JPS6132569A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS6132569A
JPS6132569A JP15435884A JP15435884A JPS6132569A JP S6132569 A JPS6132569 A JP S6132569A JP 15435884 A JP15435884 A JP 15435884A JP 15435884 A JP15435884 A JP 15435884A JP S6132569 A JPS6132569 A JP S6132569A
Authority
JP
Japan
Prior art keywords
opening
forming
dielectric film
semiconductor substrate
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15435884A
Other languages
Japanese (ja)
Inventor
Kenji Kawakita
川北 憲司
Noboru Nomura
登 野村
Tsutomu Fujita
勉 藤田
Toyoki Takemoto
竹本 豊樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15435884A priority Critical patent/JPS6132569A/en
Publication of JPS6132569A publication Critical patent/JPS6132569A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/038Making the capacitor or connections thereto the capacitor being in a trench in the substrate

Abstract

PURPOSE:To increase storage capacitance, to reduce the quantity of dry etching for forming a groove and to minimize damage to a substrate by forming a side- wall opening section in width wider than a surface opening section and using the inner wall of the side-wall opening section as an electrode surface. CONSTITUTION:An silicon oxide film 32 is patterned to the surface of an silicon substrate 31, and the silicon substrate 31 is dry-etched vertically while using the silicon oxide film 32 as a mask to shape an opening section 33. An silicon oxide film 34 is formed. The silicon oxide film 34 is etched in an anisotropic manner to leave the silicon oxide film 34 only on the side surface of the opening section 33. The silicon substrate 31 is etched in an isotropic manner from the base of the opening section 33 to shape a second opening section 35. The silicon oxide films 32 and 34 are removed, and a dielectric film 36 represented by a film such as the silicon oxide film is formed onto the surface of the silicon substrate and the surface of the opening section. A polycrystalline silicon film 37 is buried into the opening section.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は蓄積容量が大きく微細な溝型キャパシタに関す
るもので、特に大容量MOSダイナミソセメモリ−セル
の蓄積容量の構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a fine trench capacitor with a large storage capacity, and particularly to the structure of the storage capacitance of a large capacity MOS dynamometer memory cell.

従来例の構成とその問題点 近年、大容量MOSダイナミックRAM(Random
 Access Memory )の高集積化の進展に
著しいものがある。これを支えている技術がメモリセル
の微細化である。
Conventional configurations and their problems In recent years, large capacity MOS dynamic RAM (Random
There has been remarkable progress in increasing the degree of integration of Access Memory (Access Memory). The technology supporting this is miniaturization of memory cells.

MOSダイナミックRAMのメモリセルは、スイッチン
グトランジスタと蓄積容量で構成され、第1図に従来の
メモリセルの構造断面図を示す。
A memory cell of a MOS dynamic RAM is composed of a switching transistor and a storage capacitor, and FIG. 1 shows a cross-sectional view of the structure of a conventional memory cell.

1はP型シリコン基板、2はフィールド酸化膜、3は例
えばシリコン酸化膜より成るキャパシタ誘電体膜、4は
多結晶シリコンで代表されるゲート電極、6は高濃度N
型のソース・ドレイン拡散領域、6は例えば多結晶シリ
コンより成るプレート電極である。Qはスイッチングト
ランジスタ、C8は蓄積容量を構成している。
1 is a P-type silicon substrate, 2 is a field oxide film, 3 is a capacitor dielectric film made of, for example, a silicon oxide film, 4 is a gate electrode represented by polycrystalline silicon, and 6 is a high concentration N
The type source/drain diffusion region 6 is a plate electrode made of polycrystalline silicon, for example. Q constitutes a switching transistor, and C8 constitutes a storage capacitor.

上記のメモリセルにおいて、蓄積容量は基板表面に形成
されたシリコン酸化膜を誘電体膜とするMOSキャパシ
タで形成されている為、メモリの集積度が高まり、メモ
リセルが微細化されると、必然的にキャパシタ面積が小
さくなることによシ蓄積電荷量の低下が生じるという問
題点を有していた。
In the above memory cell, the storage capacitor is formed by a MOS capacitor whose dielectric film is a silicon oxide film formed on the surface of the substrate. However, as the area of the capacitor becomes smaller, the amount of accumulated charge decreases.

