WO1991002235A1 - Device for measuring dynamic visco-elasticity - Google Patents

Device for measuring dynamic visco-elasticity Download PDF

Info

Publication number
WO1991002235A1
WO1991002235A1 PCT/JP1989/000758 JP8900758W WO9102235A1 WO 1991002235 A1 WO1991002235 A1 WO 1991002235A1 JP 8900758 W JP8900758 W JP 8900758W WO 9102235 A1 WO9102235 A1 WO 9102235A1
Authority
WO
WIPO (PCT)
Prior art keywords
zero
measuring device
sample
cross point
phase difference
Prior art date
Application number
PCT/JP1989/000758
Other languages
French (fr)
Japanese (ja)
Inventor
Haruo Takeda
Nobutaka Nakamura
Masafumi Take
Original Assignee
Seiko Instruments Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc. filed Critical Seiko Instruments Inc.
Priority to PCT/JP1989/000758 priority Critical patent/WO1991002235A1/en
Publication of WO1991002235A1 publication Critical patent/WO1991002235A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties

Definitions

  • the present invention relates to a dynamic viscoelasticity measuring device.
  • the conventional dynamic viscoelasticity measuring device has the configuration shown in Fig. 3.
  • the sample 9 is given a sinusoidal force from the force generator 10 and causes a sinusoidal sample deformation with a slight phase delay according to the physical properties.
  • the sample deformation is converted into an electric signal by a displacement measuring device 12 connected to the sample 9, a zero cross point of the displacement is detected by a cross-cross detector 13, and the zero cross point of the displacement is determined by a phase difference. It becomes the input signal of the measuring instrument 14.
  • a timing circuit 11 connected to the force generator sends a signal of a force reference point (zero cross point) to the phase difference measuring device 14.
  • the phase difference measuring device 14 outputs a zero-crossing point signal of the displacement of the zero-crossing D detector 13 from the input point of the force reference point (zero cross point) signal from the timing circuit 11. The time to input is measured, and the measured time is recognized as the phase difference between force and sample deformation.
  • Another conventionally used dynamic viscoelasticity measuring device has the configuration shown in FIG.
  • the sample 9 is given a sinusoidal distortion from the distortion generator 20, and generates a sinusoidal sample stress with a small phase delay according to the physical properties.
  • the sample stress is converted into an electric signal by the stress measuring device 21 connected to the sample 9 and the zero-cross point of the stress is detected by the zero-cross detector 13.
  • the loss point becomes an input signal of the phase difference measuring device 14.
  • a timing circuit 11 connected to the distortion generator sends a signal of a distortion reference point (zero cross point) to the phase difference measuring device 14.
  • the phase difference measuring device 14 detects the reference point (zero crossing point) of the distortion from the timing circuit 11 from the point of input of the signal. The time until the point signal is input is measured, and the measured time is recognized as it is as the phase difference between the strain and the sample stress.
  • the time from the zero cross point of the applied sinusoidal force to the zero cross point of the sample deformation or sample stress is directly used as the phase difference between the force or strain and the sample deformation or sample stress.
  • the zero cross point of displacement is shifted because the sample deformation or stress is superimposed with the DC component in addition to the AC component of the applied force or strain.
  • the phase difference keeps the error.
  • An object of the present invention is to solve such a conventional problem, improve the measurement accuracy, and provide a dynamic viscoelastic device having a wide range of use. Disclosure of the invention
  • the main means employed by the present invention to achieve the above object is a timing circuit that outputs a reference signal, a force generator that applies a sine wave force or distortion to the sample in synchronization with the output of the timing circuit, or A strain generator, a displacement measuring instrument or a stress measuring instrument for measuring the displacement or stress of the sample, and a zero crossing detector for detecting a zero cross point of an output signal of the displacement measuring instrument or the stress measuring instrument; A t1 measuring device that is connected to the timing circuit and the zero-cross detector and measures a time interval from the output of the reference signal of the timing circuit to the detection of the first zero-cross point; A t2 measuring device connected to the mouth cross detector and measuring the time interval from the detection of the first mouth cross point to the detection of the next mouth cross point; the t1 measuring device and the t2 measuring device And a phase difference calculator connected to the zero cross point output signal of the zero cross detector due to a thermal expansion deformation creep phenomenon or a stress relaxation phenomenon of the sample. Even so, the phase difference calculator corrects the
  • the operation of the above configuration is as follows. First, when a sine wave force is applied to the sample by the force generator, it is displaced at the same period T as the force while having a phase difference corresponding to the physical properties of the sample.
  • the sample deformation is converted into an electric signal by the displacement measuring instrument, and the zero-cross detector detects the time axis at the point of positive / negative reversal as the zero-cross point.
  • the sample deformation is only the AC component, the time interval between the zero cross points is always a constant T 2, but when the DC component is added, it shifts positive or negative, so the time interval between the zero cross points is not constant. It disappears.
  • the time interval between every other zero-cross point is always T, and the zero-cross point that changes from negative to positive is delayed by ⁇ t from the zero-cross point when only the AC component is present.
  • the time becomes faster by ⁇ , and conversely, when the cross point that changes from negative to positive is the AC component only, it becomes ⁇ t earlier than the zero cross point.
  • the delay is ⁇ t. Therefore, the time interval t2 between the zero-cross points of the displacement with the DC component superimposed on it is positively negative ⁇ t and positive ⁇ t from eclipse.
  • the zero cross point of the sample displacement is measured using a t 1 measuring instrument.
  • the time t 1 is the phase difference between the force including the time shift ⁇ t due to the DC component and the sample deformation.
  • FIG. 1 is a block diagram showing a first embodiment of the present invention
  • FIG. 2 is a block diagram showing a second embodiment
  • FIGS. 3 and 4 are block diagrams of a conventional example.
  • FIG. Example 1 is a block diagram showing a first embodiment of the present invention
  • FIG. 2 is a block diagram showing a second embodiment
  • FIGS. 3 and 4 are block diagrams of a conventional example.
  • FIG. Example 1 is a block diagram showing a first embodiment of the present invention
  • FIG. 2 is a block diagram showing a second embodiment
  • FIGS. 3 and 4 are block diagrams of a conventional example.
  • FIG. 1 a force generator 2 and a displacement measuring device 4 are connected to a sample 1 and a displacement measuring device 4 is connected to the sample 1.
  • Numeral 3 is a timing circuit which is connected to the force generator 2 and the t1 measuring device 6.
