JP5051079B2 - Rare earth phosphate - Google Patents
Rare earth phosphate Download PDFInfo
- Publication number
- JP5051079B2 JP5051079B2 JP2008235860A JP2008235860A JP5051079B2 JP 5051079 B2 JP5051079 B2 JP 5051079B2 JP 2008235860 A JP2008235860 A JP 2008235860A JP 2008235860 A JP2008235860 A JP 2008235860A JP 5051079 B2 JP5051079 B2 JP 5051079B2
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- phosphor
- earth phosphate
- solution
- phosphate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Luminescent Compositions (AREA)
- Vessels And Coating Films For Discharge Lamps (AREA)
Description
本発明は、希土類燐酸塩に関する。 The present invention relates to rare earth phosphates.
希土類燐酸塩蛍光体は優れたルミネッセンス特性を有することが知られており、多くの種類の希土類燐酸塩蛍光体が1970年代初めから蛍光ランプ用や陰極線管用などとして開発され、実用に供されてきた。 Rare earth phosphate phosphors are known to have excellent luminescence properties, and many types of rare earth phosphate phosphors have been developed and used for fluorescent lamps and cathode ray tubes since the early 1970s. .
一般照明用蛍光ランプの分野においては高演色と高効率とを同時に満足する3波長域発光形蛍光ランプが開発され、実用に供されている。この3波長域発光形蛍光ランプに使用される蛍光体は、比較的狭帯域の発光スペクトル分布を有する赤色、緑色、青色の3種の蛍光体を適当な割合で混合したものが使用される。これらの蛍光体の中で、希土類燐酸塩蛍光体の一つであるセリウム(Ce)及びテルビウム(Tb)付活の燐酸ランタンは、この3波長域発光形蛍光ランプにおける代表的な緑色蛍光体として実用化されている。また、セリウム(Ce)付活の燐酸イットリウム蛍光体は、鉛(Pb)付活の珪酸バリウム蛍光体やユーロピウム(Eu)付活の硼酸ストロンチウム蛍光体などと並んで紫外線発光の蛍光ランプ用として使用されている。 In the field of fluorescent lamps for general lighting, a three-wavelength light emitting fluorescent lamp that satisfies both high color rendering and high efficiency has been developed and put into practical use. As the phosphor used in the three-wavelength region emission type fluorescent lamp, a mixture of three kinds of phosphors of red, green, and blue having a relatively narrow emission spectrum distribution in an appropriate ratio is used. Among these phosphors, cerium (Ce) and terbium (Tb) activated lanthanum phosphate, which is one of the rare-earth phosphate phosphors, is a typical green phosphor in this three-wavelength region emission fluorescent lamp. It has been put into practical use. Moreover, cerium (Ce) activated yttrium phosphate phosphors are used for ultraviolet light emitting fluorescent lamps along with lead (Pb) activated barium silicate phosphors and europium (Eu) activated strontium borate phosphors. Has been.
蛍光ランプは、蛍光体塗布液中の溶剤やバインダーを除去するために、塗布された蛍光膜を500〜650℃の温度で加熱処理し、さらにガラスバルブを所望の形状に加工するために、600〜850℃の温度で加熱することにより、蛍光ランプの初輝度の低下や発光出力の維持率の低下を招くという問題点があった。 In order to remove the solvent and binder in the phosphor coating solution, the fluorescent lamp heat-treats the applied phosphor film at a temperature of 500 to 650 ° C. and further processes the glass bulb to a desired shape. By heating at a temperature of ˜850 ° C., there is a problem in that the initial luminance of the fluorescent lamp is lowered and the light emission output maintenance ratio is lowered.
また、近年、白熱電球の代わりに使用されるコンパクト形蛍光ランプなどの高負荷タイプの蛍光ランプの場合は管径の細い発光管が用いられ、従来の直管形あるいは丸管形蛍光ランプよりも管壁負荷が大きく、ランプ点灯中に管壁温度が100℃以上になるため、従来の3波長域発光形蛍光ランプ用の蛍光体をそのまま用いた場合、点灯時間の経過と共に管壁温度の上昇により、ランプが暗くなったり、色変わりするなどの問題があった。 In recent years, in the case of high-load type fluorescent lamps such as compact fluorescent lamps that are used in place of incandescent bulbs, light-emitting tubes with a small tube diameter are used, which is more than conventional straight tube or round tube fluorescent lamps. Since the tube wall load is large and the tube wall temperature becomes 100 ° C or higher during lamp lighting, when the conventional phosphor for a three-wavelength light emitting fluorescent lamp is used as it is, the tube wall temperature rises as the lighting time elapses. As a result, there were problems such as the lamp becoming dark or changing color.