キャパシタの最大蓄積電荷量Qmsは次のようにここで
、εi+Tiは誘電体膜の誘電率、膜厚であり、Sはキ
ャパシタの面積、Vsは信号電圧である。
The maximum accumulated charge amount Qms of the capacitor is as follows, where εi+Ti is the dielectric constant and film thickness of the dielectric film, S is the area of the capacitor, and Vs is the signal voltage.

Qmsを犬きくするためには、εl + S+ v8を
増加させるか、Tiを減少させればよいことになる。
In order to improve Qms, it is sufficient to increase εl + S+ v8 or decrease Ti.

εiを大きくするには、現在広く使われているシリコン
酸化膜よりも誘電率の大きな誘電体膜を用いることであ
る。たとえばT亀205はシリコン酸化膜よりも6〜1
0倍大きなεiをもつが、900°C以上の高温によっ
て再結晶化し、リーク電流が増加するなどの欠点がある
。また、信号電圧VSを大きくしたり、誘電体膜の膜厚
Tiを薄くするのは誘電体膜の耐圧を落とし、信頼性が
低下するなどの問題点がある。
In order to increase εi, it is necessary to use a dielectric film having a higher dielectric constant than the currently widely used silicon oxide film. For example, the T turtle 205 is 6 to 1 times larger than the silicon oxide film.
Although it has an εi that is 0 times larger, it has drawbacks such as recrystallization at high temperatures of 900° C. or higher, which increases leakage current. Furthermore, increasing the signal voltage VS or decreasing the film thickness Ti of the dielectric film has problems such as lowering the breakdown voltage of the dielectric film and reducing reliability.

第2図は、εl + ”l * vI!!として従来の
実績ある値を用い、キャパシタの面積Sを大きくしてQ
msを増加させたメモリセルの構造断面図である。11
はP型シリコン基板、12はフィールド酸化膜、13は
キャパシタ誘電体膜、14はゲート電極、15はソース
、ドレイン領域、16はプレート電極である。第2図に
おいて、シリコン基板に縦溝゛を堀り、この溝の内壁を
キャパシタの電極面とすることによシ、電荷蓄積面積を
大きくしている。
In Figure 2, using the conventional proven value of εl + ``l * vI!!, and increasing the area S of the capacitor, Q
FIG. 3 is a structural cross-sectional view of a memory cell with increased ms. 11
12 is a P-type silicon substrate, 12 is a field oxide film, 13 is a capacitor dielectric film, 14 is a gate electrode, 15 is a source and drain region, and 16 is a plate electrode. In FIG. 2, a vertical groove is dug in the silicon substrate, and the inner wall of the groove is used as the electrode surface of the capacitor, thereby increasing the charge storage area.

これにより、セル面積を減らしても十分な蓄積容量を確
保できる。しかしながら、溝の加工には方向性のあるド
ライエツチング法が必要で、溝の深さに限界があり、ま
た深いドライエツチングによる損傷が残り、信頼性に問
題がある。
Thereby, sufficient storage capacity can be ensured even if the cell area is reduced. However, a directional dry etching method is required to process the grooves, and there is a limit to the depth of the grooves, and damage remains due to deep dry etching, resulting in reliability problems.

発明の目的 本発明は上記従来の問題点を解決するもので、蓄積容量
が大きく微細な溝型キャパシタを提供することを目的と
する。
OBJECTS OF THE INVENTION The present invention solves the above-mentioned conventional problems and aims to provide a fine trench capacitor with a large storage capacity.

発明の構成 本発明は、表面開口部面積に比して内壁面積の大きな溝
型キャパシタで、微細化においても十分大きな蓄積容量
をもつことができるものである。
Structure of the Invention The present invention is a trench type capacitor having an inner wall area larger than the surface opening area, and can have a sufficiently large storage capacity even when miniaturized.

実施例の説明 〔実施例1〕 第3図は一実施例における溝型キャパシタの構造断面図
を示すものである。第3図において21はシリコン基板
、22は例えばシリコン酸化膜で代表されるキャパシタ
誘電体膜、23は例えば多結晶シリコン膜より成るプレ
ート電極である。
DESCRIPTION OF EMBODIMENTS [Embodiment 1] FIG. 3 shows a structural cross-sectional view of a trench type capacitor in one embodiment. In FIG. 3, 21 is a silicon substrate, 22 is a capacitor dielectric film represented by, for example, a silicon oxide film, and 23 is a plate electrode made of, for example, a polycrystalline silicon film.

