JPS6131747B2 - - Google Patents

Info

Publication number
JPS6131747B2
JPS6131747B2 JP5823079A JP5823079A JPS6131747B2 JP S6131747 B2 JPS6131747 B2 JP S6131747B2 JP 5823079 A JP5823079 A JP 5823079A JP 5823079 A JP5823079 A JP 5823079A JP S6131747 B2 JPS6131747 B2 JP S6131747B2
Authority
JP
Japan
Prior art keywords
alkali metal
zinc sulfide
alkaline earth
plate
based phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5823079A
Other languages
Japanese (ja)
Other versions
JPS55149376A (en
Inventor
Fumio Fukushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5823079A priority Critical patent/JPS55149376A/en
Publication of JPS55149376A publication Critical patent/JPS55149376A/en
Publication of JPS6131747B2 publication Critical patent/JPS6131747B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は陰極線管などに使用される硫化亜鉛系
螢光体の製造方法に関するもので、粒子形状が板
状で、その厚み方向の光透過率の高い硫化亜鉛系
螢光体を製造するのに適した方法を提供しようと
するものである。 出願人においては、塩基性硫酸亜鉛の結晶を、
亜鉛イオン、硫酸イオンとアンモニウムイオンを
含む酸性の水溶液から析出させると、この結晶が
板状をなすことを見出した(特開昭53−82698
号、特開昭53−83996号)。また、前述の塩基性硫
酸亜鉛の板状結晶粉末を原料として、板状の形状
を有する大粒径の硫化亜鉛系螢光体を製造する方
法を見い出した(特願昭53−66383号(特開昭54
−157787号公報参照))。このような方法によつて
得られる板状という粒子形状を有する硫化亜鉛系
螢光体を発光スクリーンに使用した場合、発光ス
クリーンの発光効率が従来のものより高められ、
その強度を大巾に向上させることができることを
出願人は見い出している(特開昭53−126257
号)。これは次に述べるような理由による。 従来、陰極線管の発光スクリーンは、5〜10μ
mの粒径で、球に近い形状の螢光体粒子を陰極線
管のフエースプレート上に10〜数10μmの厚さに
塗布し、形成されている。 陰極線管の明るさは発光スクリーンの螢光膜の
形成の仕方に大きく依存し、螢光体の発光をでき
る限り有効にスクリーン前方に取り出せるように
しなければならない。そのためには、螢光膜内で
の光の散乱や吸収を少なくする必要があり、螢光
膜の光透過率を上げなければならない。しかし、
従来の発光スクリーンでは、球状の粒子が単に積
み重さなつているだけであるので、光の透過率が
高いとは言えない。しかし、板状の硫化亜鉛系螢
光体の場合には、板状の粒子を敷きつめることに
よつて、従来の場合よりも光の透過率を高めるこ
とができる。 以上が発光スクリーンに板状硫化亜鉛系螢光体
を用いた場合に発光スクリーンの効率が向上する
理由である。 従来の硫化亜鉛系螢光体は、硫酸亜鉛水溶液に
硫化水素を通じてできた硫化亜鉛沈澱物に付活剤
を添加して、硫化水素中などで焼成することによ
り得られる。この方法で得られる硫化亜鉛は微粉
末であり、粒径が5〜10μmで、その形状は球に
近いものがある。以上の方法では形状を板状に制
御することは困難なことであり、量産性という見
地から、板状で大粒径の硫化亜鉛系螢光体を従来
の方法にもとづいて製造することはほとんど不可
能と考えられる。 本発明は、従来の製造方法の種々の欠点を除く
ものであり、板状で厚み方向の光の透過率が高い
という粉末特性を有する硫化亜鉛系螢光体を大量
に、かつ安価に製造する方法を提供するものであ
る。この方法は、前述の、塩基性硫酸亜鉛の板状
結晶を原料とする、板状硫化亜鉛系螢光体の製造
方法をさらに発展させるものである。 板状の硫化亜鉛系螢光体粉末は、付活剤を含む
塩基性硫酸亜鉛に熱処理を施すことによつて得ら
れる。この板状の硫化亜鉛系螢光体粉末(板状の
粉末粒子の最大長は30〜200μm、厚みは10μm
前後)は微小な粒子の焼結体であり、板の厚み方
向(10μm厚み)は各種条件によつて異なるが、
3〜10個程度の粒子によつて占められている。本
発明は、この板状硫化亜鉛の厚さ方向の粒子数を
減少させるために、アルカリ金属またはアルカリ
金属とアルカリ土類金属を用いる。板状硫化亜鉛
の厚さ方向の粒子の数を減少させると光の透過率
は増す。このことから、これを用いて発光スクリ
ーンを形成すると、発光スクリーン効率を向上さ
せることができるようになる。 以下、本発明の方法について詳細に説明する。 塩基性硫酸亜鉛の板状結晶を主原料として使用
する。この塩基性硫酸亜鉛の板状結晶の表面に、
アルカリ金属の化合物、もしくはアルカリ金属化
合物とアルカリ土類金属化合物を付着させ、二硫
化炭素雰囲気中において低温度で熱処理を行な
い、その後、不活性雰囲気あるいは硫化性雰囲気
中にて高温度で熱処理を行なう方法、または、塩
基性硫酸亜鉛板状結晶を二硫化炭素雰囲気中にて
低温度で熱処理を行なつた後、この表面にアルカ
リ金属化合物、もしくはアルカリ金属化合物とア
ルカリ土類金属化合物を付着させ、その後、不活
性雰囲気あるいは硫化性雰囲気中にて熱処理を行
なう方法によつて、板状で光透過率の高い硫化亜
鉛系螢光体粉末を得ることができる。 前述の各種条件について次に述べる。 原料として使用した塩基性硫酸亜鉛の板状結晶
は、硫酸亜鉛とアンモニアもしくは尿素とを含む
水溶液を撹拌しながら、ゆつくりと加熱してや
り、得られた沈澱物を別、乾燥させることによ
つて、容易に製造することができる(特開昭53−
82698号、特開昭53−83996号)。この方法によつ
て得られる粉末結晶は六角板状という形状を有し
ている。 これを螢光体の出発原料とするには、最初の水
溶液中に所定の付活剤、たとえばCu、Al、また
はAg、Al、またはAg、Au、Alを添加しておけ
ばよい。二硫化炭素雰囲気中における低温処理に
ついて、二硫化炭素雰囲気は二硫化炭素(室温で
は液体)中へ、不活性ガス(たとえばN2、Ar
等)をキヤリヤガスとして通ずる。これを二硫化
炭素蒸気の供給源として用いる。低温熱処理の温
度と時間については、温度が400℃以上であれば
塩基性硫酸亜鉛から硫化亜鉛への反応はすみやか
に進み、また、時間については低温熱処理を行な
う塩基性硫酸亜鉛の量、二硫化炭素の蒸気圧、そ
れにキヤリヤガスの流量によつて変化するが、硫
化のための低温熱処理は1.0時間以上かけること
が望ましい。二硫化炭素蒸気の供給量について
は、塩基性硫酸亜鉛を硫化亜鉛とするに必要な化
学量論的な二硫化炭素の量よりも多くしておく方
がよい。この二硫化炭素蒸気の供給量は、二硫化
炭素の蒸気圧、キヤリヤガスの流量と低温熱処理
の時間によつて決まる。 塩基性硫酸亜鉛、または塩基性硫酸亜鉛を低温
熱処理により得た硫化亜鉛に、アルカリ金属化合
物、あるいはアルカリ金属化合物とアルカリ土類
金属化合物を付着させる方法について次に述べ
る。 塩基性硫酸亜鉛、または低温熱処理により得た