特に、高負荷タイプの蛍光ランプに適用する蛍光体は、蛍光体層(蛍光体)の温度上昇に伴う発光強度の低下(以下「温度消光」という)の極力小さいものが要求され、3波長域発光形蛍光ランプ用の緑色蛍光体として使用される希土類燐酸塩蛍光体においても、同様に蛍光ランプの製造工程における加熱処理温度に対して安定であり、初輝度の低下や発光出力の維持率の低下が少なく、しかも温度消光の極力小さいものが要望されている。 In particular, phosphors applied to high-load type fluorescent lamps are required to have as low a decrease in emission intensity as the temperature of the phosphor layer (phosphor) rises (hereinafter referred to as “temperature quenching”) as much as possible. Similarly, rare earth phosphate phosphors used as green phosphors for light-emitting fluorescent lamps are also stable with respect to the heat treatment temperature in the manufacturing process of the fluorescent lamp, and the reduction in initial luminance and the maintenance rate of light emission output There is a demand for a material that has a small decrease in temperature quenching as much as possible.
ところで、希土類燐酸塩蛍光体の製造方法としては、蛍光体母体を構成する希土類元素の各酸化物と燐酸水素二アンモニウムなどの燐酸塩化合物とを付活剤元素を含む化合物と共に所定量混合し、焼成して固体間反応を行う乾式製造法と、蛍光体母体を構成する希土類元素を含有する溶液と、燐酸などの燐酸イオンを含有する溶液とを、付活剤元素を含む溶液と共に混合して溶液中で蛍光体の前駆体である希土類燐酸塩の沈殿を生成させ、この前駆体を固液分離して焼成する湿式製造法とがある。 By the way, as a method for producing a rare earth phosphate phosphor, a predetermined amount of each oxide of rare earth elements constituting a phosphor matrix and a phosphate compound such as diammonium hydrogen phosphate are mixed together with a compound containing an activator element, A dry production method in which a reaction between solids is performed by firing, a solution containing a rare earth element constituting the phosphor matrix, and a solution containing phosphate ions such as phosphoric acid are mixed with a solution containing an activator element. There is a wet manufacturing method in which a precipitate of a rare earth phosphate that is a phosphor precursor is generated in a solution, and the precursor is solid-liquid separated and fired.
希土類燐酸塩蛍光体の収率と発光効率を高めるには、その蛍光体の組成を出来るだけ化学量論的な組成に近づける必要があるが、乾式製造法では純粋に化学量論的な組成を有する希土類燐酸塩蛍光体のみを製造することは難しく、固体間反応の結果、希土類元素と反応しない余剰の燐が酸化物などの不純物として残留し、化学量論的に高純度な組成の蛍光体を得ることが難しい。組成的に均一な希土類燐酸塩蛍光体を得るには、乾式製造法よりも湿式製造法の方が適している。 In order to increase the yield and luminous efficiency of rare earth phosphate phosphors, it is necessary to make the phosphor composition as close as possible to the stoichiometric composition, but in the dry manufacturing method, a purely stoichiometric composition is required. It is difficult to produce only rare earth phosphate phosphors, and as a result of reaction between solids, excess phosphorous that does not react with rare earth elements remains as impurities such as oxides, and a phosphor with a stoichiometrically high purity composition Difficult to get. In order to obtain a compositionally uniform rare earth phosphate phosphor, the wet manufacturing method is more suitable than the dry manufacturing method.
湿式法により希土類燐酸塩蛍光体を製造する場合は、先ず、蛍光体の前駆体である希土類燐酸塩の沈殿を生成させ、これを焼成して希土類燐酸塩蛍光体とするが、粒子径分布や発光特性などの蛍光体の特性はその前駆体である希土類燐酸塩の性状に大きく左右される。そのため、最初に製造される希土類燐酸塩の粒子径分布の制御や不純物排除に配慮することが必要である。しかし、湿式法で得た蛍光体の粒子径は極めて小さく、洗浄や固液分離が困難となり、粒子径や粒子径分布の制御が難しく、希土類燐酸塩の沈殿媒体中に存在する多くの不純物が混入するという問題点があった。 When producing a rare earth phosphate phosphor by a wet method, first, a precipitate of a rare earth phosphate that is a precursor of the phosphor is generated and baked to form a rare earth phosphate phosphor. The characteristics of the phosphor, such as the emission characteristics, greatly depend on the properties of the rare earth phosphate that is the precursor. Therefore, it is necessary to consider the control of the particle size distribution of the rare earth phosphate initially produced and the exclusion of impurities. However, the particle size of the phosphor obtained by the wet method is extremely small, and washing and solid-liquid separation are difficult, the particle size and particle size distribution are difficult to control, and many impurities present in the precipitation medium of rare earth phosphate are present. There was a problem of mixing.