−MOSキャパシタは基板21の表面より形成された縦
溝の内壁面に形成したシリコン酸化膜22を誘電体膜と
し、基板21と多結晶シリコン膜23をそれぞれ電極と
して構成される。溝は、表面開口部の幅乙に対し、溝下
方の側壁開口部の幅すが広い形状をもち、従来の縦溝に
比べて、その内壁面積が同じ溝深さと同じ表面開口面積
の場合大きくなり、従って蓄積容量も大きい。また幅a
の開口部の深さhf:、シリコン基板表面に形成するデ
バイスの活性領域となる深さ以上にしておけば、幅すの
開口部領域はデバイス形成に影響せず、従ってデバイス
の微細化においても支障はない。
-The MOS capacitor is constructed by using a silicon oxide film 22 formed on the inner wall surface of a vertical groove formed from the surface of a substrate 21 as a dielectric film, and using the substrate 21 and a polycrystalline silicon film 23 as electrodes, respectively. The groove has a shape in which the width of the side wall opening below the groove is wider than the width of the surface opening, and the inner wall area is larger than that of a conventional vertical groove when the groove depth is the same and the surface opening area is the same. Therefore, the storage capacity is also large. Also width a
Depth hf of the opening: As long as the depth hf is at least the depth that will become the active region of the device formed on the surface of the silicon substrate, the opening area of the width will not affect the device formation, and therefore it will be easier to miniaturize the device. There is no problem.

〔実施例2〕 第4図(IL)〜(f’)は本発明の一実施例における
溝型キャパシタの形成方法を説明する工程断面図である
[Embodiment 2] FIGS. 4(IL) to 4(f') are process cross-sectional views illustrating a method of forming a trench type capacitor in an embodiment of the present invention.

第4図(IL)において、シリコン基板31の表面にシ
リコン酸化膜32をパターン出し、シリコン酸化膜32
をマスクにシリコン基板31を垂直にドライエツチング
し、開口部33を形成する。次に第4図rb>に案す如
く、シリコン酸化膜34を形成する。次に第4図(C)
に示す如く、シリコン酸化膜34を異方性エツチングし
、開口部33の側面にのみシリコン酸化膜34を残す。
In FIG. 4 (IL), a silicon oxide film 32 is patterned on the surface of a silicon substrate 31.
Using the mask as a mask, the silicon substrate 31 is vertically dry-etched to form an opening 33. Next, as shown in FIG. 4, a silicon oxide film 34 is formed. Next, Figure 4 (C)
As shown in FIG. 3, the silicon oxide film 34 is anisotropically etched, leaving the silicon oxide film 34 only on the side surfaces of the opening 33.

次に第4図(+1)に示す如く、開口部33の底面より
シリコン基板31を等方的エツチングし、第2の開口部
36を形成する。次に第4図(e)に示す如く、シリコ
ン酸化膜32及び34を除去した後、シリコン基板表面
及び開口部表面に例えばシリコン酸化膜に代表される誘
電体膜36を形成する。次に第4図(f′)に示す如ぐ
開口部内部に多結晶シリコン膜37を埋込む。
Next, as shown in FIG. 4 (+1), the silicon substrate 31 is isotropically etched from the bottom surface of the opening 33 to form a second opening 36. Next, as shown in FIG. 4(e), after removing the silicon oxide films 32 and 34, a dielectric film 36, typified by a silicon oxide film, is formed on the surface of the silicon substrate and the surface of the opening. Next, a polycrystalline silicon film 37 is buried inside the opening as shown in FIG. 4(f').

以上のように本実施例によれば、同じ開口幅で同じ深さ
の垂直な溝でできた溝型キャパシタに比べて溝内部の幅
を広くした仁とにより溝の内壁面積を大きくすることが
でき、従って蓄積容量も大きい。また所定の深さの溝を
形成する際のドライエツチングの量は従来の垂直な溝形
成に比べて少なくてすみ、基板への損傷を少なくするこ
とができる。
As described above, according to this embodiment, the inner wall area of the groove can be increased by making the inner width of the groove wider than in a groove type capacitor made of vertical grooves having the same opening width and the same depth. Therefore, the storage capacity is also large. Further, the amount of dry etching needed to form a groove of a predetermined depth is less than that required for forming a conventional vertical groove, thereby reducing damage to the substrate.

