JPS6132482B2 - - Google Patents

Info

Publication number
JPS6132482B2
JPS6132482B2 JP57175461A JP17546182A JPS6132482B2 JP S6132482 B2 JPS6132482 B2 JP S6132482B2 JP 57175461 A JP57175461 A JP 57175461A JP 17546182 A JP17546182 A JP 17546182A JP S6132482 B2 JPS6132482 B2 JP S6132482B2
Authority
JP
Japan
Prior art keywords
throttle valve
sub
intake passage
intake
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57175461A
Other languages
Japanese (ja)
Other versions
JPS5965515A (en
Inventor
Koichi Takahashi
Yoshikuni Yada
Toshio Nishikawa
Akio Nagao
Hiroyuki Oda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda KK
Original Assignee
Matsuda KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda KK filed Critical Matsuda KK
Priority to JP57175461A priority Critical patent/JPS5965515A/en
Publication of JPS5965515A publication Critical patent/JPS5965515A/en
Publication of JPS6132482B2 publication Critical patent/JPS6132482B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/20SOHC [Single overhead camshaft]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Description

【発明の詳細な説明】 本発明は、アクセルペダルに連動して操作され
るスロツトル弁下流の吸気通路を1次側吸気通路
と2次側吸気通路とに形成し、2次側吸気通路に
副スロツトル弁を介設した型式のエンジンの吸気
装置に関するものである。
Detailed Description of the Invention The present invention forms an intake passage downstream of a throttle valve operated in conjunction with an accelerator pedal into a primary intake passage and a secondary intake passage, and a secondary intake passage is formed in the secondary intake passage. This invention relates to an intake system for an engine equipped with a throttle valve.

この型式のエンジンの吸気装置は公知であり、
吸気量が少ないエンジンのアイドリング運転や極
低負荷運転域では、副スロツトル弁を全閉して1
次側吸気通路のみから吸気を供給して吸気流速を
早めることにより、燃焼室内にスワールを形成し
て混合気の燃焼速度を向上させ、燃費の向上を図
ることができ、また、吸気量が多いエンジンの高
負荷運転域においては、副スロツトル弁を全開し
て2次側吸気通路からも吸気を供給して充填効率
を高め出力の向上を図ることができる利点を有す
る。
The intake system for this type of engine is known;
When the engine is idling with a small amount of intake air or operating at extremely low load, the sub-throttle valve should be fully closed.
By supplying intake air only from the next intake passage and increasing the intake flow rate, it is possible to form a swirl in the combustion chamber and improve the combustion rate of the air-fuel mixture, improving fuel efficiency. In a high-load operating range of the engine, the sub-throttle valve is fully opened to supply intake air from the secondary intake passage, thereby increasing charging efficiency and improving output.

しかしながら、上記のように、副スロツトル弁
をオン・オフ的に開閉制御する制御方式は、副ス
ロツトル弁を全開した際、2次側吸気通路から急
に多量の吸気が供給されるため、スワールが急速
に弱められてエンジンの燃焼性が一時的に不安定
となる問題がある。
However, as mentioned above, with the control method that controls the opening and closing of the sub-throttle valve on and off, when the sub-throttle valve is fully opened, a large amount of intake air is suddenly supplied from the secondary intake passage, resulting in swirl. There is a problem that the combustion characteristics of the engine become temporarily unstable due to the rapid weakening.

かかる問題を解消して、燃費の改善を図るた
め、特開昭54―74021号公報には、アイドリング
運転を含むエンジンの極低負荷運転域では、副ス
ロツトル弁を一定の最小開度に維持し、エンジン
の低中負荷運転域では、比較的小さい勾配で副ス
ロツトル弁を負荷の増大に応じて徐々に開き、エ
ンジンの高負荷運転域で副スロツトル弁を急速に
開いて全開させるようにした副スロツトル弁の制
御方式が開示されている。
In order to solve this problem and improve fuel efficiency, Japanese Patent Application Laid-Open No. 54-74021 states that the sub-throttle valve should be maintained at a constant minimum opening in the extremely low load operating range of the engine, including idling. In the engine's low-to-medium load operating range, the sub-throttle valve is gradually opened at a relatively small slope as the load increases, and in the engine's high-load operating range, the sub-throttle valve is opened rapidly and fully opened. A control method for a throttle valve is disclosed.

