JPS613324A - Optical information recording medium - Google Patents

Optical information recording medium

Info

Publication number
JPS613324A
JPS613324A JP59122991A JP12299184A JPS613324A JP S613324 A JPS613324 A JP S613324A JP 59122991 A JP59122991 A JP 59122991A JP 12299184 A JP12299184 A JP 12299184A JP S613324 A JPS613324 A JP S613324A
Authority
JP
Japan
Prior art keywords
recording
state
irradiated
optical
optical information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59122991A
Other languages
Japanese (ja)
Inventor
Noboru Yamada
昇 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59122991A priority Critical patent/JPS613324A/en
Publication of JPS613324A publication Critical patent/JPS613324A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To permit ternary recording by selecting suitably the compsn. ratio of a thin film and concn. of additive as well as the radiation intensity and radiation time of a laser beam and using a recording medium which can be varied optionally among the three signal levels: high, middle and low. CONSTITUTION:The laser beam is circularly stopped down and is irradiated instantaneously at relatively strong light power P1 and time T1 on a recording film in a black state. The temp. of the irradiated part is then sharply increased and the irradiated part is melted, then solidified relatively randomly to a white state 4, by which the recording of the level L1 is executed. The power is in succession decreased to P2 and the beam is irradiated during the time T2, then the irradiated part is melted, then solidifed but is made into an ash state 5 on account of a difference in the ultimate temp., by which the recording of L2 is executed. No changes arises even if the beam is further irradiated thereto by decreasing the light power. There is the relations P1>P2, T1=T2 in this stage. Namely, the recording of 0, 1, 2 is made possible simply by controlling the laser power when the laser beam is irradiated on the medium. The three states: the state of high reflectivity, the state of the low reflectivity and the intermediate state thereof are thus respectively independently obtd. by controlling the ultimate temp. and cooling rate.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レーザ光線等を照射して任意に3つの独立し
た安定状態間を可逆的に変化する記録媒体を用いて、高
密度でかつ高品質な書き換え可能な情報記録を行なう方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides high-density and high-quality recording using a recording medium that reversibly changes between three independent stable states by irradiating it with a laser beam or the like. The present invention relates to a method for recording rewritable information.

従来例の構成とその問題点 一般にレーザ光線を照射してヒートモードで記録し、同
じくヒートモードで消去する記録媒体として、加熱昇温
の後に徐冷してその光学定数(屈折率n、消衰係数k)
が増大し、急冷してその光学定数が減少する原理に基づ
くものが知られている。例えば、特公昭47−2689
7号においては、酸素を除くカルコゲナイドガラス薄膜
、G e 1s T e s 1S b 2 S 2 
、  A 82 S 3.  A S 20 S e 
eoG e2゜の提案が有る。また、酸化物の系につい
ても例えば特開昭56−145630号によってTea
x−S e 。
Conventional structure and problems Generally speaking, as a recording medium that records in a heat mode by irradiating a laser beam and erases in a heat mode, the optical constants (refractive index n, extinction coefficient k)
There are known methods based on the principle that the optical constant increases, and then the optical constant decreases upon rapid cooling. For example, Tokuko Sho 47-2689
In No. 7, a chalcogenide glass thin film excluding oxygen, G e 1s T e s 1S b 2 S 2
, A 82 S 3. A S 20 S e
There is a proposal for eoG e2°. Regarding oxide systems, for example, Tea
x-Se.

TeOx−8の提案がされており、更に特願昭58−5
8158号に記載のようにTe−TeO2系に例えばS
n、Ge、Pb、Sb等を添加[−だ系においてもこの
性質が見出されておシ、この系を用いた書き換え可能な
光ディスクが試作されている。(1983LAPAN 
DISPLAY予稿集P46〜P48)これらの記録膜
の記録消去機構は例えば前者の場合には記録前後で原子
の秩序性が変化し、結晶質と非晶質との間で相変態が起
こるものと考えられ、後者の場合には例えば膜中のTe
小粒子の秩序性の変化に加え、結晶粒径の増減が支配的
であると考えられるが、いずれの場合にも安定にとり得
る状態は2つだけであり、0.1の2値記録が行なわれ
てきた。
TeOx-8 has been proposed, and a patent application was filed in 1982-5.
As described in No. 8158, for example, S is added to the Te-TeO2 system.
This property has also been found in systems with additions of n, Ge, Pb, Sb, etc., and rewritable optical discs using this system have been prototyped. (1983LAPAN
DISPLAY Proceedings P46-P48) The recording/erasing mechanism of these recording films is, for example, in the case of the former, the order of atoms changes before and after recording, and a phase transformation occurs between crystalline and amorphous. In the latter case, for example, Te in the film
In addition to changes in the orderliness of small particles, increases and decreases in crystal grain size are thought to be dominant, but in either case there are only two stable states, and binary recording of 0.1 is performed. It's been coming.