〔実施例3〕 第5図は本発明の他の実施例を示す工程断面図である。[Example 3] FIG. 5 is a process sectional view showing another embodiment of the present invention.

第6図(a)において、シリコン基板41に高濃度n 
埋込領域42を形成した後、エピタキシャル層43を成
長させる。次に第6図(b)に示す如く、レジスト44
をマスクにエピタキシャル層43を垂直にドライエツチ
ングし開口部46を形成する。次に第6図(0)に示す
如く、レジスト44を除去した後、n埋込領域42を選
択的にエツチングし開口部46を形成する。エツチング
液として弗酸と硝酸と酢酸の混合液を用いると、高濃度
n 領域が低濃度領域よりも数十倍早くエツチングが進
み、開口部46が選択的に形成できる。次に第6図(+
1)に示す如く、開口部46及び46の内壁部に例えば
シリコン酸化膜で代表される誘電体膜47を形成し、開
口部内部に多結晶シリコン48を埋め込む。
In FIG. 6(a), a silicon substrate 41 has a high concentration of n.
After forming the buried region 42, an epitaxial layer 43 is grown. Next, as shown in FIG. 6(b), the resist 44
Using the mask as a mask, the epitaxial layer 43 is vertically dry etched to form an opening 46. Next, as shown in FIG. 6(0), after removing the resist 44, the n-buried region 42 is selectively etched to form an opening 46. When a mixed solution of hydrofluoric acid, nitric acid, and acetic acid is used as the etching solution, etching proceeds several tens of times faster in the high concentration n region than in the low concentration region, and the openings 46 can be selectively formed. Next, Figure 6 (+
As shown in 1), a dielectric film 47 typified by, for example, a silicon oxide film is formed on the inner walls of the openings 46 and 46, and polycrystalline silicon 48 is buried inside the openings.

以上のように本実施例によれば、縦溝の下方で連がる横
溝の幅が予め形成しておいたn+埋込領域の幅で決めら
れ、十分広い幅の横溝を制御よく形成することが可能で
ある。また縦溝と横溝の相対的な位置関係は任意で、マ
スク合わせて自由に選択できる。また、この時、溝内部
の総面積は変わらず、従って蓄積容量の値は変わらない
As described above, according to this embodiment, the width of the lateral grooves continuous below the vertical grooves is determined by the width of the n+ buried region formed in advance, and it is possible to form lateral grooves with a sufficiently wide width in a well-controlled manner. is possible. Further, the relative positional relationship between the vertical grooves and the horizontal grooves is arbitrary and can be freely selected according to the mask. Furthermore, at this time, the total area inside the groove remains unchanged, and therefore the value of the storage capacitance remains unchanged.

工実施例4〕 第6図は本発明の他の実施例を示す工程断面図である。Work example 4] FIG. 6 is a process sectional view showing another embodiment of the present invention.

第6図(&)において、シリコン基板41に高濃度n 
埋込領域42を形成した後、エピタキシャル層43を成
長させ、引き続きエピタキシャル層43にn+埋込領域
44を形成した後、エピタキシャル層46を成長させる
In FIG. 6(&), a silicon substrate 41 has a high concentration of n.
After forming the buried region 42, an epitaxial layer 43 is grown, followed by forming an n+ buried region 44 in the epitaxial layer 43, and then growing an epitaxial layer 46.

次に第6図φ)に示す如く、実施例3で説明し7た同様
の方法を用いて、レジスト46をマスクK[。
Next, as shown in FIG. 6 φ), using the same method as described in Example 3, the resist 46 is masked K[.

てエピタキシャル層46.n 埋込領域44.エピタキ
シャル層43およびn+埋込領域42をドライエッチ及
び弗酸、硝酸、酢酸混合液のウェットエッチでエツチン
グし開口部47を形成する。
epitaxial layer 46. n embedded area 44. The epitaxial layer 43 and the n+ buried region 42 are etched by dry etching and wet etching using a mixed solution of hydrofluoric acid, nitric acid, and acetic acid to form an opening 47.

