JPH01112538A - Optical information recording medium - Google Patents

Optical information recording medium

Info

Publication number
JPH01112538A
JPH01112538A JP62269640A JP26964087A JPH01112538A JP H01112538 A JPH01112538 A JP H01112538A JP 62269640 A JP62269640 A JP 62269640A JP 26964087 A JP26964087 A JP 26964087A JP H01112538 A JPH01112538 A JP H01112538A
Authority
JP
Japan
Prior art keywords
recording
crystallization
information recording
optical information
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62269640A
Other languages
Japanese (ja)
Inventor
Masatoshi Takao
高尾 正敏
Noboru Yamada
昇 山田
Eiji Ono
鋭二 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62269640A priority Critical patent/JPH01112538A/en
Publication of JPH01112538A publication Critical patent/JPH01112538A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To raise crystallization temp., to increase crystallization speed and to improve recording sensitivity by using a mixed crystal system consisting of three kinds of compds. and AgSbTe2 as an active material whose optical constant varies. CONSTITUTION:A heat resistant protective layer 2, a recording layer 3, a heat resistant protective layer 4, an adhesive layer 5 and a protective substrate 6 are successively formed on a substrate 1 to obtain a medium. Laser light is projected on the medium from the substrate 1 side to carry out recording, reproduction and erasure. In the recording layer 3, a Te-Sb-Ag-Ge alloy is used as an active material whose optical constant varies. The compsn. of the alloy is within a region defined by a point A(Ge7Sb6Te16), B(AgGe7Sb7Te18), C(AgGe3Sb15Te27) and D(Ge3Sb14Te24) in the GeTe-Ag2Te-Sb2Te3 pseudo-ternary constitutional diagram.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光学式情報記録媒体、特にその光学活性材料
の改善に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to optical information recording media, and in particular to improvements in optically active materials thereof.

従来の技術 レーザー光線を利用して高密度な情報の記録再生を行う
技術は公知であり、現在、文書ファイルシステム、静止
画ファイルシステム等への応用が行われている。また書
き換え可能型の情報記録システムについても研究開発が
なされており、事例が報告されている。光ディスクの記
録をつかさどる活性層には主にTeなとのカルコゲン、
またはその化合物(カルコゲン化物)を主成分としてい
る。これらの物質においては、加熱・冷却によりアモル
ファス相が比較的容易に得られ、しかも結晶相とアモル
ファス相とで光学定数が変化する。
2. Description of the Related Art Techniques for recording and reproducing high-density information using laser beams are well known, and are currently being applied to document file systems, still image file systems, and the like. Research and development is also being conducted on rewritable information recording systems, and examples have been reported. The active layer that controls the recording of optical discs mainly contains chalcogens such as Te,
Or its compound (chalcogenide) is the main component. In these substances, an amorphous phase can be obtained relatively easily by heating and cooling, and optical constants change between the crystalline phase and the amorphous phase.

この現象を検出することにより情報の再生を行う。Information is reproduced by detecting this phenomenon.

アモルファス相は、例えば強くて短いパルスレーザ−光
を照射し、照射部を液相まて昇温し、その後急冷するこ
とにより得られる。一方結晶相は、例えば弱くて長いパ
ルスレーザ−光を照射して、アモルファス相を加熱・徐
冷することにより得られる。光学定数の変化は主に反射
率の変化として観測される。
The amorphous phase can be obtained, for example, by irradiating an intense and short pulsed laser beam, heating the irradiated part to a liquid phase, and then rapidly cooling it. On the other hand, the crystalline phase can be obtained by heating and slowly cooling the amorphous phase by, for example, irradiating it with weak and long pulsed laser light. Changes in optical constants are mainly observed as changes in reflectance.

書き換え可能型光ディスク装置の場合には、アモルファ
ス相を記録された信号に対応させ、結晶相を消去した状
態に対応させる。すなわち、結晶の海のなかにアモルフ
ァスの島が浮かんでいる状態が情報の記録されたパター
ンである。この方が逆の場合と比べて高速なスイッチイ
ングが要求される記録時に急冷条件で対処できるので、
有利である。
In the case of a rewritable optical disc device, the amorphous phase corresponds to a recorded signal, and the crystalline phase corresponds to an erased state. In other words, the pattern in which information is recorded is a state in which amorphous islands are floating in a sea of crystals. In this case, compared to the reverse case, it is possible to deal with rapid cooling conditions when recording, which requires high-speed switching.
It's advantageous.

単体のTeは室温では結晶として安定であり、アモルフ
ァス状態としては存在しない。従って、室温でアモルフ
ァス相を安定に存在させるために、様々な元素を添加す
ることを検討されており、代表的な添加物のひとつとし
てGeが広(知られている。
Elemental Te is stable as a crystal at room temperature and does not exist in an amorphous state. Therefore, in order to stably exist the amorphous phase at room temperature, the addition of various elements is being considered, and Ge is widely known as one of the typical additives.