1つの記録ビットに3値以上の意味を持たせて同じ大き
さのディスク上に同じビット密度で、よシ大量の情報を
記録しようという提案は既になされている(特開昭58
−137148号)。これは記録薄膜として例えばSb
2Se3.Sb2Te3等、レーザ照射によってヒート
モードで記録が行なわれ、その光学的性質が変化する材
料を単独に、又は積層した構造で用いるものである。
A proposal has already been made to record a large amount of information at the same bit density on a disk of the same size by giving each recording bit three or more meanings (Japanese Patent Laid-Open No. 58
-137148). For example, as a recording thin film, Sb
2Se3. Materials such as Sb2Te3, which are recorded in heat mode by laser irradiation and whose optical properties change, are used singly or in a stacked structure.

つまり、単独層として用いる場合には照射光のパワーを
制御して、比較的弱いパワーで光照射を行ない、局所的
に照射部の光学的特性を変化させ、比較的強いバク−で
光照射を行ない照射部を局所的に溶融、穴を形成させる
という原理によって、2つの異なるレベルの記録を行な
い、未記録レベルを加えて、0,1.2の3つの異なる
レベルを得るものである。
In other words, when used as a single layer, the power of the irradiated light is controlled to irradiate with relatively weak power, locally change the optical characteristics of the irradiated area, and irradiate with relatively strong backlight. Based on the principle of locally melting the irradiated area and forming a hole, two different levels of recording are performed and an unrecorded level is added to obtain three different levels of 0 and 1.2.

また、積層構造を用いる場合には、各層の変化温度の差
を利用して、この場合も照射光のパワーを制御し、比較
的弱いパワーで光照射を行ない、比較的変化温度の低い
層のみを変化させ、比較的強いパワーで光照射を行ない
、比較的変化温度の高い層まで変化させるという原理に
基づき、複数レベルの記録を行なうことができるという
ものであって、この記録媒体を用いることによって、従
来と同じ大きさの光デイスク上に同じトランクピッチ、
同じ記録ビット間隔で、従来の1.5倍の情報量の記録
が可能と々るものである。
In addition, when using a laminated structure, the power of the irradiation light is controlled by utilizing the difference in the temperature change of each layer, and the light is irradiated with a relatively weak power, so that only the layers with a relatively low temperature change are used. Based on the principle of changing the temperature and irradiating light with relatively strong power to change even the layers with relatively high temperature changes, it is possible to perform recording at multiple levels, and using this recording medium The same trunk pitch on the same size optical disk as before,
With the same recording bit interval, it is possible to record 1.5 times the amount of information compared to the conventional method.

ただし、この提案の系は記録時においては膜の不可逆的
な形状変化を伴なうこと、又積層した膜を個々に選択的
に昇温することが困難なことから、この原理に基づく系
を用いて書き換え可能な記録媒体を構成することは出来
ない。
However, this proposed system involves irreversible changes in the shape of the film during recording, and it is difficult to selectively raise the temperature of each stacked film individually. cannot be used to construct a rewritable recording medium.

すなわち3値以上のレベルを有する書き換え可能な記録
媒体、またその記録、消去方法については未だ何の提案
もなされてはいない。
That is, no proposal has yet been made regarding a rewritable recording medium having three or more levels, or a recording and erasing method thereof.

発明の目的 本発明の目的は、記録信号のレベルを従来の2値から3
値として記録情報密度を向上させると同時に、それらの
間で書き換えを自由に行なえるようにする、すなわち3
値の信号レベル間を任意に変態可能な記録媒体を用いて
記録消去する方法を掃供することにある。
Purpose of the Invention The purpose of the present invention is to change the recording signal level from the conventional binary level to three levels.
As a value, it improves the recording information density and at the same time allows for free rewriting between them, that is, 3.
An object of the present invention is to provide a method for sweeping recording and erasing using a recording medium that can change signal levels arbitrarily.

発明の構成 本発明は、例えばTe−Te0系薄膜あるいはTe系カ
ルコゲナイド薄膜を用いて、その組成比及び添加物濃度
を適当に選び、更にレーザ光線の照射強度及び照射時間
を適当に選ぶことで、その到達温度及び冷却速度を制御
して反射率の高い状態、低い状態に加えてその中間状態
の3つの状態をそれぞれ独立して安定に得るものである
Structure of the Invention The present invention uses, for example, a Te-Te0-based thin film or a Te-based chalcogenide thin film, appropriately selects its composition ratio and additive concentration, and further appropriately selects the irradiation intensity and irradiation time of a laser beam. By controlling the temperature reached and the cooling rate, three states of high reflectance, low reflectance, and an intermediate state can be independently and stably obtained.