次に第6図(0)に示す如く、レジスト46を除去した
後、開口部47の表面に例えばシリコン酸化膜で代表さ
れる誘電体膜48を形成し、開口部内部に多結晶シリコ
ン49を埋込む。
Next, as shown in FIG. 6(0), after removing the resist 46, a dielectric film 48, typically a silicon oxide film, is formed on the surface of the opening 47, and polycrystalline silicon 49 is formed inside the opening. Embed.

以」:のように本実施例によれば、幅の狭い縦溝と連な
る幅の広い横溝を複数個設けたことにより溝内部の総面
積を飛躍的に大きくすることができ、蓄積容量の非常に
大きなキャパシタを得ることができる。
According to this embodiment, by providing a plurality of wide horizontal grooves connected to narrow vertical grooves, the total area inside the grooves can be dramatically increased, and the storage capacity can be greatly reduced. A large capacitor can be obtained.

尚1本実施例においては、微細でかつ蓄積容量の大きな
溝型キャパシタについて説明したが、キャパシタに電荷
を充放電するスイッチングトランジスタを一体化したダ
イナミックメモリーを構成することが可能である。また
、このダイナミックメモリのセル面積を微細にしても十
分大きな蓄積容量を確保することができる。
In this embodiment, a trench capacitor that is small and has a large storage capacity has been described, but it is possible to configure a dynamic memory in which a switching transistor for charging and discharging charge is integrated into the capacitor. Further, even if the cell area of this dynamic memory is made small, a sufficiently large storage capacity can be ensured.

発明の効果 本発明は表面開口部よりも幅の広い側壁開口部を設け、
その内壁を電極面としたことにより蓄積容量を大きくす
ることができ、さらに溝形成のドライエツチング量を小
さくして基板への損傷を少なくするという効果を得るこ
とができる優れた溝型キャパシタを実現できるものであ
る。
Effects of the Invention The present invention provides a side wall opening wider than the surface opening,
By using the inner wall as the electrode surface, storage capacity can be increased, and the amount of dry etching used to form the groove can be reduced, resulting in an excellent groove-type capacitor that has the effect of reducing damage to the substrate. It is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のMOSダイナミックメモリのセルの構造
断面図、第2図は溝型キャパシタセルの構造断面図、第
3図は本発明の第1の実施例における溝型キャパシタの
構造断面図、第4図(2L)〜(f)は本発明の第2の
実施例における溝型キャパシタの工程断面図、第6図(
a)〜((1)は本発明の第3の実施例における工程断
面図、第6図(a)〜(0)は第4の実施例における工
程断面図である。 21・・・・・・シリコン基板、22・旧・・キャパシ
タ誘電体膜%23・・・−・・多結晶シリコン、42・
・・・・・高濃度N 埋込領域。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第4図   ((L) 第4図 (d、) (C) ?X 第5図
FIG. 1 is a structural cross-sectional view of a cell of a conventional MOS dynamic memory, FIG. 2 is a structural cross-sectional view of a trench-type capacitor cell, and FIG. 3 is a structural cross-sectional view of a trench-type capacitor in the first embodiment of the present invention. 4(2L) to (f) are process cross-sectional views of the trench type capacitor in the second embodiment of the present invention, and FIG.
a) to ((1) is a cross-sectional view of the process in the third embodiment of the present invention, and FIGS. 6(a) to (0) are cross-sectional views of the process in the fourth embodiment. 21...・Silicon substrate, 22・Old・・Capacitor dielectric film% 23・・・Polycrystalline silicon, 42・
...High concentration N buried region. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 4 ((L) Figure 4 (d,) (C) ?X Figure 5

Claims (5)