硫化亜鉛を、アルカリ金属あるいはアルカリ金属
とアルカリ土類金属を含む水溶液中に一定時間
(30分程度)浸漬した後、別、乾燥すればよ
い。アルカリ金属、アルカリ土類金属の水溶液濃
度については、アルカリ金属の場合0.001〜2.0モ
ル/、アルカリ土類金属の場合0〜2.0モル/
(ただし0を除く)の範囲内であればよい。板
状の硫化亜鉛の光透過率を増すためには、アルカ
リ金属の水溶液濃度が0.001モル/以上でその
効果が顕著になり、アルカリ土類金属の水溶液濃
度を高めた場合も同様の効果が得られる。アルカ
リ金属、アルカリ土類金属の水溶液の濃度の上限
はともに2モル/である。水溶液の濃度が2.0
モル/よりも高くなると、アルカリ金属、アル
カリ土類金属が螢光体の発光効率に影響を与える
ようになり、発光効率が低下するためである。 不活性雰囲気あるいは硫化性雰囲気中の高温熱
処理条件について、高温熱処理の温度は900℃〜
1200℃の範囲内であればよい。この温度範囲は板
状硫化亜鉛の透過率を増すのに有効であり、高温
度ほど透過率は増し、1000℃以上でほぼ一定とな
る。また、熱処理時間については、0.5時間以上
であれば光の透過率の点から問題はない。 以下実施例をあげて説明する。 実施例 1 硫酸亜鉛(高純度試薬)1モルと尿素(高純度
試薬)3モル、それに付活剤として硫酸アルミニ
ウムと硫酸銅各10-2原子%を1の純水に溶解さ
せ、撹拌しながら徐々に温度をあげて、液温を90
℃に保ち、3.0時間撹拌を続けると、白い沈澱物
が得られる。この白い沈澱物を別、水洗いして
から、80℃前後の温度の乾燥器中で乾燥する。以
上のようにして得られた沈澱物は、最大粒径300
μm、厚み5〜10μmで六角板状という形状を有
する塩基性硫酸亜鉛である。この粉末を二硫化炭
素雰囲気中で低温熱処理を行なうことにより、六
角板状という形骸を残した硫化亜鉛に変換する。 二硫化炭素雰囲気中での低温熱処理の条件は
500℃、5.0時間である。その後、アルカリ金属と
アルカリ土類金属を含む水溶液に浸漬し、別、
乾燥する。ここでアルカリ金属とアルカリ土類金
属を含む水溶液としてはNaClとBaCl2の混合水溶
液を用い、その濃度をともに0.03モル/であ
る。以上のようにしてアルカリ金属とアルカリ土
類金属の化合物を表面に付着させた板状硫化亜鉛
に高温熱処理を加える。高温熱処理は硫化水素雰
囲気中で1100℃、1.0時間の焼成である。その
後、板状硫化亜鉛の螢光体粉末を純水中で洗浄す
る。以上のようにして得られた板状硫化亜鉛螢光
体は、粒子径20〜60μmの粒子が平面的に連なつ
た板状の焼結体であり、塩基性硫酸亜鉛の形骸を
残している。そして、その板状の硫化亜鉛の厚み
方向は、ほとんど1個の粒子で占められており、
光の透過率も高くなつている。この板状硫化亜鉛
螢光体粉末を表面に導電性膜を持つガラス基板上
に沈降法により膜厚40μmに塗布する。これを加
速電圧20keVの電子線で照射し、ガラス基板の前
面よら放射される光の強度を測定した。その発光
強度は、従来の球状に近い粒子形状を持つ螢光体
ZnS:Cu、Alによる螢光膜の発光強度の1.7倍で
あつた。また、光の透過率を高めていない板状硫
化亜鉛系螢光体、すなわちアルカリ金属、アルカ
リ土類金属を使用しないで製造された板状硫化亜
鉛系螢光体を使用した螢光膜と比較すると、その
発光強度は1.3倍であつた。 実施例 2 実施例1と同様の方法で塩基性硫酸亜鉛を作
り、これをアルカリ金属とアルカリ土類金属を含
む水溶液に浸漬する。その後、沈澱物の過、乾
燥を行ない塩基性硫酸亜鉛の表面にアルカリ金属
とアルカリ土類金属の化合物を付着させる。これ
に二硫化炭素雰囲気の低温熱処理と高温熱処理を
施す。この条件については実施例1の場合と同じ
である。以上のようにして得られる板状硫化亜鉛
螢光体は粒径20〜60μmの硫化亜鉛が平面的に連
なつた焼結体であり、その厚み方向(約10μm)
はほとんど1個の粒子で占められている。この板
状硫化亜鉛螢光体粉末を表面に導電性膜を持つガ
ラス基板上に沈降法により膜厚40μmに塗布す
る。これを加速電圧20keVの電子線で照射し、ガ
ラス基板の前面における発光を測定したところ、
発光強度は従来の球状に近い粒子形状のZnS:
Cu、Al光体による螢光膜に比べて1.7倍であつ
た。また、アルカリ金属、アルカリ土類金属を使
用しないで製造した板状硫化亜鉛系螢光体を使用
した場合の螢光膜と比較すると、その発光強度は
1.3倍であつた。 実施例 3〜26 実施例1と同様にして板状硫化亜鉛系螢光体を
作る。ただし、パラメーターとしてのアルカリ金
属、アルカリ土類金属、それを含む水溶液濃度、
低温熱処理条件、高温熱処理条件および付活剤を
変えて実施した。 以上のようにして得られた板状硫化亜鉛螢光体
を、実施例1と同様の方法で螢光膜を形成し、そ
れぞれの発光強度の測定を行なつた。その結果を
下表に示す。 なお、表中の相対発光強度は、従来の製造方法
による同種類の螢光体(球状の粒子形状を有する
従来の製造方法による硫化亜鉛粉末)を用いた螢
光膜と比較した値である。また、比較例というの
はアルカリ金属、アルカリ土類金属の水溶液を使
用しない製造方法による板状硫化亜鉛螢光体であ
る。そして、表中の水溶液の種類および濃度と
は、板状硫化亜鉛にアルカリ金属、アルカリ土類
金属の化合物を付着させるための水溶液の種類、
その濃度のことである。
The present invention relates to a method for producing a zinc sulfide-based phosphor used in cathode ray tubes, etc. The present invention relates to a method for producing a zinc sulfide-based phosphor that has a plate-like particle shape and has a high light transmittance in the thickness direction. The aim is to provide a suitable method. In the applicant, basic zinc sulfate crystals are
It was discovered that when precipitated from an acidic aqueous solution containing zinc ions, sulfate ions, and ammonium ions, the crystals formed a plate shape (Japanese Patent Laid-Open No. 53-82698).
No., Japanese Patent Publication No. 53-83996). Furthermore, we have discovered a method for producing large particle-sized zinc sulfide-based phosphors having a plate-like shape using the aforementioned plate-shaped crystal powder of basic zinc sulfate as a raw material (Japanese Patent Application No. 53-66383) 1977
-Refer to Publication No. 157787)). When a zinc sulfide-based phosphor having a plate-like particle shape obtained by such a method is used in a luminescent screen, the luminous efficiency of the luminescent screen is increased compared to conventional ones.
