JPS6132353Y2 - - Google Patents

Info

Publication number
JPS6132353Y2
JPS6132353Y2 JP1978086098U JP8609878U JPS6132353Y2 JP S6132353 Y2 JPS6132353 Y2 JP S6132353Y2 JP 1978086098 U JP1978086098 U JP 1978086098U JP 8609878 U JP8609878 U JP 8609878U JP S6132353 Y2 JPS6132353 Y2 JP S6132353Y2
Authority
JP
Japan
Prior art keywords
phase
displacement
stress
amplitude
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1978086098U
Other languages
Japanese (ja)
Other versions
JPS555301U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1978086098U priority Critical patent/JPS6132353Y2/ja
Publication of JPS555301U publication Critical patent/JPS555301U/ja
Application granted granted Critical
Publication of JPS6132353Y2 publication Critical patent/JPS6132353Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は粘弾性測定器の変位と変位により生じ
た応力の位相の検出装置の改善に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a device for detecting displacement of a viscoelasticity measuring instrument and the phase of stress caused by the displacement.

動的粘弾性の測定には試料の一端を固定し他端
に変位振動を加え固定端に生じる応力振動の大き
さと変位振動に対する位相とを検出して粘弾性を
測定するのが常であつた。その位相の測定にこれ
までは原因たる変位を基準とし結果たる応力を同
期位相検波器を用い求めていたが応力波は材料に
よつてその振幅に大きな変動があり、その振幅の
検出が困難でありその上その位相を検出するには
位相を比較する両波の振幅が略等しい時に容易正
確で正切として求められ、この原理が直読型など
には用いられた程である。所が変位振動は普通測
定の基本として略一定振幅を加え、この一定振幅
によつて生じる応力波での振幅と位相で複素粘弾
性を求めるのが普通で粘弾性の特に重要な高分子
材料は位相差が小さく立上り特性の悪い整流器で
の位相検出は困難で実公昭41−11515のように応
力を変位と同一振幅にする増幅倍率で大さを求め
同一振幅の2波の位相差は単なる引算で検出でき
ることで直読型としてきたが、こうした方法には
上記のように位相を定めるために応力波の振幅を
先ず所定値にする労力と時間が必要で装置が複雑
高価となるのを免れなかつた。ひるがえつて2波
の位相差を求めるにはその振幅よりも位相の特徴
となる例えば0通過点即ちゼロクロスの位置が明
らかにならば位相の検出は振幅に無関係に容易に
なるのであり、ゼロクロスは最近の演算増幅器の
進歩で容易正確になつたので本考案は上記の装置
による欠点を解消するため、従来変位振動を基準
として応力振動の位相を求めたに対し応力振動の
ゼロクロス点を先に求めこれを基準にして変位の
位相を求めるように改善を行つたものでこの装置
によれば変動の甚しい応力波の振幅の増幅度を調
整して変位波の位相に近ずけるなどの労を省き装
置を簡易正確にすることが可能となる。
To measure dynamic viscoelasticity, it was customary to fix one end of the sample, apply displacement vibration to the other end, and measure the viscoelasticity by detecting the magnitude of the stress vibration generated at the fixed end and the phase with respect to the displacement vibration. . Up until now, the phase has been measured by using a synchronous phase detector to measure the resulting stress using the cause of the displacement as a reference, but the amplitude of stress waves varies greatly depending on the material, making it difficult to detect the amplitude. Furthermore, the phase can be detected easily and accurately when the amplitudes of the two waves whose phases are to be compared are approximately equal, and this principle has even been used in direct reading types. However, as a basis for measuring displacement vibrations, it is common to add a nearly constant amplitude, and to obtain the complex viscoelasticity from the amplitude and phase of the stress wave generated by this constant amplitude. It is difficult to detect the phase in a rectifier with a small phase difference and poor rise characteristics, so the magnitude is determined by an amplification factor that makes the stress the same amplitude as the displacement, as in Utility Model Publication No. 41-11515, and the phase difference between two waves of the same amplitude is simply a pull. However, these methods require time and effort to first set the amplitude of the stress wave to a predetermined value in order to determine the phase, making the equipment complex and expensive. Ta. In other words, in order to find the phase difference between two waves, the characteristics of the phase are more important than the amplitude. For example, if the 0 passing point, that is, the position of the zero cross, is clear, phase detection becomes easy regardless of the amplitude, and the zero cross has become easier and more accurate with the recent advances in operational amplifiers, so in order to eliminate the drawbacks of the above-mentioned device, the present invention calculates the phase of stress vibration using the displacement vibration as a reference. This device has been improved so that the phase of displacement can be determined using this as a reference.This device makes it possible to adjust the amplification degree of the amplitude of the highly fluctuating stress wave to bring it closer to the phase of the displacement wave. This makes it possible to simplify and make the device more accurate.

以下図面によつて好ましい実施例を説明する。 Preferred embodiments will be described below with reference to the drawings.