共有結合性の強い配位数4のGeはある特定の濃度(約
30原子%)まではTeの共有結合による鎖状の原子の
つながり(配位数2)のなかに侵入して3次元的なガラ
スのネットワーク構造を安定化するので適当量の添加で
室温でもアモルファス構造が安定になる。
Ge, which has a strong covalent bond and a coordination number of 4, penetrates into the chain-like chain of atoms (coordination number 2) formed by covalent bonds of Te up to a certain concentration (approximately 30 atomic %) and forms a three-dimensional structure. It stabilizes the network structure of glass, so adding an appropriate amount makes the amorphous structure stable even at room temperature.

すなわち、Geが添加されるにつれて、アモルファス状
態−結晶間の変態温度(Tx)は高温側へずれる。しか
し、Geの添加ではTxは上昇するものの、結晶化に要
する時間(以下結晶化時間)は実際の光デイスク装置で
実用に供するにはまだ長すぎて、不十分である。実用的
には結晶化時間(消去時間)を数μ秒以下にする必要が
ある。
That is, as Ge is added, the transformation temperature (Tx) between an amorphous state and a crystal shifts toward a higher temperature side. However, although the Tx increases with the addition of Ge, the time required for crystallization (hereinafter referred to as crystallization time) is still too long and insufficient for practical use in an actual optical disk device. Practically speaking, the crystallization time (erasing time) needs to be several microseconds or less.

さらにGe濃度を増すとイオン結合性が強(なり、Ge
Teでは結晶は面心立方構造に近い構造になる(岩塩型
)。この組成では結晶化温度が充分に高く、かつ、結晶
化速度も充分に速い。しかしながら、この組成では融点
が高すぎるために、信号の記録(記録膜のアモルファス
化)に必要なレーザーパワーが大きすぎて、実用的な記
録薄膜材料とはいえない。
When the Ge concentration is further increased, the ionic bond becomes stronger (Ge
In Te, the crystal has a structure close to a face-centered cubic structure (rock salt type). With this composition, the crystallization temperature is sufficiently high and the crystallization rate is also sufficiently fast. However, since the melting point of this composition is too high, the laser power required for recording signals (making the recording film amorphous) is too large, and it cannot be considered a practical recording thin film material.

なお、従来例としてのTe−Geを基本にした光学式記
録材料(以下記録膜と記述する)には、例えば、GeT
e5bS等(特公昭47−26897号公報)がある。
Note that optical recording materials (hereinafter referred to as recording films) based on Te-Ge as a conventional example include, for example, GeT
e5bS etc. (Japanese Patent Publication No. 47-26897).

しかしながら、sbおよびSは少量の添加では、元素の
性格上アモルファス状態を安定化することはあっても結
晶化を推進する効果は少ないので、結晶化時間はおおよ
そ数十μ秒以上で、結晶化(消去)時間が長(、また、
記録パターンのコントラスト比も十分でないので、実用
的には満足すべきものではなかった。
However, when small amounts of sb and S are added, although they may stabilize the amorphous state due to the nature of the elements, they have little effect on promoting crystallization. (Erase) takes a long time (, also,
Since the contrast ratio of the recorded pattern was also insufficient, it was not practically satisfactory.

一方、本発明者等は、T e−G e−A u系合金(
特開昭61−219692号公報)、もしくは、T e
 −G e −S n −A u系合金(特開昭61−
270190号公報)等で、特定のAuおよびSnの添
加量の時にTe−Ge2元系での前述の不十分な特性が
改善されることを見いだした。これらAu、Snは共有
結合性の強い構造を部分的に破壊することにより、結晶
化を促進する役割をしていると考えられ、結晶化時間は
数μ秒以下となり、短くなっている。
On the other hand, the present inventors have developed a T e-G e-Au based alloy (
(Japanese Unexamined Patent Publication No. 61-219692) or T e
-G e -S n -A u-based alloy (JP-A-61-
270190) etc., it was discovered that the aforementioned insufficient characteristics of the Te-Ge binary system were improved when specific amounts of Au and Sn were added. These Au and Sn are thought to play a role in promoting crystallization by partially destroying the strong covalent bond structure, and the crystallization time is shortened to several microseconds or less.

しかし、今後の信号の高転送レート化を考えると、さら
に結晶化時間を短(する必要がある。
However, considering future high signal transfer rates, it will be necessary to further shorten the crystallization time.

また、結晶化速度が大きい記録薄膜材料としては、5b
Teが知られている。これは、GeTeよりもさらに結
晶化速度が速いものの、結晶化温度が充分高くないため
に、記録信号の熱的安定性に問題があった。
In addition, as a recording thin film material with a high crystallization rate, 5b
Te is known. Although this crystallization speed is faster than that of GeTe, the crystallization temperature is not high enough, so there is a problem in the thermal stability of the recorded signal.

発明が解決しようとする問題点 前述のようにG e ’r eは、結晶化温度Txが高
く、かつ、結晶化速度が速いものの、記録感度が低かっ
た。
Problems to be Solved by the Invention As mentioned above, Ge're has a high crystallization temperature Tx and a fast crystallization speed, but has low recording sensitivity.

また、5bTeは結晶化速度は大きいものの、結晶化温
度が低いという問題がある。
Further, although 5bTe has a high crystallization rate, it has a problem of a low crystallization temperature.