かかる副スロツトル弁の制御方式は、副スロツ
トル弁を全開させるほどには吸気量の多くないエ
ンジンの低中負荷運転域において、2次側吸気通
路を流下する吸気を絞り込んで流速を早めること
により1次側吸気通路から燃焼室に流入する吸気
のスワールを加速できるため、燃焼性を良好に維
持することができ、より一層の燃費の向上を図る
ことができる利点がある。
This control method for the sub-throttle valve is designed to reduce intake air flowing down the secondary intake passage to increase the flow velocity in the engine's low-medium load operating range, where the amount of intake air is not large enough to fully open the sub-throttle valve. Since the swirl of intake air flowing into the combustion chamber from the next intake passage can be accelerated, combustibility can be maintained favorably, which has the advantage of further improving fuel efficiency.

本発明者等は、かかる背景の下に、特に最も頻
繁に使用されるエンジンの低中負荷運転域におけ
る燃費と副スロツトル弁開度との関係について
種々のテストを行ない、低中負荷運転域における
燃費は、副スロツトル弁を負荷に応じて徐々に開
くよりも、副スロツトル弁をある開度に一定に保
持することによつて最小となることを見い出し、
本発明を完成するに至つたものである。
Against this background, the present inventors conducted various tests on the relationship between fuel efficiency and sub-throttle valve opening, particularly in the low-medium load operating range of engines that are most frequently used. It has been found that fuel efficiency can be minimized by holding the sub-throttle valve at a constant opening rather than gradually opening the sub-throttle valve according to the load,
This has led to the completion of the present invention.

即ち、本発明は、前記型式のエンジンの吸気装
置において、副スロツトル弁の開度をエンジンの
負荷に応じて3段階に制御する、より具体的に
は、アイドリング運転を含むエンジンの極低負荷
運転域では副スロツトル弁をほぼ全閉とし、エン
ジンの常用運転域である低中負荷運転域において
は、副スロツトル弁開度を所定開度で一定に保持
しておき、エンジンの高負荷運転域に至つて副ス
ロツトル弁を急開して全開させる副スロツトル弁
制御装置を備えたエンジンの吸気装置を提供せん
とするものである。
That is, the present invention provides an air intake system for an engine of the type described above, in which the opening degree of the sub-throttle valve is controlled in three stages depending on the engine load. In the range, the sub-throttle valve is almost fully closed, and in the low-medium load operating range, which is the normal operating range of the engine, the sub-throttle valve opening is kept constant at a predetermined opening. It is therefore an object of the present invention to provide an intake system for an engine that is equipped with a sub-throttle valve control device that opens the sub-throttle valve rapidly and fully opens the sub-throttle valve.

かかる副スロツトル弁制御方式は、以下に説明
するように、燃費を最小とすることができるのみ
ならず、副スロツトル弁の制御構造自体を簡単化
することができ、制御の安定性をも向上できる利
点がある。
As explained below, such a sub-throttle valve control method not only can minimize fuel consumption, but also simplify the control structure of the sub-throttle valve itself and improve control stability. There are advantages.

次に、本発明者等が行なつた燃料消費率に関す
る実験結果を説明する。
Next, the results of experiments regarding fuel consumption rates conducted by the present inventors will be explained.

この実験は、第1図から第7図に夫々示すよう
に、平均有効圧力Pe(Kg/cm2)およびエンジン
回転数(r.p.m)をパラメータとし、種々の吸気
負圧下で、副スロツトル弁開度(゜)を変化させ
たときの燃料消費率(/hr…無負荷時,gr/
ps・hr…負荷時)の変化を測定したものであ
る。
In this experiment, as shown in Figures 1 to 7, the average effective pressure Pe (Kg/cm 2 ) and engine speed (rpm) were used as parameters, and the auxiliary throttle valve opening was measured under various intake negative pressures. Fuel consumption rate (/hr...at no load, gr/
This is a measurement of changes in ps/hr (under load).

第1図および第2図に夫々、点,で示すよ
うに、吸気負圧が−520mmHg以上のアイドリン
グ運転時および極負荷運転時には、燃料消費率は
副スロツトル弁開度が0゜のとき最小となる。
As shown by the dots in Fig. 1 and Fig. 2, respectively, during idling operation when the intake negative pressure is -520 mmHg or more and during extreme load operation, the fuel consumption rate is minimum when the sub-throttle valve opening is 0°. Become.