  • Reference numeral 8 denotes a phase difference calculator, to which the t 1 measuring device 6 and the t 2 measuring device 7 are connected.
  • sample 1 When a sine wave force is applied to sample 1 by force generator 2, sample 1 The displacement of the sample 1 which is displaced at the same frequency while having a phase difference is converted into an electric signal by the displacement measuring device 4 and sent to the zero-cross detector 5.
  • the zero cross detector 5 outputs a zero cross point signal to the t 1 measuring device 6 and the t 2 measuring device 7 when the signal from the displacement measuring device 4 reverses the sign.
  • the t1 measuring device 6 is a reference point of the sine wave force applied to the sample 1 by the force generator 2 (anywhere, but in this case, a zero crossing point of a force changing from positive to eclipse). From the time when the signal is input from the timing circuit 3, the zero cross point from the zero cross detector 5
  • an accurate phase difference can be measured by calculating the ⁇ t time based on the zero cross point shift and subtracting ⁇ t from the time t1.
  • the zero cross point from positive to negative is earlier by ⁇ t, and the zero cross point from negative to positive is only ⁇ t.
  • the negative DC component is superimposed, the zero cross point from positive to negative is delayed by m t, and the zero cross point from negative to positive is earlier. From this fact, it can be seen that the time between every other zero cross point coincides with the period T of the sine wave of the given force regardless of whether the positive or negative DC component is superimposed.
  • the time of the negative half-wave and the half-period is always 12 ⁇ T longer on one side and 2 ⁇ t shorter on the other side. From this, it can be seen that ⁇ ⁇ ⁇ can be calculated from the period T by actually measuring the time 2 of either the positive or negative half-wave of the sample displacement t (2)
  • the measuring instrument 7 measures the time from the zero-cross point signal output from the zero-cross detector 5 to the next zero-cross point signal, that is, the time t 2 (half-wave of the sample deformation). However, here, it is the time of the negative half-wave.) Measure.
  • the phase difference calculator 8 receives the t1 signal from the t1 measuring device 6 and the t2 signal from the t2 measuring device 7,
  • the timing circuit 3, the zero-cross detector 5, the t1 measuring instrument 6, the t2 measuring instrument 8, the phase difference actuating device 8, and the force generator 2 must be composed of analog circuits or digital circuits. That the reference point signal from the timing circuit 3 to the t1 measuring instrument 6 can be changed from the zero crossing point to an arbitrary point, and the period during which the t1 measuring instrument 6 and t2 measuring instrument 7 measure It goes without saying that the selection and change such as that can be changed to an arbitrary point do not affect the content of the present invention.
  • a strain generator 22 and a stress measuring device 24 are connected to the sample 1, and the stress measuring device 24 is connected to the sample 1.
  • Reference numeral 8 denotes a phase difference calculator, to which the t1 measuring device 6 and the t2 measuring device 7 are connected.
  • a stress having the same frequency and a phase difference as the strain is generated in the sample 1.
  • the stress of the sample 1 is converted into an electric signal by the stress measuring device 4 and sent to the zero-cross detector 5. Is done.
  • the Zen cross detector 5 outputs a zero cross point signal to the t 1 measuring device 6 and the t 2 measuring device 7 when the G) signal from the stress measuring device 4 reverses the sign.
  • the t 1 measuring device 6 is a reference point for the sine wave distortion given to the sample 1 by the distortion generator 2 (anywhere, here, a zero cross point of the distortion that changes from positive to negative). From the time when the signal is input from the timing circuit 3, the zero-cross point from the zero-cross detector 5
  • an accurate phase difference can be measured by calculating the time t by the zero cross point shift and subtracting ⁇ t from the time t 1.
  • the zero cross point from positive to negative becomes earlier by ⁇ t and the cross point from negative to positive becomes ⁇ It is delayed by t.
  • the negative DC component is superimposed, the positive-to-negative zero-cross point is delayed by ⁇ t, and the negative-to-positive zero-cross point is advanced. Therefore, regardless of whether the positive or negative DC component is superimposed,
  • the time between every other zero cross point coincides with the period ⁇ of the sine wave of the given strain, which is constant, and the time of the positive and negative half-waves of the stress is half the period of 1/2 T. It can be seen that one is always 2 ⁇ t longer and the other is 2 ⁇ t shorter. From this, it can be seen that ⁇ t can be calculated from the period T by actually measuring the time t 2 of either the positive or negative half wave of the sample stress.
  • t 2 Measuring instrument 7 outputs the zero cross detector 5 output O Time from the zero cross point signal to the next zero cross point signal-. Measure the time t 2 (either positive or negative half-wave may be used, but here is the time for the negative half-wave).
  • the phase difference calculator 8 calculates the t1 signal from the t1 measuring device 6 and the t2 measuring device? Input the t 2 signal from
  • the timing circuit 3, the zero-cross detector 5, the t1 measuring device 6, the t2 measuring device ⁇ , the phase difference calculating device 8, and the distortion generator 2 can be constituted by an analog circuit or a digital circuit. That the reference point signal from the timing circuit 3 to the t1 measuring instrument 6 can be changed from the zero point to the arbitrary point, and that the ti measuring instrument 6 and t2 measurement.
  • the selection and change such as the fact that the measurement period with the instrument can be changed to an arbitrary point, do not affect the content of the present invention.
  • a thermal expansion deformation, a creep phenomenon, a stress relaxation phenomenon, or the like occurs in the sample.
  • it since it has means to accurately correct and calculate the phase difference between the sinusoidal force or strain applied to the sample and the sample displacement or sample stress, accurate measurements can be made and the dynamic viscoelasticity measurement device The range of application can be greatly expanded.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

The force of a sinusoidal wave is applied to a sample to measure the phase difference on how much the deformation of the sample is lagged behind the force that is applied. For this purpose, the device comprises the sample, a force generator, a timing circuit, a zero-cross detector, a t1 measuring instrument, a t2 measuring instrument, and a phase difference calculating device. The phase difference calculating device calculates a correction using a time t1 (phase difference containing error) from a zero-cross point of a sinusoidal wave of the force measured by the t1 measuring instrument to a zero-cross point of the deformation of the sample, and a time t2 from a zero-cross point of the deformation of the sample measured by the t2 measuring instrument to a next zero-cross point. The phase difference is correctly found even when the zero-cross point is shifted as a result of superposition of DC components on the deformation of the sample due to deformation by thermal expansion and creep phenomenon.