第1図10は最も簡単なゼロクロス検出回路で
普通の演算増幅器12を用いた比較回路に環状接
続の整流回路14を設け比較の検出性を高め印加
交流の微小電圧を同相で所定振幅のパルス波に変
換することによりゼロクロス点を明らかにし、こ
のパルス波を例えば更に公知の同期位相検波器
(又は同期整流器、同期位相弁別器と呼ばれ同一
方向に4個の整流器を付図のように環状電橋とし
各2個の対角結合点AC,BDを接続する回路の中
性点0′0″間の電流極性が対角結合点AC,BDに加
えられた電圧の相対極性により反転することを利
用して対角結合点ACと、BDとに基準波と被位相
測定波とを別々に加え両波の位相を弁別する)1
6の基準波として導きそれと変位振動18との位
相差を指示計20に表示する。この為粘弾性測定
器22の加振器24より出る変位振動18は試料
26の一端に加え他端に生ずる応力を応力検出器
30で検出してゼロクロス検出器10を構成する
増幅器12に加え続いて起るゼロクロスを幅とす
るパルスを発生しこれを同期位相検波器16の基
準波としてACに、加振器24の変位振動18を
BDに加え、変位波と応力波の位相を検出し、動
的粘弾性を求める。従来粘弾性測定器では原因と
なる可き振動変位18の一定値を試料26に加え
生じる応力波32の大さ位相が試料26によつて
著しく異り粘弾性の特に重要な高分子材料は位相
差の微小な時には前記実公昭41−11515のように
応力を変位と同一振幅にする増幅倍率で大さを求
め同一振幅の2波の位相差は単なる両者の引算で
検出した結果を1/2した値の正切角の2倍にて求
め得ることを利用するなどの方法が最も高感度で
ある。このため在来の方法では一定振幅の原因で
ある振動変位の振幅により発生し広範囲に変動す
る結果である応力を、増幅器を調整して所定振幅
とした後に変位振動を基準として位相を求めるの
が常であり、常にAGC自動利得調整器のような
繊細な回路を応力検出回路に置く必要があつた。
これに対し最近の電子回路ではデジタル又はパル
ス回路等に比較回路が多用せられて発達した上に
ダイオード整流素子の発達も著しく、これらを組
み合さると極性の反転に当るゼロクロス点の検出
は非常に容易で従つて被測定波の振幅の大小が無
関係と言い得るまでになつたので、上記のように
位相を求めるために振幅を厳密に調整する必要が
なくその手間と時間従つて測定経費を節減するこ
とが可能となつた。即ち従来の慣習にとらはれた
固定観念の打破によつて始めて本考案の成果が得
られたものである。上記では応力波をゼロクロス
矩形波とし変位波との位相差を求めたが変位波を
ゼロクロス矩形波とし応力波の位相差を求めるこ
とも出来る。
Figure 1 10 shows the simplest zero-cross detection circuit, in which a circularly connected rectifier circuit 14 is added to a comparator circuit using an ordinary operational amplifier 12 to increase the detectability of the comparison and apply a pulse wave of a predetermined amplitude of a minute AC voltage in the same phase. The zero-crossing point is clarified by converting the pulse wave into The current polarity between the neutral points 0'0'' of the circuit connecting the two diagonal connection points AC and BD is reversed depending on the relative polarity of the voltage applied to the diagonal connection points AC and BD. Then add the reference wave and the phase-measured wave separately to the diagonal coupling points AC and BD, and discriminate the phase of both waves)1
6 as a reference wave, and the phase difference between it and the displacement vibration 18 is displayed on the indicator 20. Therefore, the displacement vibration 18 generated by the vibrator 24 of the viscoelasticity measuring instrument 22 is applied to one end of the sample 26 and the stress generated at the other end is detected by the stress detector 30, and is applied to the amplifier 12 constituting the zero cross detector 10. A pulse whose width is the zero cross that occurs at
In addition to BD, the phase of displacement waves and stress waves is detected to determine dynamic viscoelasticity. In the conventional viscoelasticity measuring instrument, when a constant value of the possible vibrational displacement 18 that is the cause is applied to the sample 26, the magnitude and phase of the resulting stress waves 32 differ significantly depending on the sample 26. When the phase difference is small, the magnitude is determined by the amplification factor that makes the stress the same amplitude as the displacement, as in the above-mentioned Utility Model Publication No. 41-11515, and the phase difference between two waves of the same amplitude is detected by simply subtracting the two, and the result is 1/ The most sensitive method is to take advantage of the fact that it can be found by twice the square angle of the squared value. For this reason, in conventional methods, the stress, which is the result of fluctuations in a wide range caused by the amplitude of vibration displacement, which is the cause of a constant amplitude, is adjusted to a predetermined amplitude by adjusting an amplifier, and then the phase is determined using the displacement vibration as a reference. It has always been necessary to include a delicate circuit such as an AGC automatic gain adjuster in the stress detection circuit.
On the other hand, in recent electronic circuits, comparison circuits are often used in digital or pulse circuits, and diode rectifiers have also developed significantly, and when these are combined, it is extremely difficult to detect the zero-crossing point that corresponds to polarity reversal. It is easy and has become so easy that it can be said that the amplitude of the measured wave is irrelevant, so there is no need to strictly adjust the amplitude to find the phase as described above, which saves time, effort, and measurement costs. It became possible to do so. In other words, the results of the present invention were achieved only by breaking away from the fixed ideas held by conventional practices. In the above, the stress wave is a zero-crossing rectangular wave and the phase difference with the displacement wave is determined, but it is also possible to use the displacement wave as a zero-crossing rectangular wave and determining the phase difference of the stress wave.