実施例の説明 本発明は、例えば特願昭58−58158号、特開昭5
6−146630号記載のToとT e O2の混合物
をベースとし、G e + S n + A u等の添
加物質を加えた書き換え可能な光学情報記録薄膜におい
て、あるいは、Teをベースとするカルコゲナイド薄膜
においてその添加物濃度及び記録、消去時のレーザ光線
の照射強度及び照射時間を適当に選ぶことにより構成さ
れ得る。
DESCRIPTION OF EMBODIMENTS The present invention is disclosed in, for example, Japanese Patent Application No. 58-58158 and Japanese Patent Application Laid-open No. 58-581.
In the rewritable optical information recording thin film based on a mixture of To and TeO2 described in No. 6-146630 and added with additives such as Ge + Sn + Au, or in the chalcogenide thin film based on Te. It can be constructed by appropriately selecting the additive concentration and the irradiation intensity and irradiation time of the laser beam during recording and erasing.

前述したように、Te系カルコゲナイドガラス薄膜ある
いはTo−TaO2をベースとしたこれらの系は、いわ
ゆる黒化状態(屈折率n、消衰係数にの大きい状態)と
、白化状態(屈折率n、消衰係数にの小さい状態)の2
つの状態間の可逆的な構造変化を利用して、書き換え可
能な0.1の2値記録を行なうわけであるが、従来はそ
の中間状態は十分安定では無く、その状態が仮に出現し
ても直ちに変化して別の状態に移ってしまっていた。
As mentioned above, these systems based on Te-based chalcogenide glass thin films or To-TaO2 have a so-called black state (a state where the refractive index n and extinction coefficient are large) and a white state (a state where the refractive index n and extinction coefficient are large). (state with small damping coefficient) 2
Reversible structural changes between two states are used to record a rewritable binary value of 0.1, but in the past, the intermediate state was not stable enough, and even if that state appeared, It immediately changed and moved into a different state.

従って、従来は中間状態が生じにくい組成、レーザ〜の
照射条件を選定して来たわけである。
Therefore, conventionally, compositions and laser irradiation conditions have been selected so that intermediate states are unlikely to occur.

本発明においては、むしろこの灰色状態と言うべき中間
状態を積極的に利用すべく、中間状態が安定に存在しや
すい材料組成及び中間状態を現出し、消去するに適した
レーザ光の照射条件を見つけることで、0,1.2の書
き換え可能な記録方法を得るものである。
In the present invention, in order to actively utilize this intermediate state, which can be called a gray state, we set a material composition in which the intermediate state tends to exist stably and laser light irradiation conditions suitable for revealing and erasing the intermediate state. By finding this, a 0, 1.2 rewritable recording method can be obtained.

本発明に適用される記録膜としては、例えばTe−Ge
−3nの3元系+ T e −G e −S n−〇の
4元系、 Te−Ge−8n−Au−0,Te−Ge−
8e−Au−0の6元系、Te−Ge−3n−Au−8
e−0の6元系等が有る。これらTeをベースとする記
録薄膜は、レーザ光線の照射条件を変化させることによ
って、例えば比較的強く短いレーザパルス光を照射する
ことで照射部は局所的に昇温した後、急冷され光学定数
が減少し、比較的弱く、長いレーザパルス光を照射する
ことで照射部はやや広目の範囲に渡って昇温した後、徐
冷され光学定数が増大するという性質を利用して記録、
消去を繰り返し行なうものである。この現象は膜中のT
e原子の状態変化、例えば粒径、結晶性等の変化が主た
る原因であると考えられており、他の元素はその変化に
要する熱的条件、変化量等を修飾するものであると言え
る。例えばTo−Ge−3n−Au−8e−0系におい
ては、GeはToと結合して状態変化(結晶性の進行)
に要する温度を上昇させる。Ssは、系全体の融点を下
げる効果とともに、Teとあらゆる比率で固溶すること
が可能であることからTeの非晶質化に効果的である。
As the recording film applied to the present invention, for example, Te-Ge
-3n ternary system + T e -G e -S n-〇 quaternary system, Te-Ge-8n-Au-0, Te-Ge-
8e-Au-0 six-element system, Te-Ge-3n-Au-8
There are six-element systems such as e-0. These Te-based recording thin films can be produced by changing the laser beam irradiation conditions. For example, by irradiating relatively strong and short laser pulses, the temperature of the irradiated area is locally raised, and then the optical constant is rapidly cooled. By irradiating a relatively weak and long laser pulse light, the temperature of the irradiated area is raised over a rather wide range, and then it is gradually cooled, and the optical constant increases.
Erasing is performed repeatedly. This phenomenon is caused by T in the film.
It is thought that the main cause is a change in the state of the e-atom, such as a change in grain size or crystallinity, and other elements can be said to modify the thermal conditions, amount of change, etc. required for the change. For example, in the To-Ge-3n-Au-8e-0 system, Ge combines with To to change the state (progress of crystallinity).
increase the temperature required for Ss has the effect of lowering the melting point of the entire system and can form a solid solution with Te in any ratio, so it is effective in making Te amorphous.