The applicant has discovered that the strength can be greatly improved (Japanese Patent Application Laid-Open No. 53-126257
issue). This is due to the following reasons. Conventionally, the luminescent screen of a cathode ray tube has a thickness of 5 to 10μ.
It is formed by coating phosphor particles with a particle diameter of 10 to several tens of micrometers on the face plate of a cathode ray tube in a shape close to a sphere. The brightness of a cathode ray tube depends largely on how the phosphor film of the luminescent screen is formed, and the luminescence of the phosphor must be extracted as effectively as possible in front of the screen. For this purpose, it is necessary to reduce scattering and absorption of light within the fluorescent film, and it is necessary to increase the light transmittance of the fluorescent film. but,
In conventional luminescent screens, spherical particles are simply piled up one on top of the other, so it cannot be said that the light transmittance is high. However, in the case of a plate-shaped zinc sulfide-based phosphor, by laying out plate-shaped particles, the light transmittance can be increased compared to the conventional case. The above is the reason why the efficiency of the luminescent screen is improved when a plate-shaped zinc sulfide-based phosphor is used in the luminescent screen. Conventional zinc sulfide-based phosphors are obtained by adding an activator to a zinc sulfide precipitate formed by passing hydrogen sulfide into an aqueous zinc sulfate solution, and firing the precipitate in hydrogen sulfide. Zinc sulfide obtained by this method is a fine powder with a particle size of 5 to 10 μm and a shape close to a sphere. It is difficult to control the shape into a plate-like shape using the above methods, and from the standpoint of mass production, it is almost impossible to manufacture plate-shaped, large-particle zinc sulfide-based phosphors based on conventional methods. It is considered impossible. The present invention eliminates various drawbacks of conventional manufacturing methods, and makes it possible to manufacture zinc sulfide-based phosphors in large quantities and at low cost, which are plate-shaped and have powder characteristics such as high light transmittance in the thickness direction. The present invention provides a method. This method is a further development of the method for producing a plate-shaped zinc sulfide-based phosphor using plate-shaped crystals of basic zinc sulfate as a raw material. A plate-shaped zinc sulfide-based phosphor powder is obtained by heat-treating basic zinc sulfate containing an activator. This plate-shaped zinc sulfide-based phosphor powder (the maximum length of plate-shaped powder particles is 30 to 200 μm, and the thickness is 10 μm)
(front and back) are sintered bodies of minute particles, and the thickness direction (10 μm thickness) of the plate varies depending on various conditions,
It is occupied by about 3 to 10 particles. The present invention uses an alkali metal or an alkali metal and an alkaline earth metal in order to reduce the number of particles in the thickness direction of this plate-shaped zinc sulfide. When the number of particles in the thickness direction of plate-shaped zinc sulfide is reduced, the light transmittance increases. From this, when a luminescent screen is formed using this, the efficiency of the luminescent screen can be improved. The method of the present invention will be explained in detail below. Plate crystals of basic zinc sulfate are used as the main raw material. On the surface of this basic zinc sulfate plate crystal,
