is used between the parts to enhance heat exchange efficiency and enable exhaust heat recovery up to about 700 ° C. (Figure 11)

【0005】本発明の目的は、従来構造のラジアントチ
ューブ内燃焼用空気熱交換器の不具合(熱回収率が低
く、これを高めようとするとNOxが増大する)を改善
するためのものであり、伝熱面積を大きくとり供給燃焼
用空気の温度を高め熱回収量を増大させ、かつ低NOx
を実現し、既存の熱交換器設置部分を大幅に変更するこ
となく、熱交換器とその周辺の一部手直しだけで省エネ
ルギーを可能とするものである。
An object of the present invention is to improve the problems of a conventional air heat exchanger for combustion in a radiant tube, which has a low heat recovery rate and increases NOx when trying to increase it. A large heat transfer area is provided to increase the temperature of the supply combustion air and increase the amount of heat recovery, and low NOx
It is possible to realize energy saving by merely reworking the heat exchanger and its surroundings without significantly changing the existing heat exchanger installation part.

【0006】[0006]

【課題を解決するための手段】本発明はかかる課題を解
決するため、次のような対策を講じるものである。 (1)熱処理炉用ラジアントチューブの排ガス排出管内
部に配設した導入空気予熱用熱交換器において、該熱交
換器を外筒と内筒からなる2重管とし、外筒と内筒とは
ラジアントチューブの炉内側で連通させるとともに、燃
焼用空気供給口を外筒に設け、内筒に予熱した燃焼用空
気取り出し口を、ラジアントチューブの燃料着火バーナ
へのつなぎ管と接続して設けたことを特徴とする。 (2)(1)の熱処理炉用ラジアントチューブの熱交換
器において、外筒の燃焼用空気供給口及び内筒の燃焼用
空気取り出し口とを排ガス排出管の排ガス排出口に隣接
させて配置したことを特徴とする。
The present invention takes the following measures in order to solve such problems. (1) In a heat exchanger for introducing air preheating disposed inside an exhaust gas discharge pipe of a radiant tube for a heat treatment furnace, the heat exchanger is a double tube including an outer cylinder and an inner cylinder, and the outer cylinder and the inner cylinder are The radiant tube was connected to the inside of the furnace, the combustion air supply port was provided in the outer cylinder, and the preheated combustion air outlet in the inner cylinder was connected to the connecting pipe to the fuel ignition burner of the radiant tube. Is characterized by. (2) In the heat exchanger of the radiant tube for heat treatment furnace of (1), the combustion air supply port of the outer cylinder and the combustion air extraction port of the inner cylinder are arranged adjacent to the exhaust gas discharge port of the exhaust gas discharge pipe. It is characterized by

【0007】(3)(1)の熱処理炉用ラジアントチュ
ーブの熱交換器において、外筒の燃焼用空気供給口と排
ガス排出管の排ガス排出口とを隣接させて配置し、内筒
の燃焼用空気取り出し口を前記外筒の先端と排ガス取り
出し口との間に設けたことを特徴とする。 (4)(1)〜(3)において、熱交換器の外筒の燃焼
用空気供給口側の外面に、複数のフィンを設けたことを
特徴とする。 (5)(1)〜(4)において、熱交換器の内筒が2重
管からなり、該2重管の炉内側先端が閉じられ、該2重
管の他端の内側が解放された構造であることを特徴とす
る。 (6)(1)〜(5)において、熱交換器外筒の炉内側
先端に内筒に通ずるエジェクターを設けたことを特徴と
する。
(3) In the heat exchanger of the radiant tube for the heat treatment furnace of (1), the combustion air supply port of the outer cylinder and the exhaust gas discharge port of the exhaust gas discharge pipe are arranged adjacent to each other, and An air outlet is provided between the tip of the outer cylinder and the exhaust gas outlet. (4) In (1) to (3), a plurality of fins are provided on the outer surface of the outer cylinder of the heat exchanger on the combustion air supply port side. (5) In (1) to (4), the inner tube of the heat exchanger is made of a double tube, the furnace inner tip of the double tube is closed, and the inner side of the other end of the double tube is released. It is characterized by a structure. (6) In (1) to (5), an ejector communicating with the inner cylinder is provided at the furnace inner end of the heat exchanger outer cylinder.

【0008】(7)外筒と内筒の2重管からなる熱交換
器を用いて、ラジアントチューブの燃焼用空気を予熱す
る際に、外筒に燃焼用空気を導入し、外筒壁面を通じて
ラジアントチューブ内燃焼排ガスと熱交換させた後、燃
焼用空気を内筒を経由して燃料着火バーナに送ることを
特徴とする。 (8)外筒と内筒の2重管からなる熱交換器を用いて、
ラジアントチューブの燃焼用空気を予熱する際に、外筒
に燃焼用空気を導入し、外筒壁面を通じてラジアントチ
ューブ内燃焼排ガスと熱交換させた後、熱交換器外筒の
炉内側先端に設けたエジェクターから内筒へラジアント
チューブ内の排ガスを導入し、燃焼用空気と排ガスの混
合気体を燃料着火バーナに送ることを特徴とする。
(7) When preheating the combustion air in the radiant tube by using the heat exchanger consisting of the double tube of the outer cylinder and the inner cylinder, the combustion air is introduced into the outer cylinder and passed through the wall surface of the outer cylinder. It is characterized in that after the heat is exchanged with the combustion exhaust gas in the radiant tube, the combustion air is sent to the fuel ignition burner through the inner cylinder. (8) Using a heat exchanger composed of a double tube of an outer cylinder and an inner cylinder,
When preheating the combustion air of the radiant tube, the combustion air was introduced into the outer cylinder, and after heat exchange with the combustion exhaust gas in the radiant tube through the wall surface of the outer cylinder, it was installed at the furnace inner tip of the heat exchanger outer cylinder. The feature is that the exhaust gas in the radiant tube is introduced from the ejector to the inner cylinder, and the mixed gas of the combustion air and the exhaust gas is sent to the fuel ignition burner.