一方、第3図から第7図に夫々点〜で示す
ように、吸気負圧が−520〜−150mmHgの範囲と
なるエンジンの低中負荷運転時には、副スロツト
ル弁開度がいずれもほぼ20゜の所で燃料消費率が
最小となる。20゜以下にすると燃料消費率が悪化
するのは、シリンダ内で発生するスワールが強す
ぎて、冷却損失が過度に増加するためと考えられ
る。
On the other hand, as shown by dots ~ in Figures 3 to 7, when the engine is operated at low to medium load where the intake negative pressure is in the range of -520 to -150 mmHg, the auxiliary throttle valve opening is approximately 20 degrees in both cases. The fuel consumption rate is minimum at . The reason why the fuel consumption rate worsens when the angle is 20 degrees or less is thought to be that the swirl generated within the cylinder is too strong, causing an excessive increase in cooling loss.

この実験結果から、エンジンの負荷に対応する
吸気負圧を横軸とし、副スロツトル弁開度を縦軸
にとつて、燃料消費率が最小となる点〜をプ
ロツトすると、第8図に示す通りとなる。
From the results of this experiment, the points at which the fuel consumption rate is minimum are plotted with the horizontal axis representing the intake negative pressure corresponding to the engine load and the vertical axis representing the sub-throttle valve opening, as shown in Figure 8. becomes.

即ち、吸気負圧−520mmHg以上のアイドリン
グ運転を含むエンジンの極低負荷運転時には、副
スロツトル弁を全閉(0゜)に維持することによ
つて燃料消費率を最小とすることができる一方、
最も頻繁に使用される吸気負圧−520〜−150mmH
gの範囲のエンジンの低中負荷運転時には、予想
に反して副スロツトル弁を例えば20゜程度の比較
的低い開度に一定に保持することにより、この運
転域における燃料消費率を最小にできるのであ
る。
That is, during very low load operation of the engine, including idling operation with an intake negative pressure of -520 mmHg or more, the fuel consumption rate can be minimized by keeping the sub-throttle valve fully closed (0°);
The most frequently used intake negative pressure -520 to -150mmH
During low to medium load operation of the engine in the range of g, the fuel consumption rate in this operating range can be minimized by keeping the auxiliary throttle valve constant at a relatively low opening of about 20 degrees, contrary to expectations. be.

確かに、この実験結果は、前記型式の吸気装置
を備えたエンジンの全てについて適用しうるとは
断言できないが、前掲の特開昭54―74021号公報
において開示された如く、エンジンの低中負荷運
転域で副スロツトル弁開度を負荷の増大(吸気負
圧の減少)に伴なつて漸増させることによつて燃
料消費率を最小化しうるという予想に反するデー
タを定性的に示すものとして極めて興味深いもの
である。負荷の増大にかかわらず、副スロツトル
弁の開度が一定の方が良いというのは、開度は一
定でもスワールの強さは負荷(吸入空気量)の増
大に伴なつて増加しており、この増加特性がエン
ジンの要求スワール強さに概ね一致していること
に原因していると考えられる。
It is true that this experimental result cannot be asserted to be applicable to all engines equipped with the above-mentioned type of intake system, but as disclosed in the above-mentioned Japanese Patent Application Laid-open No. 74021/1983, it is This is extremely interesting as it qualitatively shows data that contradicts the prediction that fuel consumption can be minimized by gradually increasing the sub-throttle valve opening in the operating range as the load increases (intake negative pressure decreases). It is something. The reason why it is better to keep the opening degree of the sub-throttle valve constant regardless of the increase in load is because even if the opening degree is constant, the strength of the swirl increases as the load (intake air amount) increases. This increase characteristic is considered to be caused by the fact that it roughly matches the required swirl strength of the engine.

かかる実験事実に基づいてなされた本発明の実
施例を以下に説明する。
Examples of the present invention based on such experimental facts will be described below.