本発明はかかる点に鑑みてなされたもので、結晶化速度
と結晶化温度と、さらに記録感度を同時に満足する記録
薄膜を提供するものである。
The present invention has been made in view of these points, and it is an object of the present invention to provide a recording thin film that satisfies the crystallization speed, crystallization temperature, and recording sensitivity at the same time.

問題点を解決するための手段 光または、熱熱等の手段を用いて光学定数の変化を生じ
させることにより、情報の記録、再生、消去を行う光学
式情報記録再生媒体において、光学定数の変化を示す活
性材料としてテルル、アンチモン、銀およびゲルマニウ
ムよりなる合金を用い、前記合金の組成を、GeTe−
Ag2Te −3b 2 T e sの擬三元系状態図
である、第1図におけるA点(Ge7SbeTexe)
、8点(AgGe7sb7Texs)、C点(AgGe
3Sb 115 T e 27 )およびD点(G e
 3S b 14 Te24)で囲まれる領域内とする
Means for solving the problem In optical information recording and reproducing media that record, reproduce, and erase information by causing changes in optical constants using means such as light or heat, change in optical constants is used. An alloy consisting of tellurium, antimony, silver and germanium was used as the active material exhibiting
Point A (Ge7SbeTexe) in Figure 1, which is the pseudo-ternary phase diagram of Ag2Te -3b 2 Te s
, 8 points (AgGe7sb7Texs), C point (AgGe
3Sb 115 T e 27 ) and point D (G e
3S b 14 Te24).

作用 本発明によれば、結晶化温度が高(、結晶化速度が大き
く、かつ、記録感度の良い記録薄膜材料を得ることがで
きる。
Effects According to the present invention, a recording thin film material having a high crystallization temperature (high crystallization rate) and good recording sensitivity can be obtained.

実施例 前述のごと(、書き換え可能な光ディスクにおいては、
記録と比べて時間を要する結晶化、すなわち消去時間を
短くすることが高速に記録、消去して、高い性能を引き
出すのに必要である。
Example As mentioned above (in a rewritable optical disc,
In order to achieve high performance by recording and erasing data at high speed, it is necessary to shorten crystallization, that is, erasing time, which takes more time than recording.

結晶化時間を短縮するためには、材料的に異方的な結合
である共有結合が主になっているネットワークからなる
アモルファス構造をよりも、相当の部分が等方的なイオ
ン結合や金属結合性がまざったアモルファスネットワー
クを形成する必要があるという観点に立って検討を加え
た結果、記録材料としてTTe−8b−Ge−Aよりな
る4元合金系、あるいは見方を変えて、GeTeGeT
e−8bzTe3−A擬三元系合金でその可能性がある
ことがわかった。
In order to shorten the crystallization time, it is necessary to create an amorphous structure consisting of a network consisting mainly of covalent bonds, which are anisotropic bonds in terms of material, and to create a structure with a considerable portion of isotropic ionic bonds and metallic bonds. As a result of considering the need to form an amorphous network with mixed properties, we decided to use a quaternary alloy system consisting of TTe-8b-Ge-A, or from a different perspective, GeTeGeT.
It was found that the e-8bzTe3-A pseudo-ternary alloy has this possibility.

第2図にSb2Te3 Ag2Te擬二元系の相図を示
す。3元化合物としてA g S b T e 2(岩
塩型結晶構造、融点は約570℃)が一般的には知られ
ているが、この相図では、AgSbTe2からS b 
2 T e 3債に固溶体相(ベーター相)が存在する
ことを示している。(参考文献:ローズ・マリー僧マリ
ン氏他、ジャーナル オブマテリアル サイエンス(J
、 Mater、 Sci、 )vol、 20(19
83) 730. )。
Figure 2 shows the phase diagram of the Sb2Te3Ag2Te pseudo-binary system. As a ternary compound, A g S b Te 2 (rock salt type crystal structure, melting point is about 570°C) is generally known, but in this phase diagram, from AgSbTe2 to S b
This shows that a solid solution phase (beta phase) exists in the 2 T e 3 bond. (Reference: Rose Marie Monk Marin et al., Journal of Materials Science (J
, Mater, Sci, ) vol, 20(19
83) 730. ).

第3図に5b2Tes−GeTeJに元系の相図を示す
。この系には3元化合物として3種の六方晶化合物(A
:Ge2Sb2Tes5B:GeS b 2 T e 
4 、およびC:GeSb4Te7.融点は約600℃
前後)が知られている。[参考文献:アガエフ氏等、ソ
ビエト フィジックス グリスタログラフイア(Sov
iet Phys、  Crystal、 )、 11
 (1966) 400.、および、ペトロフ氏等、ソ
ビエト フィジックス グリスタログラフイア(S。
FIG. 3 shows the phase diagram of the 5b2Tes-GeTeJ element system. This system contains three types of hexagonal compounds (A
:Ge2Sb2Tes5B:GeS b 2 T e
4, and C: GeSb4Te7. Melting point is approximately 600℃
before and after) are known. [References: Mr. Agayev et al., Soviet Physics Gristarographia (Sov
iet Phys, Crystal, ), 11
(1966) 400. , and Petrov et al., Soviet Physics Gristarographia (S.