【0009】[0009]

【作用】以下、本発明について詳細に説明する。熱処理
炉におけるラジアントチューブの分散型小容量排ガスの
エネルギーを従来の設備構造を大幅に変更することなく
高温から低温まで、燃焼用空気で熱回収することによ
り、その工程内でクローズしたエネルギーの有効利用を
図れるが、燃焼用空気温度が上昇すると、それだけ燃焼
火炎の温度が上がるためNOxの発生量は増大する。
The present invention will be described in detail below. Effective utilization of energy closed in the process by recovering heat of radiant tube dispersed small capacity exhaust gas in heat treatment furnace with combustion air from high temperature to low temperature without significantly changing the conventional equipment structure. However, if the temperature of the combustion air rises, the temperature of the combustion flame rises accordingly, so that the amount of NOx generated increases.

【0010】熱交換器部分は従来の内筒から空気を導入
し、外筒部分で予熱される並行流タイプではなく、外筒
部分で予熱された空気を内筒を伝って回収しバーナ部分
へ導く対向流タイプを採用するものとする。(図2)通
常排ガスが高温の場合、低温の燃焼用空気側の伝熱を促
進するため、外筒内面には伝熱促進用のフィンを多数設
置するが、さらに熱回収を強化するため熱交換器部分を
炉外側へ延長して伝熱面積を大きくとり、外筒排ガス側
の低温部分にもフィンを設置し、熱回収能力を向上させ
た。(図3)
The heat exchanger portion is not a conventional parallel flow type in which air is introduced from the inner cylinder and is preheated in the outer cylinder portion, but the air preheated in the outer cylinder portion is recovered through the inner cylinder and is transferred to the burner portion. The counter flow type that guides shall be adopted. (Fig. 2) When the exhaust gas is high in temperature, many fins for heat transfer promotion are installed on the inner surface of the outer cylinder to promote heat transfer on the low temperature side of the combustion air. The heat exchanger capacity was improved by extending the exchanger part outside the furnace to increase the heat transfer area and installing fins in the low temperature part on the exhaust gas side of the outer cylinder. (Figure 3)

【0011】総合の熱通過率Kは近似的には 1/K≒
1/α+1/β(α:排ガス側熱伝達率、β:燃焼用空
気側熱伝達率)となり、α=αr +αc (αr :輻射に
よる熱伝達率、αc :対流による熱伝達率)で、図11
に示すように熱回収を強化すると排ガス出口部温度が下
がりαr が大幅に減少することになる。従って、外筒外
側(排ガス側)は輻射による熱伝達率αr が大幅に減少
し熱通過率Kが低下するので、対流による熱伝達率αc
を増すようにフィンの数・長さ・高さを決め設置するこ
とが有効である。
The total heat transfer rate K is approximately 1 / K≈
1 / α + 1 / β (α: exhaust gas side heat transfer coefficient, β: combustion air side heat transfer coefficient), and α = α r + α cr : heat transfer coefficient by radiation, α c : heat transfer coefficient by convection) ), In FIG.
As shown in (4), if the heat recovery is enhanced, the exhaust gas outlet temperature will decrease and α r will decrease significantly. Therefore, on the outside of the outer cylinder (exhaust gas side), the heat transfer coefficient α r due to radiation is greatly reduced and the heat transfer coefficient K is lowered, so the heat transfer coefficient α c due to convection.
It is effective to determine the number, length, and height of the fins so that the number of fins increases.

【0012】ここで、燃焼用空気取り出し口は排ガス排
出口に隣接して配置し、外筒と内筒の熱伸びはラジアン
トチューブ内の炉内側へ逃がす構造(図1)と燃焼用空
気取り出し口は熱交換器先端と空気取り入れ口との中間
部分の燃料着火バーナに最も近い部分とし、燃焼用空気
取り入れ口と取り出し口の間の外筒の熱伸びは燃焼用空
気取り入れ口側へ逃がす構造(図5)とがある。しか
も、内筒を2重管にすることにより、燃焼用空気同士の
熱交換を防止し、熱交換器先端部で最高温度となった空
気温度の低下を防止するものである。(図8)すなわ
ち、内筒の壁面には空気遮熱層を生ぜしめ対流熱伝達を
防ぐと共に、2重管にすることにより輻射熱伝達も防止
し、燃焼用空気温度の保持を図る。
Here, the combustion air outlet is arranged adjacent to the exhaust gas outlet, and the thermal expansion of the outer cylinder and the inner cylinder is released to the inside of the furnace in the radiant tube (FIG. 1) and the combustion air outlet. Is the part closest to the fuel ignition burner in the middle part between the tip of the heat exchanger and the air intake port, and the heat expansion of the outer cylinder between the combustion air intake port and the extraction port is released to the combustion air intake port side ( 5). Moreover, by making the inner cylinder a double tube, heat exchange between the combustion air is prevented, and a decrease in the air temperature that has reached the maximum temperature at the tip of the heat exchanger is prevented. (FIG. 8) That is, an air heat-insulating layer is generated on the wall surface of the inner cylinder to prevent convective heat transfer, and by using a double tube, radiant heat transfer is also prevented and the combustion air temperature is maintained.