第9図に示すエンジンにおいて、1は燃焼室2
に連通開口する吸気通路であり、該吸気通路1は
ベンチユリ部4,ノズル5,スロツトル弁6等を
備えた気化器3を有するとともに、スロツトル弁
6の下流側でかつ吸気マニホールド7からシリン
ダヘツド8内に形成された燃焼室2の近傍部分
は、隔壁9によつて、通路面積を比較的小さく設
定した1次側吸気通路1aと、通路面積を比較的
大きく設定した2次側吸気通路1bとに区画形成
されている。
In the engine shown in FIG. 9, 1 is the combustion chamber 2
The intake passage 1 has a carburetor 3 equipped with a bench lily portion 4, a nozzle 5, a throttle valve 6, etc., and is connected downstream of the throttle valve 6 and from the intake manifold 7 to the cylinder head 8. A portion near the combustion chamber 2 formed inside is divided by a partition wall 9 into a primary side intake passage 1a with a relatively small passage area and a secondary side intake passage 1b with a relatively large passage area. The area is divided into sections.

上記2次側吸気通路1bには、該通路1bを開
閉する副スロツトル弁10を介設し、この副スロ
ツトル弁10を副スロツトル弁制御装置11によ
つて開閉制御する。この副スロツトル弁制御装置
11は、例えば図示の如く、ケーシング12aを
吸気マニホールド7上に固定した2重ダイヤフラ
ム構造のダイヤフラム装置12として構成する。
A sub-throttle valve 10 for opening and closing the passage 1b is provided in the secondary intake passage 1b, and the sub-throttle valve 10 is controlled to open and close by a sub-throttle valve control device 11. The sub-throttle valve control device 11 is configured, for example, as a diaphragm device 12 having a double diaphragm structure in which a casing 12a is fixed on the intake manifold 7, as shown in the drawing.

上記ダイヤフラム装置12は、上下2つのダイ
ヤフラム12b,12cによつてケーシング12
aの内部を、図の上から順に、第1負圧室12
d,第2負圧室12eおよび大気室12fに仕切
り、第1負圧室12dには、第1負圧導管13に
よつて気化器3のスロツトル弁6の下流の吸気負
圧を常時導入するようにし、第2負圧室12eに
は、第2負圧導管14によつて、スロツトル弁6
が、吸気負圧−520mmHgに対応させて設定した
設定開度(例えば8゜程度に設定する)以上にま
で開かれるまでの間、換言すれば、エンジンのア
イドリング運転時および極低負荷運転時にスロツ
トル弁6下流の吸気負圧を導入するようにしてい
る。
The diaphragm device 12 has two upper and lower diaphragms 12b and 12c that connect the casing 12.
In order from the top of the figure, the inside of the first negative pressure chamber 12
d. It is partitioned into a second negative pressure chamber 12e and an atmospheric chamber 12f, and the intake negative pressure downstream of the throttle valve 6 of the carburetor 3 is constantly introduced into the first negative pressure chamber 12d through the first negative pressure conduit 13. The throttle valve 6 is connected to the second negative pressure chamber 12e through the second negative pressure conduit 14.
In other words, when the engine is idling or operating at a very low load, the throttle is The intake negative pressure downstream of the valve 6 is introduced.

また、第1,第2負圧室12d,12eの内部
には、図示の如くコイルばねを縮装して、各ダイ
ヤフラム12b,12cを下向きに常時付勢する
ようにし、下側のダイヤフラム12cの中心部に
は、作動ロツド15の上端を固定支持し、この作
動ロツドの下端は、副スロツトル弁10の弁軸1
0aの軸端に基部を取付けた開閉レバー16の自
由端側に連結し、基本的には下側ダイヤフラム1
2cの変位に応じて、作動ロツド15、開閉レバ
ー16を介して副スロツトル弁10を開閉制御す
る。
In addition, coil springs are installed inside the first and second negative pressure chambers 12d and 12e as shown in the figure to constantly bias each diaphragm 12b and 12c downward, and the lower diaphragm 12c is The upper end of the actuating rod 15 is fixedly supported in the center, and the lower end of the actuating rod is connected to the valve shaft 1 of the sub-throttle valve 10.
It is connected to the free end side of the opening/closing lever 16 whose base is attached to the shaft end of 0a, and basically connects to the lower diaphragm 1.
The opening and closing of the sub-throttle valve 10 is controlled via the actuating rod 15 and the opening/closing lever 16 in accordance with the displacement of the throttle valve 2c.