AuはTeの結晶性が進行する場合の核形成物質として
有用である。0Il−i系全体の熱容量を上げ、熱伝達
率等を下げる。又、Snは光の吸収効果を高める効果と
、場合によってはSe、Auの両方の働きを兼ね備える
。以上のように、それぞれの添加濃度で系全体の熱的変
化特性の制御を行ない、使用目的に応じた特性を得るも
のである。
Au is useful as a nucleating material when Te crystallinity progresses. 0Il-i Increases the heat capacity of the entire system and lowers the heat transfer coefficient, etc. Further, Sn has the effect of increasing the light absorption effect and, in some cases, has the functions of both Se and Au. As described above, the thermal change characteristics of the entire system are controlled by each additive concentration, and characteristics suitable for the purpose of use are obtained.

本発明においては、各種添加物の濃度を検討する中で、
従来2値記録に用いられていた組成に対して結晶核生成
物質と、それに見合う程度の非晶化物質をやや増やした
組成領域において明確な中間状態の存在する3値記録に
適した薄膜組成を得ることができた。
In the present invention, while considering the concentration of various additives,
We created a thin film composition suitable for ternary recording in which a clear intermediate state exists in the composition range, with a slightly increased amount of crystal nucleating material and a commensurate amount of amorphous material compared to the composition conventionally used for binary recording. I was able to get it.

例えばT870G810””201 ”50”10””
20020+”50G810”’6”15o20+ ”
f50G01o”5”””10”5020等がそれであ
る。これらの薄膜はレーザ光の照射条件によって光学定
数の大なる状態(熱状態)。
For example, T870G810""201 "50"10""
20020+"50G810"'6"15o20+"
Examples are f50G01o"5"""10"5020, etc.These thin films have large optical constants (thermal state) depending on the laser beam irradiation conditions.

光学定数の小なる状態(白状前)およびその中間状態(
灰状態)の3状態を自由に変態させることが出来る。こ
こで灰状態とは、例えば一層の記録薄膜の中で、単に非
常に小さい熱状態の領域と、白状前の領域とが混ざり合
っただけのものであるという可能性、又は第2の熱状態
あるいは第2の白状前と言うべき完全に均一な別の相状
態であるという可能性の両方の可能性が考えられるが、
現在のところ機構については明確になっておらず、とに
かく屈折率、消費係数ともに黒、白2つの状態の間に位
置するという事実が存在する。
The state where the optical constant is small (pre-white) and its intermediate state (
You can freely transform between the three states (ash state). Here, the ash state refers to the possibility that, for example, a very small thermal region and a non-white region are mixed together in a recording thin film, or a second thermal state. Alternatively, there are two possibilities: it is a completely homogeneous different phase state, which can be called a second state of affairs.
At present, the mechanism is not clear, but the fact is that both the refractive index and the consumption coefficient are located between the black and white states.

第1図は、本発明の光学情報記録部材を具体化した一実
施例の断面図を示す。基材1としてはアクリル樹脂、塩
化ビニル、ポリカーボネイト等、通常光ディスク製造に
際し用いる一般的な樹脂基材、ガラス基材を用いる。記
録膜2としては例えば特願昭58−58158記載の方
法によって前述、 の系を蒸着、スパッタリング等の方
法で形成する。
FIG. 1 shows a sectional view of an embodiment of the optical information recording member of the present invention. As the base material 1, a general resin base material or glass base material, such as acrylic resin, vinyl chloride, polycarbonate, etc., which is normally used in the production of optical discs is used. The recording film 2 is formed by the method described in Japanese Patent Application No. 58-58158, for example, by vapor deposition, sputtering, or the like.

次に、これらの記録薄膜を用いて書き換え可能な3値記
録を行なう実施例について説明する。
Next, an embodiment in which rewritable three-value recording is performed using these recording thin films will be described.