An alkali metal compound or an alkali metal compound and an alkaline earth metal compound are deposited, heat treated at low temperature in a carbon disulfide atmosphere, and then heat treated at high temperature in an inert atmosphere or sulfidic atmosphere. Alternatively, a basic zinc sulfate platelet crystal is heat-treated at low temperature in a carbon disulfide atmosphere, and then an alkali metal compound, or an alkali metal compound and an alkaline earth metal compound are attached to the surface, Thereafter, a plate-shaped zinc sulfide-based phosphor powder having high light transmittance can be obtained by heat treatment in an inert atmosphere or a sulfidic atmosphere. The various conditions mentioned above will be described next. The plate-like crystals of basic zinc sulfate used as a raw material can be obtained by slowly heating an aqueous solution containing zinc sulfate and ammonia or urea while stirring, and separating and drying the resulting precipitate. It can be easily manufactured (Japanese Patent Application Laid-Open No. 1983-
No. 82698, Japanese Unexamined Patent Publication No. 53-83996). The powder crystals obtained by this method have a hexagonal plate shape. In order to use this as a starting material for a phosphor, a predetermined activator such as Cu, Al, Ag, Al, or Ag, Au, Al may be added to the initial aqueous solution. For low-temperature processing in a carbon disulfide atmosphere, a carbon disulfide atmosphere is introduced into the carbon disulfide (liquid at room temperature) by an inert gas (e.g. N 2 , Ar
etc.) as a carrier gas. This is used as a source of carbon disulfide vapor. Regarding the temperature and time of low-temperature heat treatment, if the temperature is 400℃ or higher, the reaction from basic zinc sulfate to zinc sulfide will proceed quickly. Although it varies depending on the vapor pressure of carbon and the flow rate of carrier gas, it is desirable that the low-temperature heat treatment for sulfiding takes 1.0 hour or more. The amount of carbon disulfide vapor supplied is preferably greater than the stoichiometric amount of carbon disulfide required to convert basic zinc sulfate to zinc sulfide. The amount of carbon disulfide vapor supplied is determined by the vapor pressure of carbon disulfide, the flow rate of the carrier gas, and the time of low-temperature heat treatment. A method for attaching an alkali metal compound or an alkali metal compound and an alkaline earth metal compound to basic zinc sulfate or to zinc sulfide obtained by low-temperature heat treatment of basic zinc sulfate will be described below. Basic zinc sulfate or zinc sulfide obtained by low-temperature heat treatment may be immersed in an aqueous solution containing an alkali metal or an alkali metal and an alkaline earth metal for a certain period of time (about 30 minutes), and then dried separately. The aqueous solution concentration of alkali metals and alkaline earth metals is 0.001 to 2.0 mol/for alkali metals and 0 to 2.0 mol/for alkaline earth metals.