Description

明 細 書 動的粘弾性測定装置 技術分野  Description Dynamic viscoelasticity analyzer Technical field
本発明は、 動的粘弾性測定装置に関するものである。 背景技術  The present invention relates to a dynamic viscoelasticity measuring device. Background art
従来用いられた動的粘弾性測定装置は、 第 3図に示される構成で め o  The conventional dynamic viscoelasticity measuring device has the configuration shown in Fig. 3.
試料 9 は、 正弦波の力を力発生器 10から与えられ、 物性的性質に 応じ若干の位相遅れを伴った正弦波の試料変形を起こす。 試料変形 は前記試料 9 に接続された変位計測器 12で電気信号に変換され、 ゼ 口 ク ロ ス検出器 13で変位のゼロ ク ロ ス点を検出され、 変位のゼロ ク ロス点は位相差計測器 14の入力信号となる。 一方, 前記力発生器に 接続されたタイ ミ ング回路 11は、 力の基準点 (ゼロク ロス点) の信 号を前記位相差計測器 14に送出する。  The sample 9 is given a sinusoidal force from the force generator 10 and causes a sinusoidal sample deformation with a slight phase delay according to the physical properties. The sample deformation is converted into an electric signal by a displacement measuring device 12 connected to the sample 9, a zero cross point of the displacement is detected by a cross-cross detector 13, and the zero cross point of the displacement is determined by a phase difference. It becomes the input signal of the measuring instrument 14. On the other hand, a timing circuit 11 connected to the force generator sends a signal of a force reference point (zero cross point) to the phase difference measuring device 14.
前記位相差計測器 14で、 前記タイ ミ ング回路 11からの力の基準点 (ゼ σ ク ロ ス点) 信号の入力時点から前記ゼロク D ス検出器 13の変 位のゼロク πス点信号の入力時点までの時間を計測し、 この計測し た時間をそのまま力と試料変形との位相差であると認識する構成で め 。  The phase difference measuring device 14 outputs a zero-crossing point signal of the displacement of the zero-crossing D detector 13 from the input point of the force reference point (zero cross point) signal from the timing circuit 11. The time to input is measured, and the measured time is recognized as the phase difference between force and sample deformation.
従来用いられた他の動的粘弾性測定装置は、 第 4図に示される構 成である。  Another conventionally used dynamic viscoelasticity measuring device has the configuration shown in FIG.
試料 9 は、 正弦波の歪を歪発生器 20から与えられ、 物性的性質に 応じ若千の位相遅れを伴った正弦波の試料応力を起こす。 試料応力 は前記試料 9 に接続された応力計測器 21で電気信号に変換され、 ゼ ロク ロス検出器 13で応力のゼロク ロス点を検出され、 応力のゼロク 新た な用紙 ロス点は位相差計測器 14の入力信号となる。 一方、 前記歪発生器に 接続されたタイ ミ ング回路 1 1は、 歪の基準点 (ゼロク ロス点) の信 号を前記位相差計測器 14に送出する。 The sample 9 is given a sinusoidal distortion from the distortion generator 20, and generates a sinusoidal sample stress with a small phase delay according to the physical properties. The sample stress is converted into an electric signal by the stress measuring device 21 connected to the sample 9 and the zero-cross point of the stress is detected by the zero-cross detector 13. The loss point becomes an input signal of the phase difference measuring device 14. On the other hand, a timing circuit 11 connected to the distortion generator sends a signal of a distortion reference point (zero cross point) to the phase difference measuring device 14.
前記位相差計測器 14で、 前記タイ ミ ング回路 1 1からの歪の基準点 (ゼロク ロ ス点) 信号の入力時点から前記ゼ α ク ロ ス検出器 13の応 力のゼ π ク ロ ス点信号の入力時点までの時間を計測し、 この計測し た時間をそのまま歪と試料応力との位相差であると認識する構成で ある。  The phase difference measuring device 14 detects the reference point (zero crossing point) of the distortion from the timing circuit 11 from the point of input of the signal. The time until the point signal is input is measured, and the measured time is recognized as it is as the phase difference between the strain and the sample stress.
上記従来技術においては、 与えた正弦波の力のゼロク ロス点から 試料変形又は試料応力のゼロク ロス点までの時間をそのまま力又は 歪と試料変形又は試料応力の位相差とするため、 試料に熱膨張変形 やク リ ープ現象又は応力緩和現象等が発生した場合、 試料変形又は 応力は与えた力又は歪の交流成分の他に直流成分が重畳するため変 位のゼロ ク ロ ス点はシフ ト して しま う が、 こ の シフ ト によ る誤差を 補正する手段をもたないため位相差は誤差を舍んだままであるとい う問題があつた。  In the above prior art, the time from the zero cross point of the applied sinusoidal force to the zero cross point of the sample deformation or sample stress is directly used as the phase difference between the force or strain and the sample deformation or sample stress. When expansion deformation, creep phenomenon or stress relaxation phenomenon occurs, the zero cross point of displacement is shifted because the sample deformation or stress is superimposed with the DC component in addition to the AC component of the applied force or strain. However, since there is no means to correct the error due to this shift, there is a problem that the phase difference keeps the error.
本発明はこ のような従来の問題点を解消し、 測定精度を高め、 用範囲の広い動的粘弾性装置を提供することを目的とする。 発明の開示  An object of the present invention is to solve such a conventional problem, improve the measurement accuracy, and provide a dynamic viscoelastic device having a wide range of use. Disclosure of the invention