第2図は上記記録部材の1トランク上に3値信号記録を
おこなった様子と、その再生信号とを模擬的に示したも
のである。蒸着しだての膜は光学定数の低い白状態であ
るが、後述するように、各状態間の変態に必要なレーザ
照射条件が黒→白又は黒→灰の変化を記録に用いるのに
適しており、このため記録前の状態aは、あらかじめ熱
状態3としておく。この時、膜厚を遮光に選ぶことで一
般に反射率を最大、透過率を最小とすることができる、
第2図の場合は反射光を信号とする場合の実施例であっ
て、この場合、記録前の信号レベルはL(3)である。
FIG. 2 schematically shows how a ternary signal is recorded on one trunk of the recording member and its reproduced signal. The freshly deposited film is in a white state with low optical constants, but as will be explained later, the laser irradiation conditions necessary for transformation between each state are suitable for recording changes from black to white or black to gray. Therefore, the state a before recording is set to the thermal state 3 in advance. At this time, by selecting the film thickness to block light, it is possible to generally maximize the reflectance and minimize the transmittance.
The case in FIG. 2 is an embodiment in which reflected light is used as a signal, and in this case, the signal level before recording is L(3).

第2図すは、熱状態のトラック上に3値の記録を行った
後の信号列とその再生信号の様子を示す。熱状態の記録
膜に、レーザ光線を円く絞り込み比較的強い光パワーP
1  でT1  の瞬間時照射すると照射部は急激に昇
温し溶融状態を経て比較的ランダムな状態で固化され白
状態4となりレベルL(1)の記録が行なわれる。引き
つづき光パワーをP2に下げてT2の間照射すると照射
部はやはり急激な昇温を受は溶融状態を通過して固化さ
れるが、到達温度の差が効いてやや秩序の整った状態で
固化し灰状態5となってレベルL(2)の記録が行なわ
れる。更に光パワーを下げて照射しても照射部には何の
変化も生じない。この時、照射時間と照射バし−との間
にはP1>P2、T1−12の関係がある。つまり、照
射するレーザパワーを制御するだけで、0,1,2の記
録をすることができる。ただし、変化に寄与するのは到
達温度を決定するトータルのエネルギー量であるから、
Pl−P2として照射時間を変えてT1>T2とするこ
とでもL (1)、  L (2)の2レベル−・の記
録が可能である。
FIG. 2 shows a signal train and its reproduced signal after ternary values have been recorded on a heated track. A relatively strong optical power P is focused on the recording film in a heated state by focusing the laser beam into a circle.
When irradiated for an instant of time T1 at 1, the temperature of the irradiated area rises rapidly, goes through a molten state, and then solidifies in a relatively random state, becoming a white state 4, and recording at level L(1) is performed. If the optical power is subsequently lowered to P2 and irradiated for a period of T2, the irradiated area will still undergo a rapid temperature rise and will solidify after passing through a molten state, but due to the difference in the reached temperature, it will remain in a somewhat ordered state. It solidifies and becomes ash state 5, and level L (2) is recorded. Even if the light power is further reduced and irradiation is performed, no change occurs in the irradiated area. At this time, the relationship between the irradiation time and the irradiation bar is P1>P2, T1-12. In other words, it is possible to record 0, 1, and 2 simply by controlling the irradiating laser power. However, what contributes to the change is the total amount of energy that determines the temperature reached.
It is also possible to record at two levels, L(1) and L(2), by changing the irradiation time as Pl-P2 so that T1>T2.

第2図Cは、bの信号列上を比較的弱いパワーp2で、
かつ記録時よりもやや長目の時間t2の間照射した後の
様子である。この場合、白状態が灰状態に変化するがそ
の他の部分には何の変化も生じていない。同様にしてb
の信号列上を同様のパワーp1 で、先程よりも長い時
間t3の間照射を行なうと、この信号列は完全に消去さ
れ元のaの状態に復帰することが確認された。
FIG. 2C shows that the signal train b is transmitted with a relatively weak power p2,
This is the state after irradiation for a time t2, which is slightly longer than that during recording. In this case, the white state changes to the gray state, but no change occurs in other parts. Similarly b
It was confirmed that when the signal train is irradiated with the same power p1 for a longer time t3 than before, this signal train is completely erased and the original state a is restored.