【0013】さらに、熱交換器先端部分に15mmφ程
度の吸い込み口を設けエジェクター効果にて燃焼用空気
の導入量に対して20%程度の高温(1000℃程度)
排ガスを燃焼用空気側へ自己循環するものである。(図
2)すなわち、エジェクター12では燃焼用空気側の流
速を高め、その部分での静圧を下げて排ガスを引き込む
ものである。燃焼用空気側は全圧(Pa)=動圧(Pa
d)+静圧(Pas)であり、排ガス側は同様に全圧
(Pg)=動圧(Pgd)+静圧(Pgs)となる。通
常は燃焼用空気側静圧が排ガス側静圧よりも高いが(P
as>Pgs)、エジェクター部燃焼用空気流速Vを大
きくすることによりPasを動圧に変換しPas=Pa
−(ρa 2 /2G)<Pgs[ρa :燃焼用空気密
度、G:重力加速度]とすることが可能であり、この静
圧差(Pgs−Pas)に相当する排ガス動圧ρg 2
/2G[ρg :排ガス密度、v:エジェクター部排ガス
流速]がエジェクター部で発生し、ほぼv×(排ガス導
入ノズル断面積)の排ガス循環が発生することになる。
また、熱交換器最先端部にエジェクターを設置すること
によりラジアントチューブ内排ガス動圧(Pgd)もわ
ずかではあるが循環に寄与することになる。(図4)
Further, a suction port of about 15 mmφ is provided at the tip portion of the heat exchanger, and a high temperature of about 20% (about 1000 ° C.) with respect to the amount of combustion air introduced by the ejector effect.
The exhaust gas self-circulates to the combustion air side. (FIG. 2) That is, in the ejector 12, the flow velocity on the combustion air side is increased and the static pressure at that portion is decreased to draw in the exhaust gas. On the combustion air side, total pressure (Pa) = dynamic pressure (Pa)
d) + static pressure (Pas), and the exhaust gas side similarly has total pressure (Pg) = dynamic pressure (Pgd) + static pressure (Pgs). Normally, the static pressure on the combustion air side is higher than the static pressure on the exhaust gas side (P
as> Pgs), Pas is converted into dynamic pressure by increasing the flow velocity V of the ejector section combustion air, and Pas = Pa
-(Ρ a V 2 / 2G) <Pgs [ρ a : combustion air density, G: gravitational acceleration], and the exhaust gas dynamic pressure ρ g v corresponding to this static pressure difference (Pgs-Pas) 2
/ 2G [ρ g : exhaust gas density, v: ejector part exhaust gas flow velocity] is generated in the ejector part, and exhaust gas circulation of approximately v × (exhaust gas introduction nozzle cross-sectional area) is generated.
Further, by installing an ejector at the most advanced portion of the heat exchanger, the exhaust gas dynamic pressure (Pgd) in the radiant tube contributes to the circulation though it is small. (Figure 4)

【0014】従って、燃焼用空気側の熱交換器先端部分
の折り返し部での流速が増すよう流路を絞り、そこへ必
要とする排ガス循環量を確保するだけの穴径をもった排
ガス導入ノズルを設けると、エジェクター部12で空気
側の静圧と排ガス側の全圧の差に見合って排ガスが燃焼
用空気側に循環する。こうすることにより、排ガス側の
動圧も有効に利用でき排ガス循環用のファンを設置する
必要がなくなり、排ガスの循環量20%でO2 が約18
%となり、排ガス循環をしない場合に比べNOxは約3
0%低減でき発生許容値120ppm以下になる。循環
量が多くなるほどNOx抑制効果は大であるが、あまり
多くすると燃焼が不安定になるので、燃焼用空気量に対
し20〜30%が限界とされている。[火原協会講座
ボイラ/(社)火力原子力発電技術協会]
Therefore, the exhaust gas introducing nozzle having a hole diameter for narrowing the flow passage so as to increase the flow velocity at the folded portion of the tip end portion of the heat exchanger on the side of the combustion air and ensuring a necessary exhaust gas circulation amount therein. By providing, the exhaust gas circulates to the combustion air side in the ejector section 12 in accordance with the difference between the static pressure on the air side and the total pressure on the exhaust gas side. By doing so, the dynamic pressure on the exhaust gas side can be effectively utilized, and it is not necessary to install a fan for circulating the exhaust gas, and O 2 is about 18 when the exhaust gas circulation amount is 20%.
%, NOx is about 3 compared to the case where exhaust gas circulation is not performed.
It can be reduced by 0% and the allowable generation value becomes 120 ppm or less. The greater the circulation amount, the greater the NOx suppressing effect, but if it is too large, combustion becomes unstable, so 20 to 30% is the limit for the combustion air amount. [Firefield Association Lecture Boiler / Thermal Nuclear Power Generation Technology Association]

【0015】即ち、本発明の要旨とするところは、ラジ
アントチューブの排ガス熱交換器において、高温流体
(排ガス)と低温流体(燃焼用空気)の流れの向きは対
向流方式として、対数平均温度差を大きくとり熱回収量
の増大を図り、かつ熱交換器長さを増大させ外筒外側の
低温部にもフィンを強化し排熱回収率を50%程度に迄
高めて省エネルギーを図るものである。熱回収強化に付
随するNOx増大に対しては、熱交換器先端部分での排
ガスの燃焼空気側への自己循環にて燃焼用空気のO2
度を下げ、火炎の燃焼速度を遅らせNOxの発生量を低
減させることにより対応することを特徴とする排熱回収
強化型熱交換燃焼方法である。
That is, the gist of the present invention is that in a radiant tube exhaust gas heat exchanger, the flow directions of the high-temperature fluid (exhaust gas) and the low-temperature fluid (combustion air) are counter-current, and the logarithmic mean temperature difference is used. To increase the amount of heat recovery, increase the length of the heat exchanger, strengthen the fins in the low temperature part outside the outer cylinder, and increase the exhaust heat recovery rate to about 50% to save energy. . To increase NOx due to enhanced heat recovery, the O 2 concentration of the combustion air is reduced by the self-circulation of exhaust gas to the combustion air side at the tip of the heat exchanger, and the combustion speed of the flame is delayed to generate NOx. This is an exhaust heat recovery enhanced heat exchange combustion method characterized in that the amount is reduced.