上記目的を達成するため本発明が採用する主たる手段は、 基準信号は出力するタイ ミ ング回路と前記タイ ミ ング回路の出力 に同期して試料に正弦波の力又は歪を与える力発生器又は歪発生器 と、 前記試料の変位又は応力を計測する変位計測器又は応力計測器 と、 前記変位計測器又は応力計測器の出力信号のゼロク αス点を検 出するゼロク ロ ス検出器と、 前記タイ ミ ング回路および前記ゼロク ロス検出器と接続され前記タイ ミ ング回路の基準信号出力後最初の ゼロク ロス点検出までの時間間隔を計測する t 1計測器と -. 前記ゼ 口 ク ロス検出器と接続され最初のゼ口ク ロス点検出後次のゼ口ク ロ ス点検出までの時間間隔を計測する t 2計測器と、 前記 t 1 計測器 と前記 t 2計測器とに接続された位相差演算器を備え、 これにより 前記試料の熱膨張変形ゃク リ -プ現象又は応力緩和現象等の影響で 前記ゼロク ロス検出器のゼロ ク ロ ス点出力信号がシフ ト しても、 前 記 t 1計測器と前記 t 2計測器との出力信号から前記位相差演算器 で前記試料の位相差を正確に補正する ものである。 The main means employed by the present invention to achieve the above object is a timing circuit that outputs a reference signal, a force generator that applies a sine wave force or distortion to the sample in synchronization with the output of the timing circuit, or A strain generator, a displacement measuring instrument or a stress measuring instrument for measuring the displacement or stress of the sample, and a zero crossing detector for detecting a zero cross point of an output signal of the displacement measuring instrument or the stress measuring instrument; A t1 measuring device that is connected to the timing circuit and the zero-cross detector and measures a time interval from the output of the reference signal of the timing circuit to the detection of the first zero-cross point; A t2 measuring device connected to the mouth cross detector and measuring the time interval from the detection of the first mouth cross point to the detection of the next mouth cross point; the t1 measuring device and the t2 measuring device And a phase difference calculator connected to the zero cross point output signal of the zero cross detector due to a thermal expansion deformation creep phenomenon or a stress relaxation phenomenon of the sample. Even so, the phase difference calculator corrects the phase difference of the sample accurately from the output signals of the t1 measuring device and the t2 measuring device.
上記構成の作用は、 まず力発生器で正弦波の力を試料に与える と 試料の物性に応じた位相差をもちながら、 力と同一周期 Tで変位す る。 試料変形は変位計測器で電気信号に変換され、 正負逆転する点 の時間軸をゼロ ク ロ ス検出器はゼロ ク ロ ス点と して検出する。 試料 変形が交流成分だけの時はゼロク ロス点間の時間間隔は常に一定の Tノ 2 であるが、 直流成分が加わる と正または負にシフ トするため ゼロク ロス点間の時間間隔は一定ではな く なる。 しかしながら、 1 つおきのゼロ ク ロス点間の時間間隔は常に一定の Tであり、 負から 正に変わるゼロ ク ロス点が交流成分だけの時のゼロ ク ロス点に対し Δ t だけ遅れた場合、 逆に正から負に変わるゼロク ロ ス点では厶 τ, だけ早く なり 、 反対に負から正に変わるゼ αク 口ス点が交流成分だ けの時のゼロク ロス点に対し Δ t だけ早く なれば、 正から負に変わ るゼロ ク ロ ス点では Δ t だけ遅 く なる という関係がある。 従って、 直流成分が重畳した変位のゼロク ロス点間の時間間隔 t 2 は半周期 T / 2 に対し正から負の Δ t と食から正の Δ t の 2 つ分の△ t がプ ラスになる力、、 マイ ナスになるかのいずれかであり 、 かつ、 交互に 並ぶこ とになる。 そこで、 直流成分によるゼ口 ク 口 ス点の時間シフ ト量 Δ t を求めるために、 t 2を実測' (どちらでも良いが、 こ こで は負の半波側の t 2 とする) する t 2計測器を配備し、 t 2 から 厶 t = l / 2 ( T / 2 - t 2 )  The operation of the above configuration is as follows. First, when a sine wave force is applied to the sample by the force generator, it is displaced at the same period T as the force while having a phase difference corresponding to the physical properties of the sample. The sample deformation is converted into an electric signal by the displacement measuring instrument, and the zero-cross detector detects the time axis at the point of positive / negative reversal as the zero-cross point. When the sample deformation is only the AC component, the time interval between the zero cross points is always a constant T 2, but when the DC component is added, it shifts positive or negative, so the time interval between the zero cross points is not constant. It disappears. However, the time interval between every other zero-cross point is always T, and the zero-cross point that changes from negative to positive is delayed by Δt from the zero-cross point when only the AC component is present. On the other hand, at the zero cross point where the potential changes from positive to negative, the time becomes faster by τ, and conversely, when the cross point that changes from negative to positive is the AC component only, it becomes Δt earlier than the zero cross point. Then, at the zero cross point where the value changes from positive to negative, there is a relationship that the delay is Δt. Therefore, the time interval t2 between the zero-cross points of the displacement with the DC component superimposed on it is positively negative Δt and positive Δt from eclipse. It becomes either a force or a minus, and it is arranged alternately. Therefore, in order to obtain the time shift amount Δt of the cross-sectional point due to the DC component, t 2 is actually measured (either one is acceptable, but here it is t 2 on the negative half-wave side). Deploy t 2 measuring instrument and t = l / 2 (T / 2-t 2)
の演算を位相差演算器で行い、 Δ t を求める。 一方、 試料に与えた正弦波の力の時間軸の基準点 (どこでも良い 力 、 ここでは正から負に変わるゼロ ク ロス点とする) から、 試料変 位のゼロク 口:ス点 (どこでも良いが、 こ こでは正から負に変わるゼ 口ク ロス点とする) までの時間 t 1 を t 1 計測器で実測してお く 。 時間 t 1 は直流成分による時間シフ ト量 Δ t を含む力と試料変形と の位相差であるから、 先に求めておいた厶 t を用い Is calculated by a phase difference calculator to obtain Δt. On the other hand, from the reference point on the time axis of the sinusoidal force applied to the sample (any good force, here the zero cross point that changes from positive to negative), the zero cross point of the sample displacement: In this case, the time t 1 until the cross point changes from positive to negative is measured using a t 1 measuring instrument. The time t 1 is the phase difference between the force including the time shift Δt due to the DC component and the sample deformation.