又、第3の実験として、照射パワーp3はそのままに、
照射時間をtl  とt2の中間t3に選び第2図すの
信号列上に同様の照射をおこなった結果、灰ビットは黒
化されたが、白ビットに変態したのみであった。照射パ
ワーと照射時間の間には、p、−p2=p3.tl〉t
3〉t2が成立し、これらの結果から、黒トラック上の
白ビット、灰ビットは照射光の照射時間を変えるだけで
、白ピントだけを灰ビットに変換することも、白ビット
のみを灰ビットとして残し、元の灰ビットは熱状態に消
去することも、全てのピットを完全に熱状態へ消去する
ことも可能なことがわかる。この場合も記録時と同様t
1−12−t3とし、照射レーザ光のパワーを変えて、
例えばpl >p3>p2として上記各変態に対応する
ことができる。
In addition, as a third experiment, the irradiation power p3 was kept as it was,
When the irradiation time was selected to be t3, which is between tl and t2, and similar irradiation was performed on the signal train shown in Figure 2, the gray bits were blackened, but only transformed into white bits. Between the irradiation power and the irradiation time, p, -p2=p3. tl〉t
3> t2 holds, and from these results, it is possible to convert only the white bits to gray bits or convert only white bits to gray bits by simply changing the irradiation time of the irradiation light for the white bits and gray bits on the black track. It can be seen that it is possible to leave the original ash bits as , and erase them to the thermal state, or to completely erase all the pits to the thermal state. In this case, as well as when recording
1-12-t3 and change the power of the irradiated laser beam,
For example, each of the above metamorphoses can be supported by setting pl>p3>p2.

次に、灰状態のトラック上に2値記録を行なう実施例に
ついて説明する。第3図aは未記録状態のトラックであ
って、この場合の信号レベルはL(2)である。bは、
記録後の様子を水子。灰色状態、し記録膜にレーザ光線
を円く絞り込み比較的強い光パワーP3 で瞬時T3照
射すると照射部は急激に昇温し第2図の場合と同様、溶
融状態を得て比較的ランダムな状態で固化され、白状態
レベルL(1)の記録が行なわれる。この時、黒化記録
も、レーザのパワーを下げp3  とし、比較的長い時
間t3照射することで行なうことは可能であるが、白化
記録との間に記録速度の差が大きく生じ、例えば回転し
ているディスク上で同一円周内のトラック上に白、黒双
方の記録を行なうというのは現実的ではない。この信号
列に、記録時よりも比較的弱い光パワーp2で、かつや
や長目のt2の間照射を行なうと、白ビットは消去され
元のaの状態に復帰する。a、  bどちらの場合も更
に長目の照射を行なえばCのような黒化した状態に変態
するこ、とも確かめられた。
Next, an embodiment in which binary recording is performed on a gray track will be described. FIG. 3a shows a track in an unrecorded state, and the signal level in this case is L(2). b is
Mizuko looks at the situation after recording. When the recording film is in a gray state, the laser beam is focused circularly onto the recording film and irradiated instantaneously at T3 with a relatively strong optical power P3, the temperature of the irradiated area rises rapidly and, as in the case of Fig. 2, a molten state is obtained, resulting in a relatively random state. The white state level L(1) is recorded. At this time, blackening recording can also be performed by lowering the laser power to p3 and irradiating for a relatively long time t3, but there will be a large difference in recording speed between whitening recording and, for example, when rotating It is not practical to record both white and black on tracks within the same circumference on a disc with a 3D image. When this signal train is irradiated with an optical power p2 that is relatively weaker than that during recording and for a slightly longer period t2, the white bit is erased and the original state a is restored. It was also confirmed that in both cases a and b, if irradiation was carried out for a longer period of time, it would transform into a blackened state as shown in C.

このことから、灰トラックを基点とする場合には、2値
記録が現実的ではあるが、一般にt2<t3であること
から黒トラックを基点にする場合よりも消去速度が上が
る利点が得られる。
For this reason, when using the gray track as the starting point, binary recording is practical, but since generally t2<t3, there is an advantage that the erasing speed is higher than when using the black track as the starting point.

以上説明したように、黒、灰、白の3つの状態間は、そ
れぞれ照射パワー、照射時間を選ぶことで任意に変態が
可能であることがわかる。
As explained above, it can be seen that it is possible to arbitrarily transform between the three states of black, gray, and white by selecting the irradiation power and irradiation time.

下表はA −) Bの各変態に要する照射条件をまとめ
たものであり各欄中、上側がレーザパワー、下側がレー
ザ照射時間の相対的な関係を表わしている。強弱および
長短は絶対的なレベルではない。
The table below summarizes the irradiation conditions required for each transformation of A-)B, and in each column, the upper side represents the laser power and the lower side represents the relative relationship between the laser irradiation time. Strength, weakness, and length are not absolute levels.

なお、信号再生方式は反射型、透過型のどちらも可能で
あり、透過型の場合は反射型と信号レベルが逆転するだ
けで同様に考えることができる。
Note that the signal reproduction method can be either a reflection type or a transmission type, and in the case of a transmission type, it can be considered in the same way as in the reflection type, only that the signal level is reversed.