それ故、乾式法、湿式法による希土類燐酸塩蛍光体の製造に関する改良法が数多く提案されているが、特に蛍光ランプに適した初輝度及び輝度維持率の低下抑制や、温度消光の改善という点では必ずしも充分ではなく、これらの点に着目した希土類燐酸塩蛍光体及びその製造方法に関する、より一層の改善が要望されていた。 Therefore, many improvements have been proposed for the production of rare-earth phosphate phosphors by the dry method and wet method. However, the reduction of the initial luminance and the luminance maintenance rate, which are particularly suitable for fluorescent lamps, and the improvement of temperature quenching are pointed out. However, it is not always sufficient, and there has been a demand for further improvements regarding rare earth phosphate phosphors and methods for producing the same, focusing on these points.
本発明は、蛍光ランプの蛍光膜として用いた場合、ランプ製造工程での初輝度の低下、継続点灯した際の輝度維持率の低下、及び温度消光が起こりにくく、かつ、粒子径の制御が容易な希土類燐酸を提供しようとするものである。
The present invention, when used as a fluorescent film of a fluorescent lamp, is less likely to cause a decrease in initial luminance in the lamp manufacturing process, a decrease in luminance maintenance ratio when continuously lit, and temperature quenching, and easy control of the particle size. it is intended to provide a rare earth phosphate.
本発明者等は、上記目的を達成するために湿式法による希土類燐酸塩蛍光体の製造方法について鋭意検討した結果、この蛍光体の前駆体である希土類燐酸塩の沈殿条件などの製造条件をコントロールすることによって、所望の粒子径を有する希土類燐酸塩蛍光体を高収率で製造することができ、これを蛍光ランプの蛍光膜として用いるときの蛍光ランプの初輝度や継続点灯の際の輝度維持率の低下が少なく、温度消光も少ない希土類燐酸塩蛍光体が得られることを見いだし、本発明を完成させるに到った。本発明の構成は次のとおりである。 In order to achieve the above object, the present inventors have intensively studied a method for producing a rare earth phosphate phosphor by a wet method, and as a result, controlled the production conditions such as the precipitation conditions of the rare earth phosphate that is a precursor of the phosphor. As a result, a rare earth phosphate phosphor having a desired particle size can be produced in a high yield. When this is used as a fluorescent film of a fluorescent lamp, the initial luminance of the fluorescent lamp and the luminance maintenance during continuous lighting are maintained. The inventors have found that a rare earth phosphate phosphor with little reduction in temperature and low temperature quenching can be obtained, and the present invention has been completed. The configuration of the present invention is as follows.
(1) 組成式がLnxCeyTbzPO4(但し、LnはLa、Gd及びYの群から選択された1種以上の元素を表し、x、y及びzはそれぞれ 0≦x<1、0≦y≦1、0≦z≦0.4及びx+y+z=1なる条件を満たす数)で表され、空気中において120〜900℃の温度で仮焼した後の490nmの波長における粉末反射率がMgO粉末の反射率に対して99%以上であることを特徴とする希土類燐酸塩。 (1) The composition formula is Ln x Ce y Tb z PO 4 (where Ln represents one or more elements selected from the group of La, Gd and Y, and x, y and z are each 0 ≦ x <1 , 0 ≦ y ≦ 1, 0 ≦ z ≦ 0.4 and x + y + z = 1), and the powder reflectance at a wavelength of 490 nm after calcining in air at a temperature of 120 to 900 ° C. Is a rare earth phosphate characterized in that is 99% or more with respect to the reflectance of the MgO powder.
(2) アルミニウムに換算して10〜50000ppmのアルミニウム化合物を混合もしくは付着したことを特徴とする前記(1)に記載の希土類燐酸塩。
(2) The rare earth phosphate according to (1) above, wherein 10 to 50,000 ppm of an aluminum compound in terms of aluminum is mixed or adhered.
本発明は、上記の構成を採用することにより、体色のない希土類燐酸塩を得ることができ、これを用いた希土類燐酸塩蛍光体を蛍光ランプの蛍光膜とすると、熱処理工程における輝度低下が少なく、蛍光ランプの初輝度が高く、継続点灯させた場合にも、その輝度維持率が従来の希土類燐酸塩蛍光体よりも高い。さらに、特定量のAlを含有する本発明の希土類燐酸塩蛍光体は、従来のAlを含有しない希土類燐酸塩蛍光体に比べて蛍光体の発光の温度消光が著しく改善される。さらにまた、粒子径の制御が容易であり、所望の粒子径の希土類燐酸塩前駆体及び希土類燐酸塩蛍光体を高収率で得ることができるようになった。 The present invention can obtain a rare-earth phosphate having no body color by adopting the above-described configuration, and when the rare-earth phosphate phosphor using this is used as a fluorescent film of a fluorescent lamp, the luminance is reduced in the heat treatment process. Less, the initial luminance of the fluorescent lamp is high, and even when the fluorescent lamp is continuously lit, the luminance maintenance rate is higher than that of the conventional rare earth phosphate phosphor. Further, the rare earth phosphate phosphor of the present invention containing a specific amount of Al has a markedly improved temperature quenching of the phosphor emission compared to the conventional rare earth phosphate phosphor not containing Al. Furthermore, the particle diameter can be easily controlled, and a rare earth phosphate precursor and a rare earth phosphate phosphor having a desired particle diameter can be obtained in a high yield.