(excluding 0). In order to increase the light transmittance of plate-shaped zinc sulfide, the effect becomes noticeable when the alkali metal aqueous solution concentration is 0.001 mol/or more, and the same effect can be obtained when the alkaline earth metal aqueous solution concentration is increased. It will be done. The upper limits of the concentrations of aqueous solutions of alkali metals and alkaline earth metals are both 2 mol/. The concentration of the aqueous solution is 2.0
This is because when the amount is higher than mol/molar, the alkali metal and alkaline earth metal begin to affect the luminous efficiency of the phosphor, and the luminous efficiency decreases. Regarding high-temperature heat treatment conditions in an inert atmosphere or sulfidic atmosphere, the temperature of high-temperature heat treatment is 900℃ ~
It is sufficient if it is within the range of 1200℃. This temperature range is effective in increasing the transmittance of plate-shaped zinc sulfide; the higher the temperature, the higher the transmittance, and it becomes almost constant above 1000°C. Further, regarding the heat treatment time, if it is 0.5 hours or more, there is no problem from the viewpoint of light transmittance. This will be explained below by giving examples. Example 1 1 mole of zinc sulfate (high-purity reagent), 3 moles of urea (high-purity reagent), and 10 -2 atomic percent each of aluminum sulfate and copper sulfate as activators were dissolved in 1 part of pure water, and the solution was dissolved with stirring. Gradually raise the temperature until the liquid temperature reaches 90
℃ and continue stirring for 3.0 hours, a white precipitate is obtained. Separately, this white precipitate is washed with water and then dried in a dryer at a temperature of around 80°C. The precipitate obtained as described above has a maximum particle size of 300
It is basic zinc sulfate having a hexagonal plate shape with a thickness of 5 to 10 μm. By subjecting this powder to low-temperature heat treatment in a carbon disulfide atmosphere, it is converted into zinc sulfide, which retains its hexagonal plate shape. The conditions for low temperature heat treatment in a carbon disulfide atmosphere are
500℃, 5.0 hours. After that, it is immersed in an aqueous solution containing alkali metals and alkaline earth metals, and then separated.
dry. Here, as the aqueous solution containing an alkali metal and an alkaline earth metal, a mixed aqueous solution of NaCl and BaCl 2 is used, and the concentrations thereof are both 0.03 mol/. A high-temperature heat treatment is applied to the plate-shaped zinc sulfide having the alkali metal and alkaline earth metal compounds adhered to its surface as described above. High-temperature heat treatment is baking at 1100°C for 1.0 hours in a hydrogen sulfide atmosphere. Thereafter, the platy zinc sulfide phosphor powder is washed in pure water. The plate-shaped zinc sulfide phosphor obtained as described above is a plate-shaped sintered body in which particles with a particle diameter of 20 to 60 μm are connected in a planar manner, and the remains of basic zinc sulfate remain. . The thickness direction of the plate-shaped zinc sulfide is mostly occupied by one particle,
The light transmittance is also high. This plate-shaped zinc sulfide phosphor powder is applied to a film thickness of 40 μm by a precipitation method onto a glass substrate having a conductive film on its surface. This was irradiated with an electron beam with an accelerating voltage of 20 keV, and the intensity of the light emitted from the front surface of the glass substrate was measured. Its luminous intensity is similar to that of a conventional phosphor with a particle shape close to a spherical shape.