上記ダイヤフラム装置12の上側のダイヤフラ
ム12bのリフト量l1はケーシング12aに固定
したストツパ12gによつて設定するとともに、
下側のダイヤフラム12cは、両ダイヤフラム1
2b,12c間に設けた連係機構12hに設定し
た遊びl2分だけ上側ダイヤフラム12b側に第2
負圧室12cのコイルばねのばね力に抗して変位
しうるようになつている。
The lift amount l1 of the upper diaphragm 12b of the diaphragm device 12 is set by a stopper 12g fixed to the casing 12a, and
The lower diaphragm 12c has both diaphragms 1
The second diaphragm 12b is connected to the upper diaphragm 12b by the amount of play l set in the interlocking mechanism 12h provided between 2b and 12c.
It is designed to be able to be displaced against the spring force of the coil spring of the negative pressure chamber 12c.

なお、第9図中、17は吸気通路1の下流端の
吸気ポート1cを開閉する吸気弁、18は排気通
路19の排気ポート19aを開閉する排気弁、2
0は吸気弁17、排気弁18をエンジンの回転に
同期して夫々所定のタイミングで開閉させる動弁
機構、21はシリンダブロツク、22はピストン
である。
In FIG. 9, 17 is an intake valve that opens and closes the intake port 1c at the downstream end of the intake passage 1, 18 is an exhaust valve that opens and closes the exhaust port 19a of the exhaust passage 19, and 2
0 is a valve operating mechanism that opens and closes the intake valve 17 and the exhaust valve 18 at predetermined timings in synchronization with the rotation of the engine, 21 is a cylinder block, and 22 is a piston.

次に、上記副スロツトル弁制御装置11による
副スロツトル弁10の開閉制御について、第9図
および第10図を参照して説明する。
Next, the opening/closing control of the sub-throttle valve 10 by the sub-throttle valve control device 11 will be explained with reference to FIGS. 9 and 10.

いま、スロツトル弁6が、第9図にで示す如
くほぼ全閉状態となるエンジンのアイドリング運
転時又は極低負荷運転時には、第1負圧導管1
3、第2負圧導管14の両方からスロツトル弁6
下流の高い吸気圧が、第1,第2負圧室12d,
12eに夫々導入されるため、下側のダイヤフラ
ム12cは、連係機構12hによつて上側のダイ
ヤフラム12bのリフト量l1だけリフトされたう
えで、さらに連係機構12hの遊び分l2だけリフ
トされる。したがつて、第10図に示すように、
下側のダイヤフラム12cのリフト量は(l1
l2)となり、作動ロツド15および開閉レバー1
6を介して連動する副スロツトル弁10は、第9
図にイで示すように全閉される。
Now, when the engine is idling or operating at a very low load, when the throttle valve 6 is almost fully closed as shown in FIG.
3. Throttle valve 6 from both second negative pressure conduit 14
The high intake pressure downstream is the first and second negative pressure chambers 12d,
12e, the lower diaphragm 12c is lifted by the lift amount l1 of the upper diaphragm 12b by the linkage mechanism 12h, and is further lifted by the amount of play l2 of the linkage mechanism 12h. . Therefore, as shown in Figure 10,
The lift amount of the lower diaphragm 12c is (l 1 +
l 2 ), and the operating rod 15 and opening/closing lever 1
The sub-throttle valve 10 interlocked via the ninth
It is fully closed as shown by A in the figure.

このため、気化器3によつて供給される少量の
混合気は、通路面積の比較的小さい1次側吸気通
路1aによつて絞り込まれ、吸気弁17が動弁機
構20によつて開かれたときには、早い流速で燃
焼室2内に流入してスワールを生成する。
Therefore, the small amount of air-fuel mixture supplied by the carburetor 3 is narrowed down by the primary intake passage 1a, which has a relatively small passage area, and the intake valve 17 is opened by the valve mechanism 20. Sometimes, it flows into the combustion chamber 2 at a high flow velocity and generates a swirl.

この場合、1次側吸気通路1aは通路断面を比
較的偏平な形状として設定したうえで、更に、第
11図に示すように、吸気弁17によつて開閉さ
れる吸気通路1の吸気ポート1cに向かうにした
がつて通路幅が次第に狭くなるように、かつ燃焼
室2の周方向に指向させるように設定し、強力な
スワールSを生成することによつて、エンジンの
燃焼室を向上させることが好ましい。
In this case, the primary side intake passage 1a is set to have a relatively flat passage cross section, and furthermore, as shown in FIG. To improve the combustion chamber of an engine by generating a strong swirl S by setting the passage width so that it becomes gradually narrower toward the end and oriented in the circumferential direction of the combustion chamber 2. is preferred.