本発明の希土類燐酸塩を製造するには、まず組成式LnxCeyTbzPO4(但し、LnはLa、Gd及びYの群から選択される1種以上の元素を表し、x、yおよびzはそれぞれ0≦x<1、0≦y≦1、0≦z≦0.4及びx+y+z=1なる条件を満たす数である。以下同様)を満す量のLnの化合物、Ceの化合物及びTbの化合物を水に溶解させる。これらの希土類の化合物としてはLn、Ce及びTbの硝酸塩、硫酸塩、塩化物などの水溶性塩でも良いが、上記希土類の酸化物を予め硝酸などの鉱酸に溶解させたものを用いても良い。このLn、Ce及びTbの化合物が溶解している液の中に燐酸を添加して第1の溶液を調製する。 In order to produce the rare earth phosphate of the present invention, first, the composition formula Ln x Ce y Tb z PO 4 (where Ln represents one or more elements selected from the group consisting of La, Gd and Y, and x, y And z are numbers satisfying the following conditions: 0 ≦ x <1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 0.4 and x + y + z = 1, and so on. And the compound of Tb are dissolved in water. These rare earth compounds may be water-soluble salts such as nitrates, sulfates and chlorides of Ln, Ce and Tb, but those obtained by previously dissolving the rare earth oxides in mineral acids such as nitric acid may also be used. good. A first solution is prepared by adding phosphoric acid to a solution in which the compounds of Ln, Ce and Tb are dissolved.
第1の溶液中に含有される燐酸の量は、上記組成式よりも化学量論的に過剰の量とされるが、好ましくは希土類元素イオンの総量と燐酸イオンの総量とのモル比{(PO4)−3/(Ln+Ce+Tb)+3}が1.05〜1.10となるように、第1の溶液中における燐酸の量を化学量論量よりも若干多い程度に留めておくと、得られる希土類燐酸塩の表面に不純物となる過剰の燐酸イオンの付着を防ぐことができるので好ましい。この時、第1の溶液中では希土類元素イオンと燐酸イオンとが共にイオンの状態で共存し、第1の溶液中では希土類燐酸塩の沈殿が生じないように、液温やpH等の条件を制御することが必要である。 The amount of phosphoric acid contained in the first solution is stoichiometrically excessive from the above composition formula, but preferably the molar ratio of the total amount of rare earth element ions and the total amount of phosphate ions {( When the amount of phosphoric acid in the first solution is kept slightly higher than the stoichiometric amount so that PO 4 ) −3 / (Ln + Ce + Tb) +3 } is 1.05 to 1.10. It is preferable because excessive phosphate ions that become impurities can be prevented from adhering to the surface of the rare earth phosphate. At this time, conditions such as liquid temperature and pH are set so that rare earth element ions and phosphate ions coexist in an ion state in the first solution and precipitation of the rare earth phosphate does not occur in the first solution. It is necessary to control.
次に、第1の溶液とは別に硝酸とアンモニア水とをそれぞれ所定量混合し、その混合液のpH値を1.0〜2.0の範囲、好ましくは1.0〜1.3の範囲になるように調節したアンモニウムイオンと硝酸イオンとからなる第2の溶液を調製する。
そして、第2の溶液中に徐々に第1の溶液を滴下しながら攪拌すると、第2の溶液中に希土類燐酸塩の沈殿が徐々に生成される。従来の湿式法による希土類燐酸塩の製造方法では、希土類元素のイオンを含む溶液と、燐酸イオンを含む溶液とを混合すると同時に混合溶液中に直ちに燐酸塩の沈殿が生成する。そのため、微粒子状もしくは膠状の希土類燐酸塩が形成され、その濾別や水洗が困難であったり、生成する燐酸塩粒子の粒子径の制御が困難であった。
Next, a predetermined amount of nitric acid and aqueous ammonia are mixed separately from the first solution, and the pH value of the mixed solution is in the range of 1.0 to 2.0, preferably in the range of 1.0 to 1.3. A second solution composed of ammonium ions and nitrate ions adjusted to become is prepared.
Then, when stirring while gradually dropping the first solution into the second solution, a precipitate of rare earth phosphate is gradually generated in the second solution. In a conventional method for producing a rare earth phosphate by a wet method, a solution containing a rare earth element ion and a solution containing a phosphate ion are mixed, and at the same time, a phosphate precipitate is immediately formed in the mixed solution. For this reason, fine-grained or glue-like rare earth phosphates are formed, and it is difficult to filter and wash them, and it is difficult to control the particle diameter of the produced phosphate particles.