viet Phys、 Crystal、 ) 、 1
3 (1968) 339. ]本発明者等は、前記の
3種の三元化合物(A、BおよびC)にAgSbTe2
を添加した組成の場合において、結晶化速度が大きい領
域となることを見いだした。本発明者等は以前に前記3
種の化合物組成、およびA g S b T e 2組
成(特願昭62−184530号)において、それぞれ
結晶化速度が速いことを既に見いだしているが、今回新
たに前記の3種化合物組成とA g S b T e 
2組成の混晶系においても結晶化速度が速(、更に記録
消去の繰り返し特性が混晶系を形成しないときと比べて
向上がみられた。しかも、これらの組成では、すべて結
晶化速度が太き(、結晶化温度もA g S b T 
e 2を添加することによって殆ど変化せず、かつ、記
録感度も良いということを見いだした。
Viet Phys, Crystal, ), 1
3 (1968) 339. ] The present inventors added AgSbTe2 to the above three ternary compounds (A, B and C).
It was found that the crystallization rate is high in the case of a composition in which . The inventors have previously
It has already been found that the crystallization rate is fast in the seed compound composition and the A g S b T e 2 composition (Japanese Patent Application No. 184530/1982), but this time we newly found that the three compound compositions and the A g S b T e
Even in the mixed crystal system with two compositions, the crystallization rate was faster (and the repeatability of recording and erasing was improved compared to when no mixed crystal system was formed. Moreover, in all of these compositions, the crystallization rate was faster). thick (and the crystallization temperature is also A g S b T
It has been found that by adding e2, there is almost no change and the recording sensitivity is also good.

記録層は真空蒸着、またはスパッタリングなどの方法で
形成できるが、以下の実施例ではすべて真空蒸着法で、
透明基板の上に形成した。形成後の記録膜はアモルファ
スである。記録媒体の構造を第4図に示す。1は基板、
2は基板を熱から保護するための無機物よりなる耐熱保
護層、3は記録層で、4は2と同様な耐熱保護層であり
、5の接着材により6の保護基板を貼り合わせている。
The recording layer can be formed by a method such as vacuum evaporation or sputtering, but in the following examples, a vacuum evaporation method is used.
It was formed on a transparent substrate. The recording film after formation is amorphous. The structure of the recording medium is shown in FIG. 1 is the board,
2 is a heat-resistant protective layer made of an inorganic substance for protecting the substrate from heat, 3 is a recording layer, 4 is a heat-resistant protective layer similar to 2, and the protective substrate 6 is bonded with the adhesive 5.

記録、再生、消去を行うレーザー光は1の基板側から入
射させる。
Laser light for recording, reproducing, and erasing is input from the substrate side of 1.

基板の材質は、ガラス、石英、ポリカーボネート、ある
いは、ポリメチルメタクリレート(PMMA)を使用し
た。
The material used for the substrate was glass, quartz, polycarbonate, or polymethyl methacrylate (PMMA).

記録膜の膜厚はおよそ1100nであって、耐熱保護層
によって、両側を保護している。耐熱保護層の材料には
硫化亜鉛(ZnS)を用いた。耐熱保護層の膜厚は、光
学的、および、熱設計的に最適になるように決定した。
The thickness of the recording film is approximately 1100 nm, and both sides are protected by heat-resistant protective layers. Zinc sulfide (ZnS) was used as the material for the heat-resistant protective layer. The thickness of the heat-resistant protective layer was determined to be optimal in terms of optical and thermal design.

具体的には基板側は、1100n、記録膜上には200
nm設けた。
Specifically, the substrate side is 1100n, and the recording film is 200n.
nm was provided.

得られた記録層の特性は、種々の手段で特性を調べた。The characteristics of the obtained recording layer were investigated by various means.

その中でも本発明において必要なのは、熱的安定性の目
安になる結晶化温度(Tx)と、結晶化を開始するレー
ザー光のパワーとパルス幅およびアモルファス化を開始
するレーザー光のパワーとパルス幅である。まず、結晶
化温度については一定の温度上昇率(1℃/ s e 
c )で昇温しているステージ上に、ガラス基板上に作
成した試料を置いて、強度の弱いレーザー光を照射しな
がら透過率または、反射率を測定して、それらが変化を
開始する温度を測定することにより決定した。
Among these, what is required in the present invention is the crystallization temperature (Tx), which is a measure of thermal stability, the power and pulse width of the laser light that starts crystallization, and the power and pulse width of the laser light that starts amorphization. be. First, regarding the crystallization temperature, a constant temperature increase rate (1℃/s e
Place the sample prepared on the glass substrate on the stage whose temperature is being raised in step c), measure the transmittance or reflectance while irradiating it with a low-intensity laser beam, and determine the temperature at which the transmittance or reflectance starts to change. It was determined by measuring.

結晶化時間は、静的および動的な方法で測定した。静的
な測定は、PMMA上に耐熱保護層を設けて、構造を光
ディスクと同一した模擬的な試料について、媒体とレー
ザー光が静止した状態で測定するものである。特定強度
を有するレーザーパルスを照射したあとの反射率変化の
有無を測定し、変化が開始するパルス幅を求め、結晶化
のしきい値とする。また、アモルファス化のしきい値も
、−旦結晶化させた試料に再度レーザーを照射して同様
に測定した。
Crystallization time was measured by static and dynamic methods. In static measurements, a heat-resistant protective layer is provided on PMMA and a simulated sample having the same structure as an optical disk is measured with the medium and laser beam stationary. After irradiating a laser pulse with a specific intensity, the presence or absence of a change in reflectance is measured, and the pulse width at which the change starts is determined, and this is used as the crystallization threshold. Moreover, the threshold value of amorphization was similarly measured by irradiating the crystallized sample with a laser again.