次に、第9図で示すように、スロツトル弁6
が吸気負圧で例えば−520mmHgに対応させて設
定した設定開度以上に開かれ、エンジンが低中負
荷運転に移行されると、第2負圧導管14の負圧
取出口がスロツトル弁6より上流に位置するよう
になるため、第2負圧導管14から第2負圧室1
2eへの負圧の導入が停止される。
Next, as shown in FIG. 9, the throttle valve 6
When the valve is opened beyond the set opening corresponding to the intake negative pressure, for example -520 mmHg, and the engine is shifted to low-medium load operation, the negative pressure outlet of the second negative pressure conduit 14 is opened from the throttle valve 6. Since it is located upstream, the second negative pressure chamber 1 is connected from the second negative pressure conduit 14.
The introduction of negative pressure to 2e is stopped.

このため、それまで最大リフト量にあつた下側
ダイヤフラム12cは第2負圧室12e内に縮装
したコイルばねのばね力で連係機構12hの遊び
分l2だけ下方に変位され、第10図に示すよう
に、連係機構12hを介して、上側ダイヤフラム
12bによりそのリフト量l1に等しいリフト量に
保持される。したがつて、副スロツトル弁10
は、第9図ロで示すように、全閉状態イから例え
ば20゜程度の一定開度に開かれる。
Therefore, the lower diaphragm 12c, which had reached the maximum lift amount up to that point, is displaced downward by the play l2 of the linkage mechanism 12h due to the spring force of the coil spring compressed in the second negative pressure chamber 12e, as shown in FIG. As shown in FIG. 3, the lift amount is maintained by the upper diaphragm 12b via the linkage mechanism 12h at a lift amount equal to the lift amount l1 . Therefore, the sub-throttle valve 10
As shown in FIG. 9(b), the opening is opened to a constant opening degree of, for example, about 20 degrees from the fully closed state (a).

この副スロツトル弁10の開度は、第1負圧導
管13によつて第1負圧室12d内に導入される
スロツトル弁6下流の吸気負圧が−520〜−150mm
Hgの範囲内にあるかぎり、一定に保持されるよ
うに、第1負圧室12d内のコイルばねの設定荷
重を定めておく。
The opening degree of the auxiliary throttle valve 10 is such that the intake negative pressure downstream of the throttle valve 6 introduced into the first negative pressure chamber 12d by the first negative pressure conduit 13 is -520 to -150 mm.
The set load of the coil spring in the first negative pressure chamber 12d is determined so that it is kept constant as long as the Hg is within the range.

この設定により、副スロツトル弁10は吸気負
圧で−520〜−150mmHgに対応するエンジンの低
中負荷運転時において、燃料消費率が最小となる
開度に保持される結果、エンジンの燃費性能を最
も良好なものとすることができる。前述した如
く、この運転領域は、最も使用頻度の高い運転領
域であり、燃費向上の実を上げることができる。
With this setting, the auxiliary throttle valve 10 is maintained at the opening that minimizes the fuel consumption rate during low-medium load operation of the engine corresponding to an intake negative pressure of -520 to -150 mmHg, and as a result, the fuel efficiency of the engine is improved. It can be the best one. As mentioned above, this driving range is the most frequently used driving range, and can improve fuel efficiency.

一方、スロツトル弁6が、第9図に実線で示す
ように、大きく開かれ、吸気負圧が−150mmHg
以下に低下したエンジンの高負荷運転時には、第
1負圧導管13によつてダイヤフラム装置12の
第1負圧室12dに導入される低い吸気負圧に打
勝つて第1負圧室12d内のコイルばねが上側ダ
イヤフラム12bを押下げ、下側ダイヤフラム1
2cもこれを追随してリフト量は零となり、その
結果、副スロツトル弁10は、第9図に実線で示
す如く、全開される。
On the other hand, the throttle valve 6 is wide open as shown by the solid line in FIG. 9, and the intake negative pressure is -150 mmHg.
During high-load operation of the engine, the pressure inside the first negative pressure chamber 12d overcomes the low intake negative pressure introduced into the first negative pressure chamber 12d of the diaphragm device 12 through the first negative pressure conduit 13. The coil spring pushes down the upper diaphragm 12b, and the lower diaphragm 1
2c also follows this and the lift amount becomes zero, and as a result, the sub-throttle valve 10 is fully opened as shown by the solid line in FIG.