【特許請求の範囲】[Claims] (1)半導体基板の表面に設けられ、側壁部のうち少な
くともその一部が表面部よりも広い幅を有する前記溝開
口部と、前記半導体基板の前記溝開口部表面に形成され
た誘電体膜と、前記誘電体膜と接続し、前記溝開口部内
部に埋込まれた導電性膜とを備え、前記半導体基板と前
記導電性膜を電極とし、前記誘電体膜を蓄積容量とする
キャパシタを構成していることを特徴とする半導体装置
(1) The groove opening provided on the surface of the semiconductor substrate, at least a part of which has a width wider than the surface of the sidewall, and a dielectric film formed on the surface of the groove opening of the semiconductor substrate. and a conductive film connected to the dielectric film and buried inside the trench opening, wherein the semiconductor substrate and the conductive film serve as electrodes, and the dielectric film serves as a storage capacitor. A semiconductor device characterized by comprising:
(2)溝開口部表面に形成された誘電体膜を蓄積容量と
するキャパシタと、前記キャパシタに電荷を充放電する
スイッチングトランジスタとを備え、ダイナミックメモ
リを構成していることを特徴とする特許請求の範囲第1
項記載の半導体装置。
(2) A patent claim comprising a capacitor whose storage capacitance is a dielectric film formed on the surface of the groove opening, and a switching transistor that charges and discharges charge in the capacitor, constituting a dynamic memory. range 1
1. Semiconductor device described in Section 1.
(3)半導体基板の所定領域に第1の開口部を形成する
工程と、前記半導体基板表面と前記第1の開口部側面に
耐エッチング性被膜を形成する工程と、前記第1の開口
部底面より前記半導体基板をエッチングし前記第1の開
口部よりも広い幅を有する第2の開口部を形成する工程
と、前記耐エッチング性被膜を除去する工程と、前記第
1の開口部及び第2の開口部の表面に誘電体膜を形成す
る工程と、前記第1の開口部及び第2の開口部の内部に
導電性膜を埋込む工程とを含むことを特徴とする半導体
装置の製造方法。
(3) forming a first opening in a predetermined region of a semiconductor substrate; forming an etching-resistant coating on a surface of the semiconductor substrate and a side surface of the first opening; and forming a bottom surface of the first opening; etching the semiconductor substrate to form a second opening having a wider width than the first opening; removing the etching-resistant coating; and etching the first opening and the second opening. A method for manufacturing a semiconductor device, comprising the steps of: forming a dielectric film on the surface of the opening; and burying a conductive film inside the first opening and the second opening. .
(4)高濃度N^+埋込領域を下方部に有する半導体基
板の表面に、前記高濃度N^+埋込領域の面積よりも狭
い開口面積を有する第1の開口部を前記高濃度N^+埋
込領域に達するまでエッチングし形成する工程と、前記
高濃度N^+埋込領域を選択的にエッチングし、前記第
1の開口部よりも広い幅を有する第2の開口部を形成す
る工程と、前記第1の開口部及び第2の開口部の表面に
誘電体膜を形成する工程とを含み、前記誘電体膜がキャ
パシタの蓄積容量を構成していることを特徴とする半導
体装置の製造方法。
(4) A first opening having an opening area narrower than the area of the high concentration N^+ buried region is formed in the surface of the semiconductor substrate having the high concentration N^+ buried region in the lower part thereof. A step of etching and forming until reaching the ^+ buried region, and selectively etching the high concentration N^+ buried region to form a second opening having a width wider than the first opening. and forming a dielectric film on the surfaces of the first opening and the second opening, the dielectric film forming a storage capacitor of a capacitor. Method of manufacturing the device.
(5)複数の縦方向に配置された高濃度N^+埋込領域
を下方部に有する半導体基板に、前記高濃度N^+埋込
領域の面積よりも狭い開口面積を有する第1の開口部を
前記半導体基板と前記高濃度N^+埋込領域間及び前記
高濃度N^+埋込領域同士間に形成する工程と、前記複
数の高濃度N^+埋込領域を選択的にエッチングし、前
記第1の開口部より広い幅を有する複数の第2の開口部
を形成する工程と、前記第1の開口部及び複数の第2の
開口部の表面に誘電体膜を形成する工程とを含み、前記
誘電体膜がキャパシタの蓄積容量を構成していることを
特徴とする半導体装置の製造方法。
(5) A first opening having an opening area narrower than the area of the high concentration N^+ buried regions in a semiconductor substrate having a plurality of vertically arranged high concentration N^+ buried regions in its lower part; forming a portion between the semiconductor substrate and the high concentration N^+ buried region and between the high concentration N^+ buried regions, and selectively etching the plurality of high concentration N^+ buried regions. a step of forming a plurality of second openings having a width wider than the first opening; and a step of forming a dielectric film on the surfaces of the first opening and the plurality of second openings. A method of manufacturing a semiconductor device, comprising: the dielectric film forming a storage capacity of a capacitor.
JP15435884A 1984-07-25 1984-07-25 Semiconductor device and manufacture thereof Pending JPS6132569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15435884A JPS6132569A (en) 1984-07-25 1984-07-25 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15435884A JPS6132569A (en) 1984-07-25 1984-07-25 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6132569A true JPS6132569A (en) 1986-02-15