The luminescence intensity was 1.7 times that of the fluorescent film made of ZnS:Cu and Al. In addition, a comparison was made with a phosphor film using a plate-shaped zinc sulfide-based phosphor that does not increase light transmittance, that is, a plate-shaped zinc sulfide-based phosphor manufactured without using alkali metals or alkaline earth metals. Then, the luminescence intensity was 1.3 times higher. Example 2 Basic zinc sulfate is prepared in the same manner as in Example 1, and immersed in an aqueous solution containing an alkali metal and an alkaline earth metal. Thereafter, the precipitate is filtered and dried to cause the alkali metal and alkaline earth metal compounds to adhere to the surface of the basic zinc sulfate. This is subjected to low-temperature heat treatment and high-temperature heat treatment in a carbon disulfide atmosphere. These conditions are the same as in the first embodiment. The plate-shaped zinc sulfide phosphor obtained as described above is a sintered body in which zinc sulfide particles with a particle size of 20 to 60 μm are connected in a plane, and the thickness direction (approximately 10 μm)
is mostly occupied by one particle. This plate-shaped zinc sulfide phosphor powder is applied to a film thickness of 40 μm by a precipitation method onto a glass substrate having a conductive film on its surface. When this was irradiated with an electron beam with an accelerating voltage of 20 keV and the light emission at the front of the glass substrate was measured,
Emission intensity is similar to that of conventional ZnS with a particle shape close to spherical:
It was 1.7 times as large as that of a fluorescent film made of Cu and Al light bodies. In addition, when compared with a phosphor film using a plate-shaped zinc sulfide phosphor manufactured without using alkali metals or alkaline earth metals, the luminescence intensity is lower.
It was 1.3 times as hot. Examples 3 to 26 In the same manner as in Example 1, plate-shaped zinc sulfide phosphors were produced. However, the concentration of alkali metals, alkaline earth metals, and aqueous solutions containing them as parameters,
The experiment was carried out by changing the low-temperature heat treatment conditions, high-temperature heat treatment conditions, and activator. A fluorescent film was formed on the plate-shaped zinc sulfide phosphor obtained as described above in the same manner as in Example 1, and the luminescence intensity of each film was measured. The results are shown in the table below. Note that the relative luminescence intensity in the table is a value compared with a phosphor film using the same type of phosphor (zinc sulfide powder having a spherical particle shape and produced by a conventional production method) produced by a conventional production method. Moreover, the comparative example is a plate-shaped zinc sulfide phosphor manufactured by a method that does not use an aqueous solution of an alkali metal or an alkaline earth metal. The types and concentrations of aqueous solutions in the table refer to the types of aqueous solutions used to attach alkali metal and alkaline earth metal compounds to plate-shaped zinc sulfide,
It refers to its concentration.