しかし、本発明の希土類燐酸塩の製造方法によれば、希土類元素のイオン及び燐酸イオンがイオンの状態で共存し、未だ希土類燐酸塩が生成していない第1の溶液を、特定のpH値に調整されたアンモニウムイオンと硝酸イオンが共存する第2の溶液中に添加し、第2の溶液中において希土類燐酸塩を生成させるようにしたので、第1の溶液の添加量や添加速度などによって、希土類燐酸塩の沈殿の生成及び粒子の成長の速度を自由に調節することができ、所望の粒子径に制御された希土類燐酸塩の沈殿を得ることができる。 However, according to the method for producing a rare earth phosphate of the present invention, the first solution in which the ions of the rare earth element and the phosphate ions coexist in an ionic state and the rare earth phosphate has not yet been formed has a specific pH value. Since the rare earth phosphate is added in the second solution in which the adjusted ammonium ions and nitrate ions coexist, and depending on the addition amount and the addition speed of the first solution, The rate of formation of the rare earth phosphate precipitate and the growth rate of the particles can be freely adjusted, and the precipitation of the rare earth phosphate controlled to a desired particle size can be obtained.
後述のように、希土類燐酸塩蛍光体に特定量のアルミニウム(Al)を含有させると、その蛍光体の温度消光が改善され、かつその蛍光体を用いて蛍光膜を形成すると塗布性が良好となる。本発明の希土類燐酸塩を用いて希土類蛍光体を製造する場合、その希土類燐酸塩に予め物理的にAlを混合しておいても良い。例えば、上述のようにして得た希土類燐酸塩の沈殿を含む溶液中に、さらにアルミナを添加し、十分に混合してから脱水して固液分離することによって、アルミナを沈殿粒子表面に付着もしくは粒子間に混在させてアルミナ含有の希土類燐酸塩を得ても良い。この時に添加されるアルミナはアルミニウム(Al)に換算して10〜50000ppmが適当である。添加されるアルミニウム(Al)源としてはアルミナを用いるのが好ましいが、アルミナの外に水酸化アルミニウム等、第2の溶液中では溶解せず、焼成時にアルミナを生成するアルミニウム化合物であっても良い。本発明のアルミナの添加量がアルミニウム(Al)に換算して10ppmを下回ると、上記効果が充分に得られず、逆に50000ppmを超えると、希土類燐酸塩蛍光体の発光輝度が低減するので共に好ましくない。なお、上記のアルミニウムの添加量の好ましい範囲は1000〜10000ppmである。 As will be described later, when the rare earth phosphate phosphor contains a specific amount of aluminum (Al), the temperature quenching of the phosphor is improved, and when the phosphor film is formed using the phosphor, the coatability is good. Become. When producing a rare earth phosphor using the rare earth phosphate of the present invention, Al may be physically mixed in advance with the rare earth phosphate. For example, by adding further alumina to the solution containing the precipitate of the rare earth phosphate obtained as described above, mixing thoroughly, dehydrating and solid-liquid separation, the alumina adheres to the surface of the precipitated particles or An alumina-containing rare earth phosphate may be obtained by mixing the particles. The alumina added at this time is suitably 10 to 50000 ppm in terms of aluminum (Al). As the aluminum (Al) source to be added, it is preferable to use alumina. However, an aluminum compound that does not dissolve in the second solution, such as aluminum hydroxide in addition to alumina, and generates alumina during firing may be used. . When the addition amount of the alumina of the present invention is less than 10 ppm in terms of aluminum (Al), the above effect cannot be obtained sufficiently. On the contrary, when it exceeds 50000 ppm, the emission luminance of the rare earth phosphate phosphor is reduced. It is not preferable. In addition, the preferable range of the addition amount of said aluminum is 1000-10000 ppm.
このようにして得た希土類燐酸塩の特徴の一つは、従来の希土類燐酸塩に比べて加熱処理を受けた後でもその体色の発現がなく白色に近い。得られた希土類燐酸塩を空気中において120〜900℃の範囲で加熱した場合、いづれの温度で加熱しても粉末反射率が高く、490nmの波長における粉末反射率を測定すると、MgO粉末の反射率100に対して99%以上の反射率を示す。このように加熱処理後においても高い反射率を示す希土類燐酸塩を原料とする希土類燐酸塩蛍光体は、加熱処理を受けた後の初輝度も高く、輝度維持率の低下の少ない蛍光体が得られた。 One of the characteristics of the rare earth phosphate obtained in this way is that the body color does not appear even after the heat treatment as compared with the conventional rare earth phosphate, and it is close to white. When the obtained rare earth phosphate is heated in the range of 120 to 900 ° C. in air, the powder reflectivity is high even when heated at any temperature, and the powder reflectivity at a wavelength of 490 nm is measured. A reflectance of 99% or more with respect to a rate of 100 is shown. In this way, the rare earth phosphate phosphor made of a rare earth phosphate that exhibits high reflectivity even after the heat treatment has a high initial luminance after the heat treatment, and a phosphor with a low decrease in luminance maintenance rate is obtained. It was.