発明の効果 本発明によって書き換え可能な3値記録方法が提供され
、従来に増して情報光ディスクにおける記録の高密度化
、あるいは系のコンパクト化が可能となり、例えば画像
処理用、コンピュータのデーター処理等への応用が可能
となった。
Effects of the Invention The present invention provides a rewritable three-value recording method, which enables higher density recording on information optical discs and more compact systems than ever before, making it suitable for image processing, computer data processing, etc. became possible to apply.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いる光学情報記録部材の一実施例の
断面図、第2図は本発明の一実施例における3値記録の
信号列と再生信号の様子を示す図、第3図は同他の実施
例における信号列と再生信号の様子を示す図である。 1・・・・・・基材、2・・・・記録膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1基筒 
1 図
FIG. 1 is a cross-sectional view of an embodiment of the optical information recording member used in the present invention, FIG. 2 is a diagram showing the state of a ternary recording signal train and a reproduced signal in an embodiment of the present invention, and FIG. FIG. 7 is a diagram showing a signal train and a reproduced signal in another embodiment. 1... Base material, 2... Recording film. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 figure

Claims (5)

【特許請求の範囲】[Claims] (1)光照射によって3つの独立して安定な状態間を任
意に変態可能な光学情報記録媒体を用いて、書き換え可
能な3値記録を行なうことを特徴とする光学情報記録方
法。
(1) An optical information recording method characterized by performing rewritable three-value recording using an optical information recording medium that can be arbitrarily transformed between three independently stable states by light irradiation.
(2)原子配列の秩序性あるいは結晶粒径が光の照射条
件によって不連続にかつ可逆的に変化し、その光学定数
が変化することを利用した記録媒体を用いることを特徴
とする特許請求の範囲第1項記載の光学情報記録方法。
(2) A patent claim characterized by using a recording medium that utilizes the fact that the orderliness of atomic arrangement or crystal grain size changes discontinuously and reversibly depending on the light irradiation conditions, and the optical constants thereof change. The optical information recording method according to scope 1.
(3)情報信号の記録時には光学定数が減少する変態方
向を用い、消去時には光学定数が増大する変態方向を用
いることを利用する特許請求の範囲第2項の光学情報記
録方法。
(3) The optical information recording method according to claim 2, which uses a transformation direction in which an optical constant decreases when recording an information signal, and uses a transformation direction in which an optical constant increases during erasing.
(4)情報信号の記録時において大きい信号変化レベル
L(1)を得る記録パワー密度をP_1mW/μm^2
、照射時間をT_1nsecとし、小さい信号変化レベ
ルL(2)を得る記録パワー密度をP_2mW/μm^
2、照射時間T_2nsecとした時、P_1>P_2
、かつT_1=T_2、又は、P_1≧P_2かつT_
1>T_2であることを特徴とする特許請求の範囲第1
項記載の光学情報記録方法。
(4) Recording power density to obtain a large signal change level L(1) when recording an information signal is P_1mW/μm^2
, the irradiation time is T_1nsec, and the recording power density to obtain a small signal change level L(2) is P_2mW/μm^
2. When the irradiation time is T_2nsec, P_1>P_2
, and T_1=T_2, or P_1≧P_2 and T_
Claim 1 characterized in that 1>T_2.
Optical information recording method described in section.
(5)情報信号の消去時において大きい信号変化レベル
L(1)から記録前のレベルL(3)に変化させる時の
消去パワー密度をp_1mW/μm^2、照射時間をt
_1nsecとし、小さい信号変化レベルL(2)のレ
ベルからL(3)に変化させる時の消去パワー密度をp
_3mW/μm^2、照射時間をt_3nsecとした
時、p_1=p_3かつt_1>t_3、またはt_1
=t_3かつp_1<p_3であることを特徴とする特
許請求の範囲第1項記載の光学情報記録方法。
(5) When erasing the information signal, the erasing power density when changing from the large signal change level L (1) to the pre-recording level L (3) is p_1 mW/μm^2, and the irradiation time is t.
_1nsec, and the erase power density when changing from the small signal change level L(2) to L(3) is p.
When _3mW/μm^2 and irradiation time is t_3nsec, p_1=p_3 and t_1>t_3, or t_1
The optical information recording method according to claim 1, characterized in that =t_3 and p_1<p_3.
JP59122991A 1984-06-15 1984-06-15 Optical information recording medium Pending JPS613324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59122991A JPS613324A (en) 1984-06-15 1984-06-15 Optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59122991A JPS613324A (en) 1984-06-15 1984-06-15 Optical information recording medium

Publications (1)

Publication Number Publication Date
JPS613324A true JPS613324A (en) 1986-01-09

Family

ID=14849577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59122991A Pending JPS613324A (en) 1984-06-15 1984-06-15 Optical information recording medium