【0016】[0016]

【実施例】【Example】

実施例1 図1は本発明の実施例で、ラジアントチューブ1は燃料
供給配管3、空気供給配管5、燃料着火バーナ2と排ガ
ス排出管13とを備えている。ここで燃焼用空気はラジ
アントチューブの排ガス排出部に設置された熱交換器4
により予熱され熱交換器部分とバーナ部分とのつなぎ管
6を通して燃料着火バーナ2に導かれる。このラジアン
トチューブ1へは製鉄副生ガスであるコークス炉ガス
(COG)や天然ガス(LNG)等が使われバーナ部で
予熱燃焼用空気でもって燃焼し、ラジアントチューブ内
を通過する間にチューブ外表面から輻射で鋼材等に熱を
与えるものである。熱処理炉14へは被加熱鋼材(冷延
鋼板等)が鋼板装入口より連続的に搬入され、炉内で約
800℃程度に加熱され、鋼材搬出口より取り出され
る。炉内温度は約900℃であり、これに伴い熱交換器
入り側の排ガスbの温度も1000℃程度と高くなる。
この排ガスbを燃焼用空気aと対向させ、熱交換器4に
より熱交換し、燃料着火バーナ2に導いて、燃料cと燃
焼させる。この時、燃焼用空気aが図11のように70
0℃迄予熱された分だけ省エネルギーとなるが、燃焼に
伴うNOxは増大することになる。
Embodiment 1 FIG. 1 is an embodiment of the present invention, in which a radiant tube 1 includes a fuel supply pipe 3, an air supply pipe 5, a fuel ignition burner 2 and an exhaust gas discharge pipe 13. Here, the combustion air is the heat exchanger 4 installed in the exhaust gas discharge part of the radiant tube.
Is preheated by the heat exchanger and is guided to the fuel ignition burner 2 through the connecting pipe 6 between the heat exchanger portion and the burner portion. For the radiant tube 1, coke oven gas (COG) or natural gas (LNG), which is an iron-made by-product gas, is used, which is burned with preheated combustion air in the burner section, and outside the tube while passing through the radiant tube. Radiation from the surface gives heat to steel materials. Steel to be heated (cold-rolled steel plate, etc.) is continuously carried into the heat treatment furnace 14 from the steel plate charging port, heated to about 800 ° C. in the furnace, and taken out from the steel product carrying port. The temperature in the furnace is about 900 ° C, and the temperature of the exhaust gas b on the heat exchanger entrance side also rises to about 1000 ° C.
The exhaust gas b is made to face the combustion air a, heat-exchanged by the heat exchanger 4, guided to the fuel ignition burner 2, and burned with the fuel c. At this time, the combustion air a is 70% as shown in FIG.
Energy is saved by the amount preheated to 0 ° C., but NOx accompanying combustion increases.

【0017】従って、熱交換器4により燃焼用空気aを
排ガスbと熱交換し予熱すると共に排ガスbの一部を熱
交換器先端部分のエジェクター12を通じ燃焼用空気側
へ循環する。つまり排ガスの動圧をも利用した高効率エ
ジェクターを使用すれば、排ガス混入量を効率的に増大
でき燃焼用空気のO2 濃度を18%に低減させ、燃料着
火バーナ2での燃焼速度を遅くすることにより、低NO
x燃焼が可能になる。図4に示すようにエジェクター部
の穴径を最適設計することにより(排ガス導入ノズル
径:約15φ、内筒絞り部径:約35φ)、排ガス循環
量が20%程度となり、排ガス循環をしていない時に比
べ約30%のNOx低減が達成できた。
Therefore, the combustion air a is heat-exchanged with the exhaust gas b by the heat exchanger 4 to be preheated, and a part of the exhaust gas b is circulated to the combustion air side through the ejector 12 at the tip of the heat exchanger. In other words, if a high-efficiency ejector that also uses the dynamic pressure of exhaust gas is used, the amount of exhaust gas mixed can be efficiently increased, the O 2 concentration of combustion air can be reduced to 18%, and the combustion speed in the fuel ignition burner 2 can be reduced. Low NO
x burning becomes possible. By optimally designing the hole diameter of the ejector part as shown in Fig. 4 (exhaust gas introduction nozzle diameter: about 15φ, inner cylinder throttle part diameter: about 35φ), the exhaust gas circulation amount is about 20%, and exhaust gas circulation is performed. A NOx reduction of about 30% was achieved compared to when it was not.