【図面の簡単な説明】[Brief explanation of the drawing]

付図は本考案を実施するためのブロツク図に近
い回路図の一例である。 図中、10……ゼロクロス検出回路、12……
オペアンプ比較器、14……環状整流器電橋、1
6……同期位相検波器、18……変位振動、20
……位相指示器、22……粘弾性測定器、24…
…加振器、26……試料、30……応力検出器、
32……応力波。
The attached figure is an example of a circuit diagram close to a block diagram for implementing the present invention. In the figure, 10... zero cross detection circuit, 12...
Operational amplifier comparator, 14... Annular rectifier bridge, 1
6...Synchronized phase detector, 18...Displacement vibration, 20
... Phase indicator, 22 ... Viscoelasticity measuring device, 24 ...
...exciter, 26...sample, 30...stress detector,
32... Stress wave.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 試料の一端を固定し他端に変位振動を加え、固
定端に生じる応力振動の大きさと変位振動に対す
る位相とを検出して、粘弾性を測定する装置に於
て、応力振動の検出回路にゼロクロス検出回路
と、変位振動の検出回路に同期位相検波器とを置
き、ゼロクロス検出回路の矩形波を基準とし他方
の位相差を検出し変位と応力との位相差を求めて
なる粘弾性位相検出装置。
In equipment that measures viscoelasticity by fixing one end of the sample and applying displacement vibration to the other end, the magnitude of the stress vibration generated at the fixed end and the phase with respect to the displacement vibration are detected. A viscoelastic phase detection device that includes a detection circuit and a synchronous phase detector in the displacement vibration detection circuit, uses the rectangular wave of the zero-cross detection circuit as a reference, detects the other phase difference, and calculates the phase difference between displacement and stress. .
JP1978086098U 1978-06-24 1978-06-24 Expired JPS6132353Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1978086098U JPS6132353Y2 (en) 1978-06-24 1978-06-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1978086098U JPS6132353Y2 (en) 1978-06-24 1978-06-24

Publications (2)

Publication Number Publication Date
JPS555301U JPS555301U (en) 1980-01-14
JPS6132353Y2 true JPS6132353Y2 (en) 1986-09-20

Family

ID=29010360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1978086098U Expired JPS6132353Y2 (en) 1978-06-24 1978-06-24

Country Status (1)

Country Link
JP (1) JPS6132353Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002235A1 (en) * 1989-07-27 1991-02-21 Seiko Instruments Inc. Device for measuring dynamic visco-elasticity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6039918B2 (en) * 2012-05-22 2016-12-07 株式会社鷺宮製作所 Test apparatus and test apparatus control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953345A (en) * 1972-09-25 1974-05-23
JPS49127558A (en) * 1973-04-06 1974-12-06
JPS50134553A (en) * 1974-04-10 1975-10-24

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953345A (en) * 1972-09-25 1974-05-23
JPS49127558A (en) * 1973-04-06 1974-12-06
JPS50134553A (en) * 1974-04-10 1975-10-24

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002235A1 (en) * 1989-07-27 1991-02-21 Seiko Instruments Inc. Device for measuring dynamic visco-elasticity

Also Published As

Publication number Publication date
JPS555301U (en) 1980-01-14

Similar Documents

Publication Publication Date Title
JPH03218475A (en) Method and device for measuring current
JP2529979Y2 (en) Sensor processing circuit
JPS6132353Y2 (en)
JP4741900B2 (en) Automatic balancing circuit for impedance measurement
US4593700A (en) Ultrasonic wave blood flow meter
JPH04318424A (en) Electromagnetic flowmeter
CN116990711A (en) Real-time estimation method for digital power supply current phase angle
JPS5938731Y2 (en) phase detector
JP4164274B2 (en) Automatic balancing circuit for impedance measurement
JP3211020B2 (en) Displacement detector
JP3252641B2 (en) Phase difference measuring device
JPS59195166A (en) Rough measuring method of frequency
JP3324840B2 (en) Metal detector
JP2000162294A (en) Magnetic field sensor
SU1569728A1 (en) Method of determining the value of nonlinearity of characteristic of accelerometers with reserve conversion
JP2580755B2 (en) Mass flow meter
JP2548816Y2 (en) Bridge circuit for measurement
JPH0631362Y2 (en) Dimension measuring device
JP2005189184A (en) Automatic balanced circuit for measuring impedance
JPH0450510Y2 (en)
JP2002340612A (en) Failure detecting method of differential transformer and device therefor
JPS5853768A (en) Measurement of dielectric loss tangent
JPH0218700Y2 (en)
JPH0420826A (en) Temperature characteristics compensating circuit of torque sensor
JP2598645B2 (en) Capacitance measurement method