動的な測定は、実際に光ディスクを作成して、記録、再
生、消去特性を測定した。光ディスクの基板はポリカー
ボネートを用いた。
For dynamic measurements, we actually created optical discs and measured their recording, playback, and erasing characteristics. The substrate of the optical disc was made of polycarbonate.

次にさらに詳細な実施例により本発明の詳細な説明する
Next, the present invention will be explained in detail with reference to more detailed examples.

実施例1 化学量論的化合物S b A g T e 2とGeS
b2T e 4’との混晶組成の記録薄膜を真空蒸着法
で作成し、記録特性、消去特性および結晶化温度を測定
した。記録膜の膜厚は1100nで耐熱保護層は、Zn
Sを用いた。
Example 1 Stoichiometric compounds S b A g T e 2 and GeS
A recording thin film having a mixed crystal composition of b2T e 4' was prepared by vacuum evaporation, and its recording characteristics, erasing characteristics, and crystallization temperature were measured. The thickness of the recording film is 1100n, and the heat-resistant protective layer is Zn.
S was used.

第5図に、静的な測定による結晶化特性の1例として、
(GeSb2Te4)90 (SbAgTe2)10組
成の記録膜の結果を示す。同図に示すように、照射パワ
ーを2mWから10mWと増加させるにしたがって、結
晶化開始パルス幅が短パルス側ヘシフトしてい(のがわ
かる。本実施例では10mWのパワーで30n秒の結晶
化開始しきい値が得られている。
Figure 5 shows an example of crystallization characteristics measured statically.
The results of a recording film having a composition of (GeSb2Te4)90 (SbAgTe2)10 are shown. As shown in the figure, as the irradiation power is increased from 2 mW to 10 mW, the crystallization start pulse width shifts to the shorter pulse side. In this example, crystallization starts in 30 ns with a power of 10 mW. A threshold has been obtained.

アモルファス化特性は、−旦パワー4mWでパルス幅2
μ秒の単発パルスを照射して、充分に結晶化させた後、
同じ位置にそのパワーよりも強いレーザー光を照射して
測定した。第6図に示すように15mW以上のパワーで
、100n秒以上のパルス幅のときに、反射率の変化が
生じていることから、アモルファス化が実現しているこ
とがわかる。
The amorphization characteristics are as follows: -1 power 4 mW, pulse width 2
After sufficient crystallization by irradiation with a single microsecond pulse,
Measurements were made by irradiating the same position with a laser beam stronger than that power. As shown in FIG. 6, when the power is 15 mW or more and the pulse width is 100 ns or more, a change in reflectance occurs, which indicates that amorphization is realized.

このように測定した(GeSb2Te4)Lx・(Ag
SbTe2)x (0≦X≦0.6)組成の結晶化開始
のしきい値、およびアモルファス化開始のしきい値のA
gSbTe2濃度(X)依存性を第7図の(b)、(c
)にそれぞれ示す。ここで結晶化のしきい値は、レーザ
ーパワーが10mWの場合であり、アモルファス化のし
きい値は18mWの場合である。なお、第7図(a)は
結晶化温度の組成依存性を示している。第7図かられか
ることを以下に記す。
(GeSb2Te4)Lx・(Ag
SbTe2)
The gSbTe2 concentration (X) dependence is shown in Figure 7 (b) and (c).
) are shown respectively. Here, the crystallization threshold is when the laser power is 10 mW, and the amorphization threshold is when the laser power is 18 mW. Note that FIG. 7(a) shows the composition dependence of the crystallization temperature. What can be seen from Figure 7 is described below.

(1)  A g S b T e 2の添加量が増え
ても結晶化温度は殆ど変化しない。
(1) Even if the amount of A g S b T e 2 added increases, the crystallization temperature hardly changes.

(2)結晶化開始のしきい値は、全領域においてG e
 S b 2 T e 4のそれよりとほとんど同じで
ある。すなわち、全領域においてG e S b 2 
T e 4と同等での高速な結晶性を示している。
(2) The threshold for starting crystallization is G e
It is almost the same as that of S b 2 T e 4. That is, G e S b 2 in the entire area
It shows high-speed crystallinity equivalent to T e 4.

(3)アモルファス化開始のしきい値はAg5bT e
 2が増加しても殆ど変化しない。
(3) The threshold for starting amorphization is Ag5bT e
Even if 2 increases, there is almost no change.

以上のことから、(GeSb2Te4)1−x・(Ag
SbTe2)x(0,1≦a≦0.6)の領域では、高
い結晶化温度、大きな結晶化速度、および良好な記録感
度を同時に満たしていることがわかる。
From the above, (GeSb2Te4)1-x・(Ag
It can be seen that in the region of SbTe2)x (0,1≦a≦0.6), high crystallization temperature, high crystallization speed, and good recording sensitivity are simultaneously satisfied.