位相差 t 1 - Δ t  Phase difference t 1-Δt
の演算を位相差演算器で行う こ とで、 誤差分を補正した正確な位相 差を測定する 目的を達成する。 By performing the calculation in (1) with a phase difference calculator, the objective of measuring an accurate phase difference corrected for the error is achieved.
また同様に、 歪発生器で正弦波の歪を試料に与えても試料の物性 に応じた位相差をもちながら、 歪と同一周期 Tの応力が生じる。 正 弦波の応力を試料に与えたものとほぼ同様の現象となるので ΐ兑明は 省略する。 図面の簡単な説明  Similarly, even when a sine wave strain is applied to the sample by the strain generator, a stress having the same period T as the strain is generated while having a phase difference corresponding to the physical properties of the sample. Since the phenomenon is almost the same as that when a sine wave stress is applied to the sample, the explanation is omitted. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は本発明の第 1 の実施例を示すブロ ッ ク図、 第 2図は第 2 の実施例を示すブロ ッ ク図、 第 3図と第 4図は、 従来例のブロ ッ ク 図である。 実施例 1  FIG. 1 is a block diagram showing a first embodiment of the present invention, FIG. 2 is a block diagram showing a second embodiment, and FIGS. 3 and 4 are block diagrams of a conventional example. FIG. Example 1
以下、 本発明の一実施例に示した図面に基づき、 詳細に説明する と、 第 1 図において、 試料 1 には力発生器 2 と変位計測器 4 とが接 ' され、 変位計測器 4 にはゼ口ク ロス検出器 5 が接続され、 ゼ口ク 口 ス検出器 5 には t 1 計測器 6 と t 2計測器 7 とが接続されている。 3 はタイ ミ ング回路で前記力発生器 2 と前記 t 1 計測器 6 とに接続 されている。 8 は位相差演算器であり 、 前記 t 1 計測器 6 と前記 t 2計測器 7 とが接続されている。  Hereinafter, a detailed description will be given with reference to the drawings shown in one embodiment of the present invention. In FIG. 1, a force generator 2 and a displacement measuring device 4 are connected to a sample 1 and a displacement measuring device 4 is connected to the sample 1. Is connected to a cross-cross detector 5, and the cross-cross detector 5 is connected to a t 1 measuring device 6 and a t 2 measuring device 7. Numeral 3 is a timing circuit which is connected to the force generator 2 and the t1 measuring device 6. Reference numeral 8 denotes a phase difference calculator, to which the t 1 measuring device 6 and the t 2 measuring device 7 are connected.
まず、 力発生器 2 で正弦波の力を試料 1 に与える と、 試料 1 は力 と位相差をもちながら同じ周波数で変位する 前記試料 1 の変位は 変位計測器 4で電気信号に変換され、 ゼロ.ク ロ ス検出器 5 に送出さ れる。 前記ゼロ ク ロ ス検出器 5 は、 前記変位計測器 4からの信号が 正負逆転する時にゼロク 口ス点信号を t 1 計測器 6 と t 2計測器 7 とに出力する。 前記 t 1 計測器 6 は、 前記試料 1 に前記力発生器 2 で与えた正弦波の力の基準点 (どこでも良いが、 こ こ では、 正から 食に変わる力のゼロク ロ ス点とする) 信号をタ イ ミ ング回路 3から 入力した時点から、 前記ゼロ ク ロ ス検出器 5 からのゼロク ロ ス点 First, when a sine wave force is applied to sample 1 by force generator 2, sample 1 The displacement of the sample 1 which is displaced at the same frequency while having a phase difference is converted into an electric signal by the displacement measuring device 4 and sent to the zero-cross detector 5. The zero cross detector 5 outputs a zero cross point signal to the t 1 measuring device 6 and the t 2 measuring device 7 when the signal from the displacement measuring device 4 reverses the sign. The t1 measuring device 6 is a reference point of the sine wave force applied to the sample 1 by the force generator 2 (anywhere, but in this case, a zero crossing point of a force changing from positive to eclipse). From the time when the signal is input from the timing circuit 3, the zero cross point from the zero cross detector 5
(どちらでも良いが、 こ こでは正から負に変わるゼロク ロス点とす る) 信号を入力する時点までの時間 t 1 を計測する。 も し、 前記試 料 1 に熱膨張変形ゃク リ ープ現象等が発生せず直流成分の変形がな く 、 与えた正弦波の力の交流成分だけの変形であれば、 この時間 t 1 は力と試料変形との位相差その ものとなる。 逆に、 直流成分の変 形を伴った場合、 前記ゼロク ロ ス検出器 5 で検出する変形のゼ πク 口ス点は直流成分量に依存する Δ t 時間だけシフ トするため、 時間 t 1 は Δ t 時間の誤差を含む位相差となる。 換言すれば、 ゼロ ク ロ ス点シフ トによる Δ t 時間を求め、 時間 t 1 から Δ t を差し引けば 正確な位相差を計測でき る と言える。 交流成分だけのゼロ ク ロス点 に対し、 正の直流成分が重畳した場合の正から負へのゼロ ク ロ ス点 は Δ t だけ早 く なり負から正へのゼロク ロ ス点は Δ t だけ遅く なる。 反対に負の直流成分が重畳した場合の正から負へのゼロ ク ロ ス点は 厶 t だけ遅 く なり、 負から正へのゼロ ク ロ ス点は早く なる という関 係がある。 このこ とから、 正負どちらの直流成分が重畳しても 1 つ おきのゼロ ク ロ ス点間の時間は一定で与えた力の正弦波の周期 Tと 一致する事がわかり 、 また変位の正と負の半波分の時間は半周期 1 2 Tに対し、 必ず片方が 2 △ t 長く 、 もう片方は 2 △ t 短 く なる 事がわかる。 こ の事から、 試料変位の正負いずれかの半波分の時間 2 を実測すれば、 周期 Tから Δ ΐ を演算できる こ とがわかる t 2計測器 7 は前記ゼロク ロ ス検出器 5出力のゼロク ロ ス点信号から 次のゼロクロス点信号までの時間、 すなわち試料変形の半波分の時 間 t 2 (正負どちらの半波分でも良いが、 こ こでは負の半波分の時 間とする) 計測する。 位相差演算器 8 は、 前記 t 1計測器 6からの t 1信号と前記 t 2計測器 7からの t 2信号を入力し、 (Either way is acceptable, but here the zero crossing point, which changes from positive to negative, is measured.) Measure the time t 1 until the signal is input. If the sample 1 does not undergo thermal expansion deformation, creep phenomenon, etc., does not deform the DC component, and deforms only the AC component of the applied sine wave force, this time t 1 Is the phase difference between the force and the sample deformation. Conversely, when the DC component is deformed, the zero cross point of the deformation detected by the zero-cross detector 5 is shifted by Δt time depending on the DC component amount. Is a phase difference including an error of Δt time. In other words, it can be said that an accurate phase difference can be measured by