【0018】この熱回収を強化した排ガス自己循環機能
付き熱交換器を図2に示す。熱交換器4の外筒10の外
側を通過する排ガスbは内筒11と外筒10の間を通過
してくる燃焼用空気aと対向流の関係で熱交換するが、
外筒内側には従来通り外筒の空気側フィン15を多数設
置している。今回は熱交換器4を熱処理炉14の外側へ
延長しているので排ガスが比較的低温になる排ガス排出
部にも外筒の排ガス側フィン16を設置している。(図
2、図3)また、燃焼用空気aは熱交換器4の先端部で
最高温度となる故、燃焼用空気戻り管である内筒11を
図8のように断熱構造の2重管とし、燃焼用空気取り出
し口は排ガス排出口に隣接して設置し、つなぎ管6を通
して燃料着火バーナ2へ供給する。(図1) なお、エジェクター効果としての排ガスの循環量は、燃
焼容量が変化しても(1/4〜4/4負荷)約20%の
循環量が安定して得られた。排ガスの循環量は熱交換器
4で熱交換された燃焼用空気のO2 濃度を測定すること
により算出した。
FIG. 2 shows a heat exchanger with an exhaust gas self-circulation function which enhances the heat recovery. The exhaust gas b passing outside the outer cylinder 10 of the heat exchanger 4 exchanges heat with the combustion air a passing between the inner cylinder 11 and the outer cylinder 10 in a counterflow relationship.
A large number of air-side fins 15 of the outer cylinder are installed inside the outer cylinder as usual. Since the heat exchanger 4 is extended to the outside of the heat treatment furnace 14 this time, the exhaust gas side fins 16 of the outer cylinder are also installed in the exhaust gas discharge portion where the exhaust gas has a relatively low temperature. (FIGS. 2 and 3) Further, since the combustion air a has the highest temperature at the tip of the heat exchanger 4, the inner cylinder 11 serving as the combustion air return pipe is replaced with a double pipe having a heat insulating structure as shown in FIG. The combustion air outlet is installed adjacent to the exhaust gas outlet, and is supplied to the fuel ignition burner 2 through the connecting pipe 6. (FIG. 1) As a circulation amount of exhaust gas as an ejector effect, a circulation amount of about 20% was stably obtained even if the combustion capacity was changed (1/4 to 4/4 load). The circulation amount of the exhaust gas was calculated by measuring the O 2 concentration of the combustion air heat-exchanged by the heat exchanger 4.

【0019】実施例2 実施例1の排ガス条件において、図5に示すように、加
熱された燃焼用空気を燃料着火バーナ2へ最短で供給
し、熱交換器及びつなぎ管6での放熱損失を最小にする
ことができる。また、既存設備にこの高効率交換器を適
用した場合、既存のつなぎ管6がそのまま使用できるメ
リットが有る。但し、燃焼用空気取り入れ口と取り出し
口の間の外筒の熱伸びは図6のOリングによる外筒シー
ル部をもつことにより逃がすことになるが熱回収効果が
向上するため、熱交換器の長さが同じ場合には、放熱に
よる温度低下が約50℃防止でき、700℃の燃焼用空
気を得るための熱交換器が(実施例1)よりコンパクト
になる。この時やはり短くなった燃焼用空気の戻り管で
ある内筒11には2重管による断熱構造を採用する。ま
た、NOX 低減のために図2のようにエジェクターを設
け排ガス循環させればNOX 低減が図れる。
Example 2 Under the exhaust gas conditions of Example 1, as shown in FIG. 5, heated combustion air was supplied to the fuel ignition burner 2 in the shortest time to reduce the heat radiation loss in the heat exchanger and the connecting pipe 6. Can be minimized. Further, when this high efficiency exchanger is applied to the existing equipment, there is an advantage that the existing connecting pipe 6 can be used as it is. However, the thermal expansion of the outer cylinder between the combustion air intake port and the discharge port will be escaped by having the outer cylinder seal part by the O-ring in FIG. 6, but the heat recovery effect is improved, so that the heat exchanger When the lengths are the same, the temperature drop due to heat radiation can be prevented by about 50 ° C., and the heat exchanger for obtaining the combustion air at 700 ° C. becomes more compact than that of the first embodiment. At this time, a heat insulating structure with a double pipe is adopted for the inner cylinder 11 which is also a return pipe for the combustion air which has been shortened. Further, in order to reduce NO X , if an ejector is provided as shown in FIG. 2 and exhaust gas is circulated, NO X can be reduced.

【0020】[0020]

【発明の効果】以上説明したように本発明によれば、熱
交換器部分で排ガス自己循環を行い、O2 濃度コントロ
ールが可能なので、燃焼バーナでの低NOx燃焼が実現
できる。従って、NOx発生を押さえる手段が保有でき
るので、高温の排ガスを低温まで熱回収し燃焼用空気を
高温化でき、効果的な省エネルギーが図れる。また、こ
のように省エネルギーを強化すると、燃料及び燃焼用空
気の低減が図られ、さらに、排ガス温度を低下させるた
めに現在行われている空気希釈も無くなり、排気系の排
ガス温度低下と流量低減を実現でき、排ガスブロワー9
の負荷軽減及び熱処理炉配管系のコンパクト化が図れ
る。なお、上記の排ガスを自己循環することにより、バ
ーナ部での燃焼が緩慢となりラジアントチューブ表面温
度分布が平均化され、ラジアントチューブ寿命が長くな
る。
As described above, according to the present invention, exhaust gas self-circulation is performed in the heat exchanger portion and the O 2 concentration can be controlled, so that low NOx combustion in the combustion burner can be realized. Therefore, a means for suppressing the generation of NOx can be provided, so that the heat of the high temperature exhaust gas can be recovered to the low temperature and the temperature of the combustion air can be increased, and effective energy saving can be achieved. Further, if the energy saving is enhanced in this way, the amount of fuel and combustion air is reduced, and further, the air dilution currently being performed to lower the exhaust gas temperature is eliminated, and the exhaust gas temperature and flow rate of the exhaust system are reduced. Can be realized, exhaust gas blower 9
It is possible to reduce the load and reduce the size of the heat treatment furnace piping system. By self-circulating the exhaust gas, the combustion in the burner section becomes slow, the radiant tube surface temperature distribution is averaged, and the radiant tube life is extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す全体構成図(燃焼用空
気取り出し口と排ガス排出口が同じ位置のもの)
FIG. 1 is an overall configuration diagram showing an embodiment of the present invention (combustion air outlet and exhaust gas outlet are at the same position)

【図2】図1の熱回収強化型熱交換器の側面図、2 is a side view of the heat recovery enhanced heat exchanger of FIG.