本実施例により、化学量論的な化合物である、G e 
S b 2 T e 4とA g S b T e 2
を結ぶライン上で光記録薄膜として優れた特性が得られ
ることを示した。
According to this example, the stoichiometric compound G e
S b 2 T e 4 and A g S b T e 2
It was shown that excellent properties as an optical recording thin film can be obtained on the line connecting the .

実施例2 化学量論的化合物G e 2 S b 2 T e [
5およびGe S b 4 T e 7とAgSbTe
2との混晶組成の記録薄膜を真空蒸着法で作成し、記録
特性、消去特性および結晶化温度を測定した。記録膜の
膜厚は1100nで耐熱像:l!層は、ZnSを用いた
Example 2 Stoichiometric compound G e 2 S b 2 T e [
5 and Ge S b 4 T e 7 and AgSbTe
A recording thin film having a mixed crystal composition with No. 2 was prepared by vacuum evaporation, and its recording characteristics, erasing characteristics, and crystallization temperature were measured. The thickness of the recording film is 1100n, and the heat-resistant image: l! ZnS was used for the layer.

第8図に、静的に測定した、(Ge2Sb2Tes)I
−X” (AgSbTe2)x(0≦X≦0゜5)組成
、および(GeSb4Te7)I−X・(A g S 
b T e 2 ) xの(b)結晶化開始のしきい値
、および(C)アモルファス化開始のしきい値のAgS
bTe2a度(X)依存性を示す。ここで結晶化のしき
い値は、レーザーパワーが10mWの場合であり、アモ
ルファス化のしきい値は18mWの場合である。なお、
同図(a)は結晶化温度の組成依存性を示している。第
8図かられかることを以下に記す。
Figure 8 shows statically measured (Ge2Sb2Tes)I
-X” (AgSbTe2)x (0≦X≦0゜5) composition, and (GeSb4Te7)I-X・(A g S
b T e 2 ) AgS of (b) the threshold of crystallization initiation and (C) the threshold of amorphization initiation of x
bTe2a degree (X) dependence is shown. Here, the crystallization threshold is when the laser power is 10 mW, and the amorphization threshold is when the laser power is 18 mW. In addition,
Figure (a) shows the dependence of crystallization temperature on composition. What can be seen from Figure 8 is described below.

(1)  A g S b T e 2の添加量が増え
ても結晶化温度は殆ど変化しない。
(1) Even if the amount of A g S b T e 2 added increases, the crystallization temperature hardly changes.

(2)  結晶化開始のしきい値は、全領域においてG
 e 2 S b 2 T e 6とG e S b 
4 T e 7のそれよりとほとんど同じである。
(2) The threshold for starting crystallization is G
e 2 S b 2 T e 6 and G e S b
It is almost the same as that of 4T e 7.

(3)  アモルファス化開始のしきい値はAg5bT
 e 2が増加しても殆ど変化しない。
(3) The threshold for the start of amorphization is Ag5bT
There is almost no change even if e2 increases.

以上のことから、(Ge2Sb2Tes)I−X(Ag
SbTez)、(0,1≦a≦0.5)の領域では、高
い結晶化温度、大きな結晶化速度、および良好な記録感
度を同時に満たしていることがわかる。
From the above, (Ge2Sb2Tes)I-X(Ag
It can be seen that in the region of SbTez), (0,1≦a≦0.5), a high crystallization temperature, a large crystallization speed, and good recording sensitivity are simultaneously satisfied.

本実施例により、化学量論的な化合物である、G e 
2 S b 2 T e sおよびGeSb4Te7を
結ぶライン上で光記録薄膜として優れた特性が得られる
ことを示した。
According to this example, the stoichiometric compound G e
It was shown that excellent properties as an optical recording thin film can be obtained on the line connecting 2S b 2 Te s and GeSb4Te7.

実施例3 化学量論的化合物G e 2 S b 2 T e s
、GeSb 2 T e 4、およびG e S b 
4T e 7とAg5bT e 2との混晶組成、およ
びその周辺の組成の記録薄膜を真空蒸着法で作成し、記
録特性、消去特性および結晶化温度を測定した。記録膜
の膜厚は1100nで耐熱保護層は、ZnSを用いた。
Example 3 Stoichiometric Compound G e 2 S b 2 T e s
, GeSb 2 T e 4, and G e S b
A recording thin film having a mixed crystal composition of 4T e 7 and Ag5bT e 2 and a composition in the vicinity thereof was prepared by a vacuum evaporation method, and the recording characteristics, erasing characteristics, and crystallization temperature were measured. The thickness of the recording film was 1100 nm, and the heat-resistant protective layer was made of ZnS.

第9図と第10図にGeTe、5b2Tes、およびA
g2Te擬三元系の、主にGeTe−3b 2 T e
 3よりの組成においての、静的に測定した結晶化開始
のしきい値、およびアモルファス化開始のしきい値のを
示す。ここで結晶化のしきい値は、レーザーパワーが1
0mWの場合であり、アモルファス化のしきい値は18
mWの場合である。
Figures 9 and 10 show GeTe, 5b2Tes, and A
g2Te pseudoternary system, mainly GeTe-3b 2 Te
3 shows statically measured threshold values for the initiation of crystallization and threshold values for the initiation of amorphization in compositions 3 and 3. Here, the crystallization threshold is determined by the laser power being 1
In the case of 0 mW, the threshold for amorphization is 18
This is the case of mW.