calculating the Δt time based on the zero cross point shift and subtracting Δt from the time t1. When the positive DC component is superimposed on the zero cross point of only the AC component, the zero cross point from positive to negative is earlier by Δt, and the zero cross point from negative to positive is only Δt. Become slow. Conversely, when the negative DC component is superimposed, the zero cross point from positive to negative is delayed by m t, and the zero cross point from negative to positive is earlier. From this fact, it can be seen that the time between every other zero cross point coincides with the period T of the sine wave of the given force regardless of whether the positive or negative DC component is superimposed. It can be seen that the time of the negative half-wave and the half-period is always 12 ΔT longer on one side and 2 Δt shorter on the other side. From this, it can be seen that Δ か ら can be calculated from the period T by actually measuring the time 2 of either the positive or negative half-wave of the sample displacement t (2) The measuring instrument 7 measures the time from the zero-cross point signal output from the zero-cross detector 5 to the next zero-cross point signal, that is, the time t 2 (half-wave of the sample deformation). However, here, it is the time of the negative half-wave.) Measure. The phase difference calculator 8 receives the t1 signal from the t1 measuring device 6 and the t2 signal from the t2 measuring device 7,
厶 t = l Z 2 ( T / 2 - t 2 )  T = l Z 2 (T / 2-t 2)
の演算を行い、 誤差時間 Δ t を求め、 To calculate the error time Δt,
位相差 = t 1 - Δ t  Phase difference = t 1-Δt
の演算を行い、 誤差のない正確な位相差を求めることができる。 , And an accurate phase difference without errors can be obtained.
なお、 タイ ミ ング回路 3 、 ゼロク ロス検出器 5、 t 1計測器 6、 t 2計測器 8、 位相差演箕器 8、 力発生器 2 はアナ口グ回路でも、 デジタル回路でも構成することができることや、 タイ ミ ング回路 3 から t 1計測器 6への基準点信号をゼロク πス点から任意の点に変 更できることや、 t 1計測器 6 と t 2計測器 7で計測する期間を任 意の点に変更できること等の選択, 変更は本発明の内容を左右する ものではないのはもちろんのことである。 実施例 1  The timing circuit 3, the zero-cross detector 5, the t1 measuring instrument 6, the t2 measuring instrument 8, the phase difference actuating device 8, and the force generator 2 must be composed of analog circuits or digital circuits. That the reference point signal from the timing circuit 3 to the t1 measuring instrument 6 can be changed from the zero crossing point to an arbitrary point, and the period during which the t1 measuring instrument 6 and t2 measuring instrument 7 measure It goes without saying that the selection and change such as that can be changed to an arbitrary point do not affect the content of the present invention. Example 1
以下、 本発明の第 2の実施例に示した図面に基づき、 詳細に説明 すると、 第 2図において、 試料 1 には歪発生器 22と応力計測器 24と が接続され、 応力計測器 24にはゼロ ク ロス検出器 5 が接続され、 ゼ 口ク ロス検出器 5には t 1計測器 6 と t 2計測器 7 とが接続されて いる。 3 はタイ ミ ング回路で前記歪発生器 22と前記 t 1計測器 6 と に接続されている。 8 は位相差演算器であり、 前記 t 1計測器 6 と 前記 t 2計測器 7 とが接続されている。  Hereinafter, the present invention will be described in detail with reference to the drawings shown in the second embodiment of the present invention. In FIG. 2, a strain generator 22 and a stress measuring device 24 are connected to the sample 1, and the stress measuring device 24 is connected to the sample 1. Is connected to a zero-cross detector 5, and the zero-cross detector 5 is connected to a t1 measuring device 6 and a t2 measuring device 7. 3 is a timing circuit connected to the distortion generator 22 and the t1 measuring device 6. Reference numeral 8 denotes a phase difference calculator, to which the t1 measuring device 6 and the t2 measuring device 7 are connected.
まず、 歪発生器 22で正弦波の歪を試料 1 に与えると、 試料 1 には 歪と同じ周波数の位相差のある応力が発生する。 前記試料 1 の応力 は応力計測器 4で電気信号に変換され、 ゼロク α ス検出器 5 に送出 新た な用紙 される。 前記ゼ n ク ロ ス検出器 5 は、 前記応力計測器 4から G)信号 が正負逆転する時にゼロク ロス点信号を t 1 計測器 6 と t 2計測器 7 とに出力する。 前記 t 1 計測器 6 は、 前記試料 1 に前記歪発生器 2 で与えた正弦波の歪の基準点 (どこでも良いが、 こ こでは、 正か ら負に変わる歪のゼロク ロス点とする) 信号をタ イ ミ ング回路 3 か ら入力した時点から、 前記ゼロ ク ロス検出器 5 からのゼロク ロス点First, when a sine wave strain is applied to the sample 1 by the strain generator 22, a stress having the same frequency and a phase difference as the strain is generated in the sample 1. The stress of the sample 1 is converted into an electric signal by the stress measuring device 4 and sent to the zero-cross detector 5. Is done. The Zen cross detector 5 outputs a zero cross point signal to the t 1 measuring device 6 and the t 2 measuring device 7 when the G) signal from the stress measuring device 4 reverses the sign. The t 1 measuring device 6 is a reference point for the sine wave distortion given to the sample 1 by the distortion generator 2 (anywhere, here, a zero cross point of the distortion that changes from positive to negative). From the time when the signal is input from the timing circuit 3, the zero-cross point from the zero-cross detector 5