【表】【table】

【表】 以上のように、本発明の方法による硫化亜鉛系
螢光体は、板状という粒子形状を有し、光に対す
る透過率が高いものである。そして、この螢光体
を用いて螢光膜を形成することにより、螢光膜の
発光強度を向上させることができる。
[Table] As described above, the zinc sulfide-based phosphor produced by the method of the present invention has a plate-like particle shape and has a high light transmittance. By forming a fluorescent film using this phosphor, the luminescence intensity of the fluorescent film can be improved.

Claims (1)

【特許請求の範囲】 1 付活剤を含む塩基性硫酸亜鉛板状結晶を、ア
ルカリ金属またはアルカリ金属とアルカリ土類金
属を含む水溶液に浸漬し、別、乾燥した後、二
硫化炭素雰囲気中で400〜800℃の熱処理をし、さ
らに不活性雰囲気中または硫化性雰囲気中で900
〜1200℃の熱処理をすることにより、アルカリ金
属またはアルカリ金属とアルカリ土類金属を反応
させることを特徴とする硫化亜鉛系螢光体の製造
方法。 2 アルカリ金属としてLi、Na、K、Rbおよび
Caのうち1種以上を使用することを特徴とする
特許請求の範囲第1項に記載の硫化亜鉛系螢光体
の製造方法。 3 アルカリ土類金属としてCa、Mg、Srおよび
Baのうちの1種以上を使用することを特徴とす
る特許請求の範囲第1項に記載の硫化亜鉛系螢光
体の製造方法。 4 アルカリ金属またはアルカリ金属とアルカリ
土類金属を含む水溶液において、アルカリ金属の
濃度が0.001〜2.0モル/、アルカリ土類金属の
濃度が0〜2.0モル/の範囲内(ただし0を含
まない)であることを特徴とする特許請求の範囲
第1項に記載の硫化亜鉛系螢光体の製造方法。 5 付活剤を含む塩基性硫酸亜鉛板状結晶を二硫
化炭素雰囲気中で400〜800℃の熱処理した後、こ
れをアルカリ金属またはアルカリ金属とアルカリ
土類金属を含む水溶液に浸漬し、別、乾燥して
から、不活性雰囲気中または硫化性雰囲気中で
900〜1200℃の熱処理をすることにより、アルカ
リ金属またはアルカリ金属とアルカリ土類金属を
反応させることを特徴とする硫化亜鉛系螢光体の
製造方法。 6 アルカリ金属としてLi、Na、K、Rbおよび
Caのうちの1種以上を使用することを特徴とす
る特許請求の範囲第5項に記載の硫化亜鉛系螢光
体の製造方法。 7 アルカリ土類金属としてCa、Mg、Srおよび
Baのうちの1種以上を使用することを特徴とす
る特許請求の範囲第5項に記載の硫化亜鉛系螢光
体の製造方法。 8 アルカリ金属またはアルカリ金属とアルカリ
土類金属を含む水溶液において、アルカリ金属の
濃度が0.001〜2.0モル/、アルカリ土類金属の
濃度が0〜2.0モル/の範囲内(ただし0を含
まない)であることを特徴とする特許請求の範囲
第5項に記載の硫化亜鉛系螢光体の製造方法。
[Claims] 1 Basic zinc sulfate plate crystals containing an activator are immersed in an aqueous solution containing an alkali metal or an alkali metal and an alkaline earth metal, separated, dried, and then immersed in a carbon disulfide atmosphere. Heat treated at 400~800℃ and further heated to 900℃ in an inert atmosphere or sulfidic atmosphere.
A method for producing a zinc sulfide-based phosphor, which comprises reacting an alkali metal or an alkali metal with an alkaline earth metal by heat treatment at ~1200°C. 2 Li, Na, K, Rb and alkali metals
The method for producing a zinc sulfide-based phosphor according to claim 1, characterized in that one or more types of Ca are used. 3 Ca, Mg, Sr and alkaline earth metals
The method for producing a zinc sulfide-based phosphor according to claim 1, characterized in that one or more types of Ba are used. 4 In an aqueous solution containing an alkali metal or an alkali metal and an alkaline earth metal, the concentration of the alkali metal is within the range of 0.001 to 2.0 mol/, and the concentration of the alkaline earth metal is within the range of 0 to 2.0 mol/(excluding 0). A method for producing a zinc sulfide-based phosphor according to claim 1, characterized in that: 5 After heat treating basic zinc sulfate plate crystals containing an activator at 400 to 800°C in a carbon disulfide atmosphere, this is immersed in an aqueous solution containing an alkali metal or an alkali metal and an alkaline earth metal, and After drying, in an inert atmosphere or a sulfidic atmosphere
A method for producing a zinc sulfide-based phosphor, which comprises reacting an alkali metal or an alkali metal with an alkaline earth metal by heat treatment at 900 to 1200°C. 6 Li, Na, K, Rb and alkali metals
The method for producing a zinc sulfide-based phosphor according to claim 5, characterized in that one or more types of Ca are used. 7 Ca, Mg, Sr and alkaline earth metals
The method for producing a zinc sulfide-based phosphor according to claim 5, characterized in that one or more types of Ba are used. 8 In an aqueous solution containing an alkali metal or an alkali metal and an alkaline earth metal, the concentration of the alkali metal is within the range of 0.001 to 2.0 mol/, and the concentration of the alkaline earth metal is within the range of 0 to 2.0 mol/(excluding 0). A method for producing a zinc sulfide-based phosphor according to claim 5, characterized in that:
JP5823079A 1979-05-11 1979-05-11 Manufacture of zinc sulfide fluorescent mateial Granted JPS55149376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5823079A JPS55149376A (en) 1979-05-11 1979-05-11 Manufacture of zinc sulfide fluorescent mateial