また、第11図には同じ組成範囲での結晶化温度を示す
。これ等の3図から分かるように、A点(Ge7Sbe
Tete)、B点(AgGe7Sb7Te1g)、C点
(AgGe3SbtsTe27)およびD点(Ge3S
bt4Te2a)で囲まれる領域内で結晶化アモルファ
ス化の特性がよいことがわかる。特にこの領域を規定す
るのは、結晶化温度であって、この領域を出ると、熱安
定性(Txが低いとき)と、熔融後のアモルファス化の
感度(Txが高いとき)が悪くなる。
Further, FIG. 11 shows the crystallization temperature in the same composition range. As can be seen from these three figures, point A (Ge7Sbe
Tete), point B (AgGe7Sb7Te1g), point C (AgGe3SbtsTe27) and point D (Ge3S
It can be seen that the crystallization and amorphization characteristics are good in the region surrounded by bt4Te2a). In particular, this region is defined by the crystallization temperature, and beyond this region, the thermal stability (when Tx is low) and the sensitivity of amorphization after melting (when Tx is high) deteriorate.

そこで、A%B%C1およびD点で囲まれた範囲が光学
式情報記録媒体に適していることが分かる。
Therefore, it can be seen that the range surrounded by A%B%C1 and point D is suitable for an optical information recording medium.

発明の効果 本発明によるテルル、アンチモン、ゲルマニウム、およ
び、銀よりなる記録薄膜は、結晶化温度が高く、結晶化
速度が大きく、かつ、記録感度の良い光ディスクを提供
することができる。
Effects of the Invention The recording thin film made of tellurium, antimony, germanium, and silver according to the present invention has a high crystallization temperature, a high crystallization speed, and can provide an optical disk with good recording sensitivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のGeTe−8b2Tes  Ag2T
eq三元系系記録媒体用材料の組成範囲を示す組成図、
第2図は5b2Tes  Ag2Te系の相図、第3図
はG e T e −S b 2 T e 3系の相図
、第4図は記録媒体の構造を示す断面図、第5図は静的
結晶化特性図、第6図は静的アモルファス化特性図、第
7図は静的結晶化特性図、第8図は静的アモルファス化
特性図、第9図はGeTeGeTe−8b2Te3−A
系の静的な結晶化特性図、第10図は同じくアモルファ
ス化特性図、第11図は同じ系の結晶化温度の図である
。 代理人の氏名 弁理士 中尾敏男 ほか1名^−Qet
 Sb6 T6/6 β−Af Qet 5h7Te ts C,−−−Ay Qe3Sbt57e27第3Sbt!
JD−1ie3Sbt4Te24(:ttTe ApTe     AySbTez      5bz
Tes第 2 図 ID   u)    J    44   50  
 6a    りD    80   9゜@3図 −ん 第4図 (e3Sbz Tea)qo  (AlSbTet)t
。 o、ot        o、t         t
         t。 パルス幅 (マイグμネテン 第 6 図 ((rtsbzTe4)qo (AySbTez)10
001       θ/          /  
        /l)バフレス↑番 (マイ7ロt’
y) 第7図 Ooり/       O,/        /  
      10第8図 a、ot         o、t         
 /          l。 第9図 Q己几 AyzTe      AI Sb Tez     
5b2Tes第2Te sek
Figure 1 shows GeTe-8b2Tes Ag2T of the present invention.
A composition diagram showing the composition range of eq ternary recording medium material,
Figure 2 is the phase diagram of the 5b2Tes Ag2Te system, Figure 3 is the phase diagram of the G e Te -S b 2 Te 3 system, Figure 4 is a cross-sectional diagram showing the structure of the recording medium, and Figure 5 is the static Crystallization characteristic diagram, Figure 6 is static amorphization characteristic diagram, Figure 7 is static crystallization characteristic diagram, Figure 8 is static amorphization characteristic diagram, Figure 9 is GeTeGeTe-8b2Te3-A.
The static crystallization characteristic diagram of the system, FIG. 10 is also an amorphization characteristic diagram, and FIG. 11 is a diagram of the crystallization temperature of the same system. Name of agent: Patent attorney Toshio Nakao and 1 other person ^-Qet
Sb6 T6/6 β-Af Qet 5h7Te ts C, ---Ay Qe3Sbt57e27 3rd Sbt!
JD-1ie3Sbt4Te24(:ttTe ApTe AySbTez 5bz
Tes Figure 2 ID u) J 44 50
6a riD 80 9゜@Figure 3-Figure 4 (e3Sbz Tea)qo (AlSbTet)t
. o, ot o, t t
t. Pulse width (Fig. 6 (rtsbzTe4)qo (AySbTez)10
001 θ/ /
/l) Buffless ↑ (My 7 Lott')
y) Figure 7 Oori / O, / /
10 Figure 8 a, ot o, t
/l. Figure 9Q Self-contained AyzTe AI Sb Tez
5b2Tes 2nd Te sek

Claims (4)