【図3】熱回収強化型熱交換器の断面図、FIG. 3 is a cross-sectional view of a heat recovery enhanced heat exchanger,

【図4】エジェクター部拡大図、FIG. 4 is an enlarged view of the ejector section,

【図5】本発明の一実施例を示す全体構成図(燃焼用空
気取り出し口が燃料着火バーナ直下に位置するもの)、
FIG. 5 is an overall configuration diagram showing an embodiment of the present invention (combustion air outlet is located directly below a fuel ignition burner),

【図6】熱交中間部より燃焼用空気を取り出す熱交換器
の側面図、
FIG. 6 is a side view of a heat exchanger that takes out combustion air from a heat exchange intermediate portion,

【図7】図5熱交換器の断面図、FIG. 7 is a cross-sectional view of the heat exchanger of FIG.

【図8】内筒の2重管構造を示す図、FIG. 8 is a diagram showing a double pipe structure of an inner cylinder;

【図9】従来の熱交換器の側面図、FIG. 9 is a side view of a conventional heat exchanger,

【図10】従来の熱交換器の温度パターンの例、FIG. 10 shows an example of a temperature pattern of a conventional heat exchanger,

【図11】熱回収強化型熱交換器の温度パターンの例で
ある。
FIG. 11 is an example of a temperature pattern of a heat recovery enhanced heat exchanger.

【符号の説明】[Explanation of symbols]

1 ラジアントチューブ 2 燃料着火バーナ 3 燃料供給配管 4 熱交換器 5 空気供給配管 6 つなぎ管 7 炉壁 8 燃焼用空気ブロワー 9 排ガスブロワー 10 外筒 11 内筒 12 エジェクター 13 排ガス排出管 14 熱処理炉 15 外筒の空気側フィン 16 外筒の排ガス側フィン 17 内筒絞り部 18 排ガス導入ノズル 19 外筒シール部 20 内筒の断熱用円筒管 a 燃焼用空気 b 排ガス c 燃料ガス Pa 燃焼用空気全圧 Pad 燃焼用空気動圧 Pas 燃焼用空気静圧 Pg 排ガス全圧 Pgd 排ガス動圧 Pgs 排ガス静圧 V エジェクター部燃焼用空気流速 v エジェクター部排ガス流速 1 radiant tube 2 fuel ignition burner 3 fuel supply pipe 4 heat exchanger 5 air supply pipe 6 connecting pipe 7 furnace wall 8 combustion air blower 9 exhaust gas blower 10 outer cylinder 11 inner cylinder 12 ejector 13 exhaust gas discharge pipe 14 heat treatment furnace 15 outside Cylinder air side fin 16 Outer cylinder exhaust gas side fin 17 Inner cylinder throttling part 18 Exhaust gas introduction nozzle 19 Outer cylinder seal part 20 Inner cylinder heat insulation cylindrical pipe a Combustion air b Exhaust gas c Fuel gas Pa Combustion air Total pressure Pad Combustion air dynamic pressure Pas Combustion air static pressure Pg Exhaust gas total pressure Pgd Exhaust gas dynamic pressure Pgs Exhaust gas static pressure V Ejector combustion air velocity v Ejector exhaust gas velocity