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5823079A JPS55149376A (en) 1979-05-11 1979-05-11 Manufacture of zinc sulfide fluorescent mateial

Publications (2)

Publication Number Publication Date
JPS55149376A JPS55149376A (en) 1980-11-20
JPS6131747B2 true JPS6131747B2 (en) 1986-07-22

Family

ID=13078275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5823079A Granted JPS55149376A (en) 1979-05-11 1979-05-11 Manufacture of zinc sulfide fluorescent mateial

Country Status (1)

Country Link
JP (1) JPS55149376A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166442U (en) * 1987-04-17 1988-10-28

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005053735A (en) * 2003-08-04 2005-03-03 Fuji Photo Film Co Ltd Process for producing zinc sulfide particle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166442U (en) * 1987-04-17 1988-10-28

Also Published As

Publication number Publication date
JPS55149376A (en) 1980-11-20

Similar Documents

Publication Publication Date Title
JP3724807B2 (en) Glass matrix doped with activated luminescent nanocrystalline particles
JP4219514B2 (en) Rare earth phosphate manufacturing method, rare earth phosphate phosphor, and rare earth phosphate phosphor manufacturing method
KR930012011B1 (en) Red luminescent fluorescent coated with pigment and method thereof
US4272397A (en) Method of preparing flake-like ceramic particle of zinc sulfide phosphor
JPS6131747B2 (en)
US2697668A (en) Method for settling phosphor screens
US3058807A (en) Process for preparing phosphor grade metal sulfides
US2615849A (en) Infrared quenchable zinc sulfide phosphors
DE10220292A1 (en) Process for producing a luminescent material with a high thermal quenching temperature
KR950009041B1 (en) Luminous compositions and process for their preparation and fluorescent lamp
JPS608071B2 (en) Method for producing zinc sulfide phosphor
JP2001303039A (en) Inorganic fluorescent substance and method for producing the same
EP0333053B1 (en) Phosphate-coated electroluminescent phosphor for electroluminescent lamp and a process for producing the same
US5525259A (en) Europium-doped yttrium oxide phosphor
JPS5822494B2 (en) Method for producing europium-activated tin oxide phosphor
KR100666209B1 (en) Preparation method of red phosphors based on sulfide
JPH07779B2 (en) Surface-treated phosphor and its manufacturing method
JP2003027058A (en) Manufacturing method for ultrafine particle of rare earth oxysulfide
JPS6067585A (en) Production of zinc sulfide fluorescent substance
KR950006081B1 (en) Red luminescent materials and its preparation method
US2117858A (en) Screen material
KR900001954B1 (en) Process for the preparation of fluorescent substance
JPS5916583B2 (en) Method for producing zinc silicate phosphor
KR100289193B1 (en) Manufacturing method of phosphor
JP5051079B2 (en) Rare earth phosphate