【特許請求の範囲】[Claims] (1)光または、熱熱等の手段を用いて光学定数の変化
を生じさせることにより、情報の記録、再生、消去を行
う光学式情報記録再生媒体において、光学定数の変化を
示す活性材料がテルル、アンチモン、銀およびゲルマニ
ウムよりなる合金であるものであって、前記合金の組成
が、GeTe−Ag_2Te−Sb_2Te_3の擬三
元系状態図である、第1図、A点(Ge_7Sb_6T
e_1_6)、B点(AgGe_7Sb_7Te_1_
8)、C点(AgGe_3Sb_1_5Te_2_7)
およびD点(Ge_3Sb_1_4Te_2_4)で囲
まれる領域内であることを特徴とする光学式情報記録媒
体。
(1) In an optical information recording and reproducing medium that records, reproduces, and erases information by causing a change in optical constants using means such as light or heat, an active material that exhibits a change in optical constants is used. It is an alloy consisting of tellurium, antimony, silver and germanium, and the composition of the alloy is a pseudoternary phase diagram of GeTe-Ag_2Te-Sb_2Te_3.
e_1_6), point B (AgGe_7Sb_7Te_1_
8), point C (AgGe_3Sb_1_5Te_2_7)
and point D (Ge_3Sb_1_4Te_2_4).
(2)活性材料となる合金の組成が、Ge_2Sb_2
Te_5とAgSbTe_2の混晶に対応するものであ
る事を特徴とする特許請求の範囲第1項記載の光学式情
報記録媒体。
(2) The composition of the alloy serving as the active material is Ge_2Sb_2
The optical information recording medium according to claim 1, which corresponds to a mixed crystal of Te_5 and AgSbTe_2.
(3)活性材料となる合金の組成がGeSb_2Ge_
4とAgSbTe_2の混晶に対応するものであること
を特徴とする特許請求の範囲第1項記載の光学式情報記
録媒体。
(3) The composition of the alloy serving as the active material is GeSb_2Ge_
4. The optical information recording medium according to claim 1, wherein the optical information recording medium corresponds to a mixed crystal of 4 and AgSbTe_2.
(4)活性材料となる合金の組成がGeSb_4Te_
7とAgSbTe_2の混晶に対応するものであること
を特徴とする特許請求の範囲第1項記載の光学式情報記
録媒体。
(4) The composition of the alloy serving as the active material is GeSb_4Te_
2. The optical information recording medium according to claim 1, wherein the optical information recording medium corresponds to a mixed crystal of No. 7 and AgSbTe_2.
JP62269640A 1987-10-26 1987-10-26 Optical information recording medium Pending JPH01112538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62269640A JPH01112538A (en) 1987-10-26 1987-10-26 Optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62269640A JPH01112538A (en) 1987-10-26 1987-10-26 Optical information recording medium

Publications (1)

Publication Number Publication Date
JPH01112538A true JPH01112538A (en) 1989-05-01

Family

ID=17475162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62269640A Pending JPH01112538A (en) 1987-10-26 1987-10-26 Optical information recording medium

Country Status (1)

Country Link
JP (1) JPH01112538A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01211249A (en) * 1988-02-17 1989-08-24 Asahi Chem Ind Co Ltd Optical recording medium
JPH0647861U (en) * 1992-10-23 1994-06-28 リケン工業株式会社 Molten Steel Collection Container
US6096399A (en) * 1997-12-22 2000-08-01 Tdk Corporation Optical recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01211249A (en) * 1988-02-17 1989-08-24 Asahi Chem Ind Co Ltd Optical recording medium
JPH0647861U (en) * 1992-10-23 1994-06-28 リケン工業株式会社 Molten Steel Collection Container
US6096399A (en) * 1997-12-22 2000-08-01 Tdk Corporation Optical recording medium

Similar Documents

Publication Publication Date Title
JP2574325B2 (en) Optical information recording medium
US5604003A (en) Optical information carrier
US6660451B1 (en) Optical information recording medium
JP3076412B2 (en) Optical information recording medium and optical information recording / reproducing method
JPH0475835B2 (en)
JP2778237B2 (en) Optical information recording medium and optical recording / erasing method
JPH11513166A (en) Reversible optical information medium
JP2001507645A (en) Ge-Sb-Te alloy rewritable optical information medium
JP2003341240A (en) Optical recording medium
JPH01112538A (en) Optical information recording medium
JP2553736B2 (en) Optical recording medium and method of manufacturing optical recording medium
JPH0194545A (en) Optical type information recording medium
JP2629746B2 (en) Optical recording medium
JP2615627B2 (en) Optical information recording medium
JP2903969B2 (en) Optical recording medium and recording / reproducing method using the same
JP2637982B2 (en) Optical information recording medium
JP2712207B2 (en) Optical information recording medium
JPH0261833A (en) Optical information recording medium
JP2687358B2 (en) Optical information recording medium
JPS63155439A (en) Information recording medium
JP2798247B2 (en) Optical recording medium
JP2803245B2 (en) Information recording and playback method
JP2903970B2 (en) Optical recording medium and recording / reproducing method using the same
JPH0262736A (en) Optical information recording medium
JPS63167440A (en) Method for recording or recording and erasing information