したがつて、エンジンの高出力が要求される高
負荷運転時には、2次側吸気通路16から多量の
混合気を供給して充填効率を高め、エンジンの高
出力を保証することができる。
Therefore, during high-load operation where high engine output is required, a large amount of air-fuel mixture is supplied from the secondary side intake passage 16 to increase charging efficiency and ensure high engine output.

なお、以上の実施例では、副スロツトル弁制御
装置11として、2重ダイヤフラム構造のダイヤ
フラム装置12を用いたが、本発明はこれに限定
されるものではなく、例えば、2段のストローク
を有する電磁ソレノイド装置とエンジンの負荷状
態を検出する検出装置を組合せて構成する等、
種々の態様で実施しうることはいうまでもない。
In the above embodiment, the diaphragm device 12 with a double diaphragm structure was used as the sub-throttle valve control device 11, but the present invention is not limited to this. It consists of a combination of a solenoid device and a detection device that detects the engine load condition, etc.
It goes without saying that it can be implemented in various ways.

以上の説明から明らかなように、本発明によれ
ば、常用運転域である低中負荷運転時の燃費を有
効に低減でき、副スロツトル弁制御装置として
も、副スロツトル弁を3段階の開度で制御すれば
よく、連続的に開度を変化させる必要がないの
で、制御が簡単かつ安定に行なえるといつた利点
を得ることができる。
As is clear from the above description, according to the present invention, fuel consumption can be effectively reduced during low-medium load operation, which is the normal operating range, and the sub-throttle valve control device can also be used to control the sub-throttle valve at three opening levels. Since it is not necessary to continuously change the opening degree, it is possible to obtain the advantage that the control can be performed easily and stably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図,第2図,第3図,第4図,第5図,第
6図,第7図は、各々エンジンのある運転状態に
おいて副スロツトル弁開度を変化させた場合の燃
料消費率の変化を示すグラフ、第8図は吸気負圧
を変化させたときに燃料消費率が最小となる副ス
ロツトル弁開度をプロツトしたグラフ、第9図は
本発明の実施例を示すエンジンの断面説明図、第
10図は副スロツトル制御装置のリフト量の設定
方式を示すグラフ、第11図は1次側吸気通路の
好ましい設定例を示す平面説明図である。 1…吸気通路、1a…1次側吸気通路、1b…
2次側吸気通路、6…スロツトル弁、10…副ス
ロツトル弁、11…副スロツトル弁制御装置。
Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6, and Fig. 7 respectively show the fuel consumption rate when the sub-throttle valve opening is changed in a certain operating state of the engine. FIG. 8 is a graph plotting the sub-throttle valve opening at which the fuel consumption rate is minimized when the intake negative pressure is changed. FIG. 9 is a cross-section of an engine showing an embodiment of the present invention. FIG. 10 is a graph showing a method of setting the lift amount of the sub-throttle control device, and FIG. 11 is a plan view showing a preferred setting example of the primary intake passage. 1...Intake passage, 1a...Primary side intake passage, 1b...
Secondary intake passage, 6... Throttle valve, 10... Sub-throttle valve, 11... Sub-throttle valve control device.

Claims (1)