本発明の希土類燐酸塩蛍光体は、上述の希土類燐酸塩を蛍光体原料として使用する以外は、従来の方法と同様に製造することができる。即ち、上述の希土類燐酸塩と必要に応じてさらにリチウム化合物やホウ素化合物などのフラックスを添加混合した後、耐熱容器に充填して還元性雰囲気下で900〜1300℃の温度で1〜10時間焼成し、粉砕、洗浄、乾燥、篩分を行うことによって得られる。 The rare earth phosphate phosphor of the present invention can be produced in the same manner as in the conventional method except that the rare earth phosphate described above is used as the phosphor raw material. That is, after adding and mixing the above-mentioned rare earth phosphate and a flux such as a lithium compound or a boron compound as necessary, the mixture is filled in a heat-resistant container and fired at a temperature of 900 to 1300 ° C. for 1 to 10 hours in a reducing atmosphere. And pulverizing, washing, drying and sieving.
なお、蛍光体原料として予めアルミナを表面に被覆したり、混合した希土類燐酸塩を用いる場合は、上述のようにそのまま焼成すれば良い。また、アルミナが被覆もしくは混合されていない希土類燐酸塩を蛍光体原料として用いる場合は、さらに所定量のアルミナを加えて充分に混合してから焼成する。このようにして得た本発明の希土類燐酸塩蛍光体には、原料中にアルミナを添加した蛍光体では1〜500ppmのアルミニウム(Al)を含有する。Alを含有する希土類燐酸塩蛍光体は、Alを含有しない燐酸塩蛍光体に比べて温度消光の程度が極めて低い。蛍光体中のアルミニウム(Al)含有量が1ppmを下回ると、温度消光を抑制する効果がほとんど認められず、逆に500ppmを超えると、常温下においても発光輝度が低下するので好ましくない。なお、蛍光体中のアルミニウム含有量の好ましい範囲は100〜400ppmである。本発明の希土類燐酸塩を用いて希土類燐酸塩蛍光体を製造する場合、蛍光体中のAl含有量を1〜500ppmとするために、Alに換算して10〜50000ppmのアルミナなどのアルミニウム化合物を混合もしくは付着した希土類燐酸塩を用いればよい。
In addition, what is necessary is just to calcinate as it is as mentioned above, when the surface is previously coated with alumina as a phosphor raw material or mixed rare earth phosphate is used. Further, when a rare earth phosphate not coated or mixed with alumina is used as a phosphor raw material, a predetermined amount of alumina is further added and mixed thoroughly before firing. The rare earth phosphate phosphor of the present invention thus obtained contains 1 to 500 ppm of aluminum (Al) in the phosphor in which alumina is added to the raw material. The rare earth phosphate phosphor containing Al has an extremely low degree of temperature quenching compared to the phosphate phosphor not containing Al. If the aluminum (Al) content in the phosphor is less than 1 ppm, the effect of suppressing temperature quenching is hardly observed. Conversely, if it exceeds 500 ppm, the emission luminance is lowered even at room temperature, which is not preferable. In addition, the preferable range of aluminum content in fluorescent substance is 100-400 ppm. When the rare earth phosphate phosphor is produced using the rare earth phosphate of the present invention, in order to make the Al content in the
図1は、第2の溶液のpH値と希土類燐酸塩の粉末反射率の関係を示した図である。詳しくは、組成式がLa0.55Ce0.30Tb0.15PO4で表される、Alを含まない希土類燐酸塩を製造する際に、希土類イオン及び燐酸イオンを含有する第1の溶液を、アンモニウムイオン及び硝酸イオンを含む第2の溶液に加えて反応させ、沈殿を生成させる。この工程において、第2の溶液のpH値を0〜7.0まで変化させたときに生成する希土類燐酸塩の粉末反射率を図1に示した。この図において、横軸は第2の溶液のpH値であり、縦軸はそれぞれのpH値を有する第2の溶液で得た希土類燐酸塩の490nmの波長における粉末反射率を、MgO粉末の反射率に対する相対値で示した。 FIG. 1 is a graph showing the relationship between the pH value of the second solution and the powder reflectance of the rare earth phosphate. Specifically, the first solution containing rare earth ions and phosphate ions when producing an Al-free rare earth phosphate represented by the composition formula La 0.55 Ce 0.30 Tb 0.15 PO 4. Is added to a second solution containing ammonium ions and nitrate ions to cause a precipitate to form. In this step, the powder reflectance of the rare earth phosphate produced when the pH value of the second solution is changed from 0 to 7.0 is shown in FIG. In this figure, the horizontal axis represents the pH value of the second solution, and the vertical axis represents the powder reflectance at a wavelength of 490 nm of the rare earth phosphate obtained from the second solution having the respective pH values, and the reflection of the MgO powder. It was expressed as a relative value to the rate.