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 熱処理炉用ラジアントチューブの排ガス
排出管内部に配設した導入空気予熱用熱交換器におい
て、該熱交換器を外筒と内筒からなる2重管とし、外筒
と内筒とはラジアントチューブの炉内側で連通させると
ともに、燃焼用空気供給口を外筒に設け、内筒に予熱し
た燃焼用空気取り出し口を、ラジアントチューブの燃料
着火バーナへのつなぎ管と接続して設けたことを特徴と
する熱処理炉用ラジアントチューブにおける熱交換器。
1. A heat exchanger for preheating introduced air, which is arranged inside an exhaust gas discharge pipe of a radiant tube for a heat treatment furnace, wherein the heat exchanger is a double pipe consisting of an outer cylinder and an inner cylinder, and the outer cylinder and the inner cylinder. Is connected to the inside of the furnace of the radiant tube, the combustion air supply port is provided in the outer cylinder, and the preheated combustion air outlet in the inner cylinder is connected to the connecting pipe to the fuel ignition burner of the radiant tube. A heat exchanger in a radiant tube for a heat treatment furnace, characterized in that
【請求項2】 請求項1記載の熱処理炉用ラジアントチ
ューブの熱交換器において、外筒の燃焼用空気供給口及
び内筒の燃焼用空気取り出し口とを排ガス排出管の排ガ
ス排出口に隣接させて配置したことを特徴とする熱処理
炉用ラジアントチューブにおける熱交換器。
2. The heat exchanger for a radiant tube for a heat treatment furnace according to claim 1, wherein the combustion air supply port of the outer cylinder and the combustion air extraction port of the inner cylinder are adjacent to the exhaust gas discharge port of the exhaust gas discharge pipe. A heat exchanger in a radiant tube for a heat treatment furnace, characterized in that
【請求項3】 請求項1記載の熱処理炉用ラジアントチ
ューブの熱交換器において、外筒の燃焼用空気供給口と
排ガス排出管の排ガス排出口とを隣接させて配置し、内
筒の燃焼用空気取り出し口を前記外筒の先端と排ガス取
り出し口との間に設けたことを特徴とする熱処理炉用ラ
ジアントチューブにおける熱交換器。
3. The heat exchanger for a radiant tube for a heat treatment furnace according to claim 1, wherein the combustion air supply port of the outer cylinder and the exhaust gas discharge port of the exhaust gas discharge pipe are arranged adjacent to each other, and the combustion of the inner cylinder is performed. A heat exchanger in a radiant tube for a heat treatment furnace, wherein an air outlet is provided between the tip of the outer cylinder and the exhaust gas outlet.
【請求項4】 熱交換器の外筒の燃焼用空気供給口側の
外面に、複数のフィンを設けたことを特徴とする請求項
1〜3のいずれかに記載の熱処理炉用ラジアントチュー
ブにおける熱交換器。
4. The radiant tube for a heat treatment furnace according to claim 1, wherein a plurality of fins are provided on the outer surface of the outer cylinder of the heat exchanger on the combustion air supply port side. Heat exchanger.
【請求項5】 熱交換器の内筒が2重管からなり、該2
重管の炉内側先端が閉じられ、該2重管の他端の内側が
解放された構造であることを特徴とする請求項1〜4の
いずれかに記載の熱処理炉用ラジアントチューブにおけ
る熱交換器。
5. The inner tube of the heat exchanger comprises a double tube,
The heat exchange in the radiant tube for a heat treatment furnace according to any one of claims 1 to 4, wherein the furnace inner end of the heavy pipe is closed and the inner end of the other end of the double pipe is opened. vessel.
【請求項6】 熱交換器外筒の炉内側先端に内筒に通ず
るエジェクターを設けたことを特徴とする請求項1〜5
のいずれかに記載の熱処理炉用ラジアントチューブにお
ける熱交換器。
6. An ejector communicating with the inner cylinder is provided at the furnace inner end of the outer cylinder of the heat exchanger.
A heat exchanger in a radiant tube for a heat treatment furnace according to any one of 1.
【請求項7】 外筒と内筒の2重管からなる熱交換器を
用いて、ラジアントチューブの燃焼用空気を予熱する際
に、外筒に燃焼用空気を導入し、外筒壁面を通じてラジ
アントチューブ内燃焼排ガスと熱交換させた後、燃焼用
空気を内筒を経由して燃料着火バーナに送ることを特徴
とする熱処理炉用ラジアントチューブにおける燃焼用空
気予熱方法。
7. When preheating the combustion air in the radiant tube by using a heat exchanger composed of a double tube of an outer cylinder and an inner cylinder, the combustion air is introduced into the outer cylinder and the radiant is passed through the wall surface of the outer cylinder. A method for preheating combustion air in a radiant tube for a heat treatment furnace, characterized by sending combustion air to a fuel ignition burner through an inner cylinder after heat exchange with combustion exhaust gas in the tube.
【請求項8】 外筒と内筒の2重管からなる熱交換器を
用いて、ラジアントチューブの燃焼用空気を予熱する際
に、外筒に燃焼用空気を導入し、外筒壁面を通じてラジ
アントチューブ内燃焼排ガスと熱交換させた後、熱交換
器外筒の炉内側先端に設けたエジェクターから内筒へラ
ジアントチューブ内の排ガスを導入し、燃焼用空気と排
ガスの混合気体を燃料着火バーナに送ることを特徴とす
る熱処理炉用ラジアントチューブにおける燃焼用空気予
熱方法。
8. When preheating the combustion air in the radiant tube by using a heat exchanger composed of a double tube of an outer cylinder and an inner cylinder, the combustion air is introduced into the outer cylinder and the radiant is passed through the wall surface of the outer cylinder. After exchanging heat with the combustion exhaust gas in the tube, the exhaust gas in the radiant tube is introduced into the inner cylinder from the ejector provided at the furnace inner tip of the heat exchanger outer cylinder, and the mixed gas of combustion air and exhaust gas is used as the fuel ignition burner. A method for preheating air for combustion in a radiant tube for a heat treatment furnace, characterized by feeding.
JP7000778A 1994-03-15 1995-01-06 Heat-exchanger for radiant tube for heat treatment furnace, and preheating method for combustion air Pending JPH07305833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7000778A JPH07305833A (en) 1994-03-15 1995-01-06 Heat-exchanger for radiant tube for heat treatment furnace, and preheating method for combustion air

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-42930 1994-03-15
JP4293094 1994-03-15
JP7000778A JPH07305833A (en) 1994-03-15 1995-01-06 Heat-exchanger for radiant tube for heat treatment furnace, and preheating method for combustion air

Publications (1)

Publication Number Publication Date
JPH07305833A true JPH07305833A (en) 1995-11-21

Family

ID=26333845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7000778A Pending JPH07305833A (en) 1994-03-15 1995-01-06 Heat-exchanger for radiant tube for heat treatment furnace, and preheating method for combustion air

Country Status (1)