Country Status (1)

Country Link
JP (1) JPS613324A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259229A (en) * 1986-05-02 1987-11-11 Hitachi Ltd Method for recording, reproducing and erasing information
JPS63153737A (en) * 1986-12-17 1988-06-27 Mitsubishi Kasei Corp Optical recording medium
JPS647327A (en) * 1987-03-25 1989-01-11 Casio Computer Co Ltd Method and apparatus for optical information recording
JPH01245441A (en) * 1988-03-28 1989-09-29 Fuji Electric Co Ltd Optical recording medium
JPH02709A (en) * 1988-02-12 1990-01-05 Takeda Chem Ind Ltd Yellow solid colored substance
US4938915A (en) * 1986-03-27 1990-07-03 Canon Kabushiki Kaisha Method of recording at least ternary data on optomagnetic recording medium having a plurality of magnetic layers
JPH03228228A (en) * 1990-02-02 1991-10-09 Canon Inc Optical information recording system
JPH03228225A (en) * 1990-02-01 1991-10-09 Canon Inc Optical information recording system
WO1999005675A1 (en) * 1997-07-25 1999-02-04 Harm Drecoll Data storage on a storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145530A (en) * 1980-04-15 1981-11-12 Matsushita Electric Ind Co Ltd Optical information recording and erasing method
JPS58137148A (en) * 1982-02-08 1983-08-15 Sony Corp Information recording medium
JPS59185048A (en) * 1983-04-01 1984-10-20 Matsushita Electric Ind Co Ltd Member for recording optical information and its recording method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145530A (en) * 1980-04-15 1981-11-12 Matsushita Electric Ind Co Ltd Optical information recording and erasing method
JPS58137148A (en) * 1982-02-08 1983-08-15 Sony Corp Information recording medium
JPS59185048A (en) * 1983-04-01 1984-10-20 Matsushita Electric Ind Co Ltd Member for recording optical information and its recording method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4938915A (en) * 1986-03-27 1990-07-03 Canon Kabushiki Kaisha Method of recording at least ternary data on optomagnetic recording medium having a plurality of magnetic layers
JPS62259229A (en) * 1986-05-02 1987-11-11 Hitachi Ltd Method for recording, reproducing and erasing information
JP2719130B2 (en) * 1986-05-02 1998-02-25 株式会社日立製作所 Information recording / reproducing and rewriting method and device
JPS63153737A (en) * 1986-12-17 1988-06-27 Mitsubishi Kasei Corp Optical recording medium
JPS647327A (en) * 1987-03-25 1989-01-11 Casio Computer Co Ltd Method and apparatus for optical information recording
JPH02709A (en) * 1988-02-12 1990-01-05 Takeda Chem Ind Ltd Yellow solid colored substance
JPH01245441A (en) * 1988-03-28 1989-09-29 Fuji Electric Co Ltd Optical recording medium
JPH03228225A (en) * 1990-02-01 1991-10-09 Canon Inc Optical information recording system
JPH03228228A (en) * 1990-02-02 1991-10-09 Canon Inc Optical information recording system
WO1999005675A1 (en) * 1997-07-25 1999-02-04 Harm Drecoll Data storage on a storage medium

Similar Documents

Publication Publication Date Title
JP3171103B2 (en) Optical recording method and optical recording medium
US6982111B2 (en) Optical recording medium and recording method for optical recording medium
JP2702923B2 (en) Information recording method and information recording device
JPH0355893B2 (en)
JPH01149238A (en) Optical information recording medium
JPH0219535B2 (en)
JPH09282661A (en) Optical recording method, device therefor and optical recording medium
KR950003182B1 (en) Optical disk &amp; optical infomation recording method
JPS613324A (en) Optical information recording medium
JPH0469076B2 (en)
JP2827545B2 (en) How to record optical information
JPH0532811B2 (en)
JP2728413B2 (en) Information recording / reproducing method and apparatus
JP2577349B2 (en) Optical recording medium
KR100186525B1 (en) Structure for phase change type optical disk
JP3455521B2 (en) Optical recording method
JPS62202345A (en) Rewriting type optical recording medium
JP2537910B2 (en) Optical information recording / reproducing / erasing method
JPH0312824A (en) Method for recording/erasing/reproducing and constituting phase change type optical recording medium
JPS6329334A (en) Optical recording medium
JPH0863781A (en) Phase change type optical disk
JPH0675995B2 (en) Optical information recording member
JPH01112538A (en) Optical information recording medium
Meinders et al. Advances in thermal modeling of dual-layer DVR-blue fast-growth media
JPH01116927A (en) Optical recording, reproducing, and erasing method of information