(どちらでも良いが、 こ こでは正から負に変わるゼロク ロス点とす る) 信号を入力する時点までの時間 t 1 を計測する。 も し、 前記試 料 1 に熱膨張変形や応力緩和の現象等が発生せず直流成分の応力が な く 、 与えた正弦波の歪の交流成分だけの応力であれは'、 この時間 t 1 は歪と試料応力との位相差その ものとなる。 逆に、 直流成分の 応力を伴った場合、 前記ゼロ ク ロス検出器 5 で検出する応力のゼ η ク ロ ス点は直流成分量に依存する Δ t 時間だけシフ トするため、 時 間 t 1 は△ t 時間の誤差を舍む位相差となる。 換言すれば、 ゼロ ク ロス点シフ トによる 厶 t 時間を求め、 時間 t 1 から Δ t を差し引け ば正確な位相差を計測できる と言える。 交流成分だけのゼ口ク ロ ス 点に対し、 正の直流成分が重畳した場合の正から負へのゼロ ク ロス 点は Δ t だけ早く なり負から正へのゼ π ク ロ ス点は Δ t だけ遅 く な る。 反対に負の直流成分が重畳した場合の正から負へのゼロク ロス 点は△ t だけ遅く なり、 負から正へのゼロク ロ ス点は早 く なる とい う関係がある。 このこ とから、 正負どちらの直流成分が重畳しても(Either way is acceptable, but here the zero crossing point, which changes from positive to negative, is measured.) Measure the time t 1 until the signal is input. If there is no thermal expansion deformation or stress relaxation phenomenon in sample 1 and there is no DC component stress, and if only the AC component of the applied sine wave distortion is applied, then this time t 1 Is the phase difference between the strain and the sample stress. Conversely, when a DC component stress is involved, the zero cross point of the stress detected by the zero-cross detector 5 shifts by Δt time, which depends on the DC component amount. Is a phase difference that includes an error of △ t time. In other words, it can be said that an accurate phase difference can be measured by calculating the time t by the zero cross point shift and subtracting Δt from the time t 1. When the positive DC component is superimposed, the zero cross point from positive to negative becomes earlier by Δt and the cross point from negative to positive becomes π It is delayed by t. Conversely, when the negative DC component is superimposed, the positive-to-negative zero-cross point is delayed by Δt, and the negative-to-positive zero-cross point is advanced. Therefore, regardless of whether the positive or negative DC component is superimposed,
1 つおきのゼロク ロス点間の時間は一定で与えた歪の正弦波の周期 τ と一致する事がわかり、 また応力の正と負の半波分の時間は半周 期 1 / 2 Tに対し、 必ず片方が 2 Δ t 長く 、 もう片方は 2 Δ t 短く なる事がわかる。 こ の事から、 試料応力の正負いずれかの半波分の 時間 t 2 を実測すれば、 周期 Tから Δ t を演算できる こ とかわかる。 t 2計測器 7 は前記ゼロ ク ロ ス検出器 5 出力 Oゼコ ク ロ ス点信号か ら次のゼロク ロ ス点信号までの時間 -. すなわち試料応力の半波分 G 時間 t 2 (正負どちらの半波分でも良いが、 こ こては負の半波分の 時間とする) 計測する。 位相差演算器 8 は、 前記 t 1計測器 6から の t 1信号と前記 t 2計測器?からの t 2信号を入力し、 It can be seen that the time between every other zero cross point coincides with the period τ of the sine wave of the given strain, which is constant, and the time of the positive and negative half-waves of the stress is half the period of 1/2 T. It can be seen that one is always 2 Δt longer and the other is 2 Δt shorter. From this, it can be seen that Δt can be calculated from the period T by actually measuring the time t 2 of either the positive or negative half wave of the sample stress. t 2 Measuring instrument 7 outputs the zero cross detector 5 output O Time from the zero cross point signal to the next zero cross point signal-. Measure the time t 2 (either positive or negative half-wave may be used, but here is the time for the negative half-wave). The phase difference calculator 8 calculates the t1 signal from the t1 measuring device 6 and the t2 measuring device? Input the t 2 signal from
A t = l , 2 ( T / 2 - t 2 )  A t = l, 2 (T / 2-t 2)
の演算を行い、 誤差時間△ t を求め、 To calculate the error time △ t,
位相差 = t 1 - Δ t  Phase difference = t 1-Δt
の演算を行い、 誤差のない正確な位相差を求めることができる。 , And an accurate phase difference without errors can be obtained.
なお、 タイ ミ ング回路 3 、 ゼロク ロス検出器 5 .、 t 1 計測器 6 、 t 2計測器 Ί 、 位相差演算器 8 、 歪発生器 2 はアナ口グ回路でも、 デジタル回路でも構成するこ とができるこ とや、 タイ ミ ング回路 3 から t 1 計測器 6への基準点信号をゼ口ク αス点から任意の点に変 更できる こ とや、 t i 計測器 6 と t 2計測器 Ί で計測する期間を任 意の点に変更できること等の選択, 変更は本発明の内容を左右する ものではないのはもちろんのこ とである。  The timing circuit 3, the zero-cross detector 5, the t1 measuring device 6, the t2 measuring device 、, the phase difference calculating device 8, and the distortion generator 2 can be constituted by an analog circuit or a digital circuit. That the reference point signal from the timing circuit 3 to the t1 measuring instrument 6 can be changed from the zero point to the arbitrary point, and that the ti measuring instrument 6 and t2 measurement Of course, the selection and change, such as the fact that the measurement period with the instrument can be changed to an arbitrary point, do not affect the content of the present invention.
以上の様に本発明によれば、 t 1検出器と t 2検出器と位相差演 算器とを設けることにより、 試料に熱膨張変形ゃク リ ープ現象又は 応力緩和現象等が発生しても、 試料に与えた正弦波の力又は歪と試 料変位又は試料応力との位相差を正確に補正演算できる手段をもつ ため、 正確な測定ができ、 動的粘弾性測定装置の測定の応用範囲を 大き く広げる事ができる。  As described above, according to the present invention, by providing the t1 detector, the t2 detector, and the phase difference calculator, a thermal expansion deformation, a creep phenomenon, a stress relaxation phenomenon, or the like occurs in the sample. However, since it has means to accurately correct and calculate the phase difference between the sinusoidal force or strain applied to the sample and the sample displacement or sample stress, accurate measurements can be made and the dynamic viscoelasticity measurement device The range of application can be greatly expanded.