図1から分かるように、第1の溶液が添加される第2の溶液のpH値を2以下に調整すると、得られる希土類燐酸塩の反射率は99%以上となるが、第2の溶液のpH値が2を超えると、反射率が急激に低下する。このことは、本来Ce3+及びTb3+はpH2以下では3価状態で安定であることを示している。pHが高くなるとCe3+及びTb3+が高次の酸化状態に酸化されやすく、高次の酸化状態にあるCe及びTbが加熱処理を受けて、体色を有する酸化物に変化して希土類燐酸塩の反射率を低下させるものと思われる。
As can be seen from FIG. 1, when the pH value of the second solution to which the first solution is added is adjusted to 2 or less, the reflectance of the rare earth phosphate obtained is 99% or more. When the pH value exceeds 2, the reflectivity rapidly decreases. This indicates that Ce 3+ and Tb 3+ are inherently stable in a trivalent state at
図2は、図1の各試料と同様にして第1の溶液を第2の溶液に加えて反応させ、Alを含まない希土類燐酸塩(La0.55Ce0.30Tb0.15PO4)を製造する際の、第2の溶液のpH値を0〜7.0まで変化させた場合に、得られる希土類燐酸塩の収率を示したものである。この図の横軸は第2の溶液のpH値を示し、縦軸は第2の溶液がそのpH値である時の各希土類燐酸塩(La0.55Ce0.30Tb0.15PO4)の収率を示している。なお、図2の希土類燐酸塩の収率は、第2の溶液から得られた希土類燐酸塩(La0.55Ce0.30Tb0.15PO4)の沈殿を900℃で仮焼した後の希土類燐酸塩の重量を、その沈殿を生成させるために第1の溶液に投入された希土類元素(Ln)イオンと燐酸イオンから算出した希土類燐酸塩の理論量に対する百分率で示したものである。 2 is similar to each sample of FIG. 1 in that the first solution is added to the second solution and reacted, and a rare earth phosphate not containing Al (La 0.55 Ce 0.30 Tb 0.15 PO 4 ) Shows the yield of the rare earth phosphate obtained when the pH value of the second solution was changed from 0 to 7.0. In this figure, the horizontal axis indicates the pH value of the second solution, and the vertical axis indicates each rare-earth phosphate (La 0.55 Ce 0.30 Tb 0.15 PO 4 when the second solution has the pH value). ) Yield. In addition, the yield of the rare earth phosphate of FIG. 2 is obtained by calcining the precipitate of the rare earth phosphate (La 0.55 Ce 0.30 Tb 0.15 PO 4 ) obtained from the second solution at 900 ° C. The weight of the rare earth phosphate is expressed as a percentage with respect to the theoretical amount of the rare earth phosphate calculated from the rare earth element (Ln) ions and phosphate ions introduced into the first solution in order to form the precipitate.
図2から分かるように、希土類燐酸塩(La0.55Ce0.30Tb0.15PO4)の収率は、第1の溶液(希土類元素のイオン及び燐酸イオンの混合溶液)が添加される、第2の溶液(アンモニウムイオン及び硝酸イオンを含む溶液)のpH値がおよそ1.2以上である時、97%以上の高収率となり、そのpH値が1.0を下回るときには収率が著しく低下する。 As can be seen from FIG. 2, the yield of rare earth phosphate (La 0.55 Ce 0.30 Tb 0.15 PO 4 ) is the same as that of the first solution (mixed solution of rare earth element ions and phosphate ions). When the pH value of the second solution (a solution containing ammonium ions and nitrate ions) is about 1.2 or more, a high yield of 97% or more is obtained, and when the pH value is below 1.0, the yield is obtained. Is significantly reduced.
また、図示していないが、燐酸塩が沈澱した後の第2の溶液の上澄み液中のLa、Ce、Tbの残留量は、pH1.2以上で10ppm以下であるのに対し、pH1.0を下回ると、この残留量が増加し、特にLaの増加量が多いことを確認している。このことからpH1.2以上でほとんどのランタン、セリウム及びテルビウムは反応し、均一な燐酸塩の沈殿を生成するが、pHが低くなるとランタン組成の少ない不均一な沈殿が生成しているものと推定される。 Although not shown, the residual amounts of La, Ce, and Tb in the supernatant of the second solution after precipitation of the phosphate are pH 1.2 to 10 ppm, whereas pH 1.0 It is confirmed that the residual amount increases, particularly, the increase amount of La is large. From this, most of lanthanum, cerium and terbium react at pH 1.2 or more to produce a uniform phosphate precipitate, but it is estimated that an uneven precipitate with a small lanthanum composition is formed at a lower pH. Is done.