Family

ID=15582408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15435884A Pending JPS6132569A (en) 1984-07-25 1984-07-25 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6132569A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62281464A (en) * 1986-05-30 1987-12-07 Nec Corp N-mos type dynamic memory cell and manufacture thereof
JPS6465862A (en) * 1987-09-07 1989-03-13 Fujitsu Ltd Semiconductor device and manufacture thereof
KR100388682B1 (en) * 2001-03-03 2003-06-25 삼성전자주식회사 Storage electric terminal layer and method for forming thereof
US7291532B2 (en) * 2005-07-19 2007-11-06 Infineon Technologies Ag Low resistance contact in a semiconductor device
US7838364B2 (en) 2006-09-29 2010-11-23 Hynix Semiconductor Inc. Semiconductor device with bulb-type recessed channel and method for fabricating the same
US7910438B2 (en) 2006-09-28 2011-03-22 Hynix Semiconductor Inc. Method for fabricating semiconductor device including recess gate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62281464A (en) * 1986-05-30 1987-12-07 Nec Corp N-mos type dynamic memory cell and manufacture thereof
JPS6465862A (en) * 1987-09-07 1989-03-13 Fujitsu Ltd Semiconductor device and manufacture thereof
KR100388682B1 (en) * 2001-03-03 2003-06-25 삼성전자주식회사 Storage electric terminal layer and method for forming thereof
US7291532B2 (en) * 2005-07-19 2007-11-06 Infineon Technologies Ag Low resistance contact in a semiconductor device
US7910438B2 (en) 2006-09-28 2011-03-22 Hynix Semiconductor Inc. Method for fabricating semiconductor device including recess gate
US7838364B2 (en) 2006-09-29 2010-11-23 Hynix Semiconductor Inc. Semiconductor device with bulb-type recessed channel and method for fabricating the same
US8288819B2 (en) 2006-09-29 2012-10-16 Hynix Semiconductor Inc. Semiconductor device with bulb-type recessed channel and method for fabricating the same

Similar Documents

Publication Publication Date Title
US5324679A (en) Method for manufacturing a semiconductor device having increased surface area conductive layer
US5716884A (en) Process for fabricating a stacked capacitor
JPS61150366A (en) Mis type memory cell
JPS6187358A (en) Semiconductor memory and manufacture thereof
US6603168B1 (en) Vertical DRAM device with channel access transistor and stacked storage capacitor and associated method
JPS6132569A (en) Semiconductor device and manufacture thereof
KR960006718B1 (en) Memory capacitor in semiconductor device and the method for fabricating the same
JP2545199B2 (en) Capacitor for semiconductor device-Manufacturing method
US5028980A (en) Trench capacitor with expanded area
JPS62140456A (en) Semiconductor storage
JPH0364964A (en) Manufacture of semiconductor memory device
KR940010346A (en) DRAM manufacturing method of semiconductor integrated device
JPS60245161A (en) Semiconductor memory and manufacture thereof
JPH06120446A (en) Semiconductor storage device and manufacture thereof
JPH05211312A (en) Manufacture of dram cell
JPS6362370A (en) Manufacture of semiconductor device
JPS59110154A (en) Semiconductor memory cell
JPS63260166A (en) Semiconductor memory device and manufacture thereof
KR960001331B1 (en) Semiconductor memory device and the manufacturing method
KR0179556B1 (en) Method for manufacturing semiconductor capacitor
JP2828038B2 (en) Method for manufacturing semiconductor device
JPS6156449A (en) Semiconductor memory device
KR100210852B1 (en) 2 step tranch capacitor fabrication method and its structure
JPH02122560A (en) Semiconductor storage device
KR960016836B1 (en) Method of manufacturing a semiconductor device