Claims

請 求 の 範 囲 The scope of the claims
(ι:' 基準信号を出力するタ イ ミ ング回路と前記タイ ミ ング回路の出 力に同期して試料に正弦波の力を与える力発生器と、 前記試料の変 位を計測する変位計測器と、 前記変位計測器の出力信号のゼロク 口 ス点を検出するゼロク ロ ス検出器と、 前記タ イ ミ ング回路および前 記ゼロク ロ ス検出器と接続され前記タ イ ミ ング回路の基準信号出力 後最初のゼロ ク ロス点検出までの時間間隔を計測する t 1 計測器と , 前記ゼロ ク ロ ス検出器と接続され最初のゼロク ロ ス点検出後次のゼ(ι: 'A timing circuit that outputs a reference signal, a force generator that applies a sinusoidal force to the sample in synchronization with the output of the timing circuit, and a displacement measurement that measures the displacement of the sample A zero-cross detector for detecting a zero-cross point of the output signal of the displacement measuring instrument; a reference for the timing circuit connected to the timing circuit and the zero-cross detector. T1 measuring device that measures the time interval from the signal output to the first zero-cross point detection, and the next zero-cross point connected to the zero-cross detector after the first zero-cross point detection
° ク ロス点検出までの時間間隔を計測する t 2計測器と、 前記 t 1 計測器と前記 t 2計測器とに接続された位相差演算器を備え、 前記 試料の熱膨張変形ゃク リ —プ現象等の影響で前記ゼロク 口ス検出器 のゼロク ロス点出力信号がシフ ト して も、 前記 t 1 計測器と前記 t 2計測器との出力信号から前記位相差演算器で前記試料の位相差を 正確に補正するこ とを特徴とする動的粘弾性測定装置。 ° A t2 measuring device for measuring a time interval until a cross point is detected, and a phase difference calculator connected to the t1 measuring device and the t2 measuring device, wherein the thermal expansion deformation of the sample is cleared. -Even if the zero-cross point output signal of the zero-cross detector shifts due to the influence of the loop phenomenon, etc., the phase difference calculator calculates the sample from the output signals of the t1 measuring device and the t2 measuring device. A dynamic viscoelasticity measuring device characterized by accurately correcting the phase difference of the viscoelasticity.
(2) 基準信号を出力するタ イ ミ ング回路と前記タ イ ミ ング回路の出 力に同期して試料に正弦波の歪を与える歪発生器と、 前記試料の応 力を計測する応力計測器と、 前記応力計測器の出力信号のゼロ ク 口 ス点を検出するゼロク ロ ス検出器と、 前記タ イ ミ ング回路および前 記ゼロ ク αス検出器と接続され前記タ イ ミ ング回路の基準信号出力 後最初のゼ口ク ロス点検出までの時間間隔を計測する t 1 計測器と 前記ゼ π ク ロス検出器と接続され最初のゼ口ク ロス点検出後次のゼ 口ク ロス点検出までの時間間隔を計測する t 2計測器と、 前記 t 1 計測器と前記 t 2計測器とに接続された位相差演算器を備え、 前記 試料の熱膨張変形や応力緩和現象等の影響で前記ゼ口 ク ロ ス検出器 のゼロ ク ロス点出力信号がシフ ト しても、 前記 t 1 計測器と前記 t 計測器との出力信号から前記位相差演算器で前記試料の位相差を 正確に補正する こ とを特徴とする動的粘弾性測定装置。 (2) A timing circuit that outputs a reference signal, a distortion generator that applies a sine wave distortion to the sample in synchronization with the output of the timing circuit, and a stress measurement that measures the stress of the sample A zero-crossing detector for detecting a zero crossing point of an output signal of the stress measuring instrument; and the timing circuit connected to the timing circuit and the zero-crossing detector. T1 Measures the time interval from the output of the reference signal to the detection of the first zero cross point t1 The measuring device is connected to the zero cross point detector and the next zero cross point is detected after the first zero cross point is detected A t2 measuring device for measuring a time interval until point detection, and a phase difference calculator connected to the t1 measuring device and the t2 measuring device, wherein a thermal expansion deformation, a stress relaxation phenomenon, and the like of the sample are provided. Even if the zero cross point output signal of the zero cross detector is shifted due to the influence, A dynamic viscoelasticity measuring device, wherein the phase difference calculator corrects the phase difference of the sample accurately from the output signals of the t 1 measuring device and the t measuring device.
PCT/JP1989/000758 1989-07-27 1989-07-27 Device for measuring dynamic visco-elasticity WO1991002235A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1989/000758 WO1991002235A1 (en) 1989-07-27 1989-07-27 Device for measuring dynamic visco-elasticity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1989/000758 WO1991002235A1 (en) 1989-07-27 1989-07-27 Device for measuring dynamic visco-elasticity

Publications (1)

Publication Number Publication Date
WO1991002235A1 true WO1991002235A1 (en) 1991-02-21

Family

ID=13958776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1989/000758 WO1991002235A1 (en) 1989-07-27 1989-07-27 Device for measuring dynamic visco-elasticity

Country Status (1)

Country Link
WO (1) WO1991002235A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0921388A3 (en) * 1997-11-25 1999-09-08 Seiko Instruments Inc. Viscoelasticity measurement apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497973U (en) * 1972-04-20 1974-01-23
JPS6132353Y2 (en) * 1978-06-24 1986-09-20

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497973U (en) * 1972-04-20 1974-01-23
JPS6132353Y2 (en) * 1978-06-24 1986-09-20

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0921388A3 (en) * 1997-11-25 1999-09-08 Seiko Instruments Inc. Viscoelasticity measurement apparatus
US6205862B1 (en) 1997-11-25 2001-03-27 Seiko Instruments Inc. Viscoelasticity measurement apparatus

Similar Documents

Publication Publication Date Title
CN113466670B (en) Time delay measuring circuit, AC calibration device and IC measuring device
JP5066073B2 (en) Measuring apparatus, measuring method, test apparatus, test method, and electronic device
WO1991002235A1 (en) Device for measuring dynamic visco-elasticity
JP4041635B2 (en) Signal measurement method and position determination method using symmetrical sampling method
JPH01297530A (en) Dynamic viscoelasticity measuring instrument
JPH01297531A (en) Dynamic viscoelasticity measuring instrument
JP2004294177A (en) Sampling type measuring device
JP3138314B2 (en) Asynchronous calibration circuit and frequency detection circuit
JP2980465B2 (en) Eccentricity measuring device
JP2000055953A (en) Apparatus for measuring circuit element
KR101931440B1 (en) Phase correction circuit having low-area for rotary variable differential transformer
TWI322269B (en)
JP2005172669A (en) Interpolation error correcting method and its system
JP3266022B2 (en) RMS calculation circuit
JP3191947B2 (en) Impedance measuring device
JP2003057073A (en) Interpolation error estimating method, its device, and interpolation error correcting apparatus using the same
JPH0643741Y2 (en) Improved resistance meter
JP3099542B2 (en) Digital input amplitude calculation method for AC input amplitude
KR100331507B1 (en) Method for time interval measurement using phase angle
Stenbakken Dual-channel sampling systems
KR0184894B1 (en) L.c measuring method by phase difference measurement
JP2020187043A (en) Parameter calculation device, parameter calculation method, and electric quantity measuring device
JPH0664158B2 (en) Automatic time interval measurement method
JPS59174766A (en) Detection of frequency
JPH0342766B2 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): GB KR US