【特許請求の範囲】 1 アクセルペダルに連動して操作されるスロツ
トル弁下流の吸気通路を1次側吸気通路と2次側
吸気通路とに形成し、2次側吸気通路に該吸気通
路の通路面積を変化させる副スロツトル弁を介設
するとともに、該副スロツトル弁をエンジン負荷
状態に応じて極低負荷域ではほぼ全閉にし、低中
負荷域では所定の一定低開度に保持し、高負荷域
では全開となるように制御する副スロツトル弁制
御装置を設けたことを特徴とするエンジンの吸気
装置。 2 1次側吸気通路の通路面積は2次側吸気通路
の通路面積より狭く、1次側吸気通路の燃焼室へ
の開口部は該1次側吸気通路内を流下する吸気を
燃焼室内において周方向に旋回させるように設定
された特許請求の範囲第1項記載のエンジンの吸
気装置。
[Scope of Claims] 1. An intake passage downstream of a throttle valve operated in conjunction with an accelerator pedal is formed into a primary intake passage and a secondary intake passage, and the secondary intake passage has a passage of the intake passage. In addition to intervening a sub-throttle valve that changes the area, the sub-throttle valve is closed almost completely in the extremely low load range depending on the engine load condition, is kept at a predetermined constant low opening degree in the low and medium load range, and is An intake system for an engine, characterized in that it is provided with an auxiliary throttle valve control device that controls the throttle valve to be fully open in a load range. 2 The passage area of the primary intake passage is narrower than the passage area of the secondary intake passage, and the opening of the primary intake passage to the combustion chamber allows the intake air flowing down the primary intake passage to circulate within the combustion chamber. An intake system for an engine according to claim 1, which is configured to rotate in a direction.
JP57175461A 1982-10-05 1982-10-05 Intake apparatus of engine Granted JPS5965515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57175461A JPS5965515A (en) 1982-10-05 1982-10-05 Intake apparatus of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57175461A JPS5965515A (en) 1982-10-05 1982-10-05 Intake apparatus of engine

Publications (2)

Publication Number Publication Date
JPS5965515A JPS5965515A (en) 1984-04-13
JPS6132482B2 true JPS6132482B2 (en) 1986-07-28

Family

ID=15996467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57175461A Granted JPS5965515A (en) 1982-10-05 1982-10-05 Intake apparatus of engine

Country Status (1)

Country Link
JP (1) JPS5965515A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352985Y2 (en) * 1985-09-05 1991-11-19
JPH0450426Y2 (en) * 1986-04-28 1992-11-27

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442525A (en) * 1977-09-09 1979-04-04 Yamaha Motor Co Ltd Suction device of engine
JPS5474021A (en) * 1977-11-22 1979-06-13 Yamaha Motor Co Ltd Controlling of intake of internal combustion engine
JPS5578124A (en) * 1978-12-07 1980-06-12 Yamaha Motor Co Ltd Suction device for engine
JPS55160121A (en) * 1979-05-30 1980-12-12 Toyota Motor Corp Intake system of internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442525A (en) * 1977-09-09 1979-04-04 Yamaha Motor Co Ltd Suction device of engine
JPS5474021A (en) * 1977-11-22 1979-06-13 Yamaha Motor Co Ltd Controlling of intake of internal combustion engine
JPS5578124A (en) * 1978-12-07 1980-06-12 Yamaha Motor Co Ltd Suction device for engine
JPS55160121A (en) * 1979-05-30 1980-12-12 Toyota Motor Corp Intake system of internal combustion engine

Also Published As

Publication number Publication date
JPS5965515A (en) 1984-04-13

Similar Documents

Publication Publication Date Title
US6418891B2 (en) Internal combustion engine
US4270500A (en) Internal combustion engine with dual induction system
US4180035A (en) Internal combustion engine with an exhaust gas recirculation system
US4094287A (en) Exhaust gas recirculation system
US4850317A (en) Intake port device
JPS6132482B2 (en)
JPS6217654B2 (en)
US4765294A (en) Intake device for internal combustion engine
JPS5918530B2 (en) Internal combustion engine intake system
JPS6060008B2 (en) Internal combustion engine intake system
JPH062619A (en) Gas fuel supply system of engine
JPS6032369Y2 (en) Exhaust gas recirculation device
JP2606285Y2 (en) Swirl control device for diesel engine
JPS59162349A (en) Air-fuel ratio control method for super charging engine
US5527495A (en) Charge forming fuel system
JPH07293257A (en) Intake device of internal combustion engine
JPS61160520A (en) Intake-air control device in internal-combustion engine
JPS6245934A (en) Swirl controller
JPS589263B2 (en) Intake path device for engines with electronically controlled fuel injection devices
JPH0791997B2 (en) Variable nozzle control device for turbocharger
JPS6157455B2 (en)
KR830000291B1 (en) Control method of internal combustion engine
GB2132277A (en) Constant suction choke piston carburettor
JPS6187958A (en) Accelerating fuel feeder for carburetor
JPS5824615B2 (en) engine output stabilizer