Country Link
JP (1) JPH07305833A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915421A (en) * 2010-08-25 2010-12-15 常熟喷嘴厂有限公司 Radiant tube combustor
KR20110079636A (en) * 2008-09-10 2011-07-07 파이브스 스탕 Recuperator for a radiating tube burner
JP2011523972A (en) * 2008-06-11 2011-08-25 コルトゥス アーベー Method and apparatus for producing synthesis gas
JP2011241989A (en) * 2010-05-14 2011-12-01 Nippon Steel Engineering Co Ltd Heat exchanger for radiant tube burner
CN102607026A (en) * 2012-03-20 2012-07-25 佛山市科皓燃烧设备制造有限公司 Tubular self-preheating gas burner
CN102636037A (en) * 2011-02-09 2012-08-15 中外炉工业株式会社 Energy recovery device
CN102759108A (en) * 2012-07-31 2012-10-31 中冶南方(武汉)威仕工业炉有限公司 Parallel type air coal dual-preheating radiation tube preheating system and preheating method
US8875694B2 (en) 2010-01-15 2014-11-04 Lennox Industries, Inc. Converging-diverging combustion zones for furnace heat exchanges
EP3242081A1 (en) * 2016-04-27 2017-11-08 Superior Radiant Products Ltd. Optimization of gas fired radiant tube heaters
WO2018061531A1 (en) * 2016-09-29 2018-04-05 Jfeスチール株式会社 Heat exchanger, radiant tube heating device, and method for manufacturing heat exchanger
CN115200014A (en) * 2022-07-01 2022-10-18 北京兴达奇热工控制设备有限公司 Air-gas double-preheating blast furnace gas radiation pipe combustion system

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523972A (en) * 2008-06-11 2011-08-25 コルトゥス アーベー Method and apparatus for producing synthesis gas
US9618200B2 (en) 2008-09-10 2017-04-11 Fives Stein Recuperator for a radiating tube burner
KR20110079636A (en) * 2008-09-10 2011-07-07 파이브스 스탕 Recuperator for a radiating tube burner
JP2012502254A (en) * 2008-09-10 2012-01-26 フイブ・スタン Heat recovery device for Radiant tube burner
US8875694B2 (en) 2010-01-15 2014-11-04 Lennox Industries, Inc. Converging-diverging combustion zones for furnace heat exchanges
JP2011241989A (en) * 2010-05-14 2011-12-01 Nippon Steel Engineering Co Ltd Heat exchanger for radiant tube burner
CN101915421A (en) * 2010-08-25 2010-12-15 常熟喷嘴厂有限公司 Radiant tube combustor
CN102636037A (en) * 2011-02-09 2012-08-15 中外炉工业株式会社 Energy recovery device
JP2012163303A (en) * 2011-02-09 2012-08-30 Chugai Ro Co Ltd Recuperator
KR20150127764A (en) * 2011-02-09 2015-11-18 쥬가이로 고교 가부시키가이샤 Recuperator
CN102607026A (en) * 2012-03-20 2012-07-25 佛山市科皓燃烧设备制造有限公司 Tubular self-preheating gas burner
CN102759108A (en) * 2012-07-31 2012-10-31 中冶南方(武汉)威仕工业炉有限公司 Parallel type air coal dual-preheating radiation tube preheating system and preheating method
EP3242081A1 (en) * 2016-04-27 2017-11-08 Superior Radiant Products Ltd. Optimization of gas fired radiant tube heaters
WO2018061531A1 (en) * 2016-09-29 2018-04-05 Jfeスチール株式会社 Heat exchanger, radiant tube heating device, and method for manufacturing heat exchanger
JPWO2018061531A1 (en) * 2016-09-29 2018-10-04 Jfeスチール株式会社 HEAT EXCHANGER, RADIANT TUBE HEATING DEVICE AND HEAT EXCHANGER MANUFACTURING METHOD
CN109790980A (en) * 2016-09-29 2019-05-21 杰富意钢铁株式会社 The manufacturing method of heat exchanger, radiant tube type heating device and heat exchanger
CN109790980B (en) * 2016-09-29 2021-03-05 杰富意钢铁株式会社 Heat exchanger, radiant tube heating device, and method for manufacturing heat exchanger
US11209225B2 (en) 2016-09-29 2021-12-28 Jfe Steel Corporation Heat exchanger, radiant tube type heating device, and method of manufacturing heat exchanger
CN115200014A (en) * 2022-07-01 2022-10-18 北京兴达奇热工控制设备有限公司 Air-gas double-preheating blast furnace gas radiation pipe combustion system

Similar Documents

Publication Publication Date Title
CN202066385U (en) Novel waste heat recovery and use device
JPH07305833A (en) Heat-exchanger for radiant tube for heat treatment furnace, and preheating method for combustion air
CN102967048B (en) Indirect hot-air furnace using alcohol base liquid fuels
CN110186037A (en) It is a kind of based on the vortex burner being pyrolyzed in advance
CN201242266Y (en) Tube type heating stove
CN105570918A (en) Energy-saving boiler
CN216408927U (en) Horizontal internal combustion steam boiler with porous ceramic medium combustion
US4249594A (en) High efficiency furnace
US4333524A (en) High efficiency furnace
KR850001737B1 (en) Method for drying coal
CN206831460U (en) A kind of steam generator provided with flue gas waste heat recovery apparatus
CN103063044A (en) Rotary hearth furnace flue gas waste heat utilization system and rotary hearth furnace flue gas waste heat utilization method
Nicholson Recuperative and regenerative techniques at high temperature
JPH08338615A (en) Combustion air preheating method and heat exchanger in heat processing furnace radiant tube
CN108613214A (en) The air preheater of good effect of heat exchange
CN212051562U (en) Medium-low temperature heat treatment furnace
JP3282955B2 (en) Hot air circulation system
CN206959673U (en) Heat exchanger fin, heat exchanger and heating forced ventilation formula gas furnace
CN206037002U (en) Condensation steam boiler
CN218120657U (en) Shuttle kiln flue gas waste heat utilization system
CN213596354U (en) Anode furnace waste heat utilization device
CN217358047U (en) Hot air circulating system of aluminum bar heating furnace
CN214582400U (en) Energy-saving low-emission vertical heating furnace for heating medium-high pressure air
CN216513941U (en) Flue gas waste heat utilization system of blast furnace hot blast stove
CN217503983U (en) Integrated hot blast stove

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050111