図1及び図2の各試料と同様にして得られたAlを含有していない希土類燐酸塩(La0.55Ce0.30Tb0.15PO4)を原料として、これに硼酸及び四硼酸リチウムを融剤として加えて1200℃で2時間焼成して希土類燐酸塩蛍光体(La0.55Ce0.30Tb0.15PO4)を得た。さらに、この蛍光体を空気中で800℃でベーキングした後の紫外線励起下における発光輝度と、第2の溶液のpH値との相関を図3に示す。この図において、横軸は第2の溶液のpH値を示し、縦軸の輝度は得られた希土類燐酸塩(La0.55Ce0.30Tb0.15PO4)のベーキング後における253.7nmの紫外線励起下での発光輝度を、標準蛍光体として用いた従来の希土類燐酸塩蛍光体(La0.55Ce0.30Tb0.15PO4)の発光輝度に対する相対値として示した。 A rare earth phosphate containing no Al (La 0.55 Ce 0.30 Tb 0.15 PO 4 ) obtained in the same manner as each sample of FIGS. 1 and 2 was used as a raw material, and boric acid and tetraboric acid were added thereto. Lithium was added as a flux and fired at 1200 ° C. for 2 hours to obtain a rare earth phosphate phosphor (La 0.55 Ce 0.30 Tb 0.15 PO 4 ). Further, FIG. 3 shows the correlation between the emission luminance under ultraviolet excitation after baking this phosphor in air at 800 ° C. and the pH value of the second solution. In this figure, the horizontal axis indicates the pH value of the second solution, and the vertical axis indicates the brightness of 253.times. After baking of the obtained rare earth phosphate (La 0.55 Ce 0.30 Tb 0.15 PO 4 ). The emission luminance under ultraviolet excitation of 7 nm is shown as a relative value to the emission luminance of the conventional rare earth phosphate phosphor (La 0.55 Ce 0.30 Tb 0.15 PO 4 ) used as the standard phosphor.
図3から分かるように、製造後、空気中において800℃でベーキングした後の希土類燐酸塩蛍光体(La0.55Ce0.30Tb0.15PO4)の輝度についてみれば、この蛍光体の前駆体である希土類燐酸塩を調製するプロセスにおいて、第2の溶液のpH値を2.0以下とすると90%以上となり、特にpH値が1.1〜1.2の時に最大(98%)となり、熱処理を経た後の初輝度の低下が少ないが、pH値が2.0より大きい第2の溶液中に第1の溶液を添加して得た前駆体を用いた蛍光体では、ベーキング処理後の初輝度が著しく低下する。 As can be seen from FIG. 3, the luminance of the rare earth phosphate phosphor (La 0.55 Ce 0.30 Tb 0.15 PO 4 ) after production and after baking at 800 ° C. in the air, In the process of preparing the rare earth phosphate that is a precursor of the second solution, when the pH value of the second solution is 2.0 or less, it becomes 90% or more, and particularly when the pH value is 1.1 to 1.2 (98% In the phosphor using the precursor obtained by adding the first solution to the second solution having a pH value of greater than 2.0, the initial brightness after the heat treatment is small. The initial brightness after processing is significantly reduced.
このように湿式法によって製造した希土類燐酸塩蛍光体のベーキング後の初輝度は、前駆体である希土類燐酸塩の沈殿を生成させる際の第2の溶液のpH値が2より大となると著しく低下する。これは希土類燐酸塩蛍光体の前駆体である希土類燐酸塩の反射率を急激に低下させる沈殿条件の第2の溶液の臨界pH値と一致している(図1参照)。このことは、上述したように、Ceイオン及びTbイオンがpH2.0以下では3価状態で安定であるのに対し、第2の溶液のpH値が2よりも大きくなると、Ceイオン及びTbイオンが高次の酸化状態に酸化されやすくなるためと思われる。このように、希土類燐酸塩の製造条件が、希土類燐酸塩蛍光体のベーキング後の輝度(熱劣化)に大きく影響する。 Thus, the initial luminance after baking of the rare earth phosphate phosphor manufactured by the wet method is significantly reduced when the pH value of the second solution when the precipitate of the rare earth phosphate as the precursor is generated is larger than 2. To do. This coincides with the critical pH value of the second solution under the precipitation conditions that rapidly decreases the reflectance of the rare earth phosphate precursor of the rare earth phosphate phosphor (see FIG. 1). As described above, Ce ions and Tb ions are stable in a trivalent state at a pH of 2.0 or lower, whereas Ce ions and Tb ions are increased when the pH value of the second solution is greater than 2. This is considered to be due to being easily oxidized to a higher-order oxidation state. Thus, the manufacturing conditions of the rare earth phosphate greatly affect the luminance (thermal degradation) after baking of the rare earth phosphate phosphor.
所定量の希土類元素イオン及び燐酸イオンを含む第1の溶液を、アンモニウムイオン及び硝酸イオンを含み、pH値が1.2に調整された第2の溶液中に加えて同一組成の4種類の希土類燐酸塩の沈殿物を生成させ、各沈殿物中に、別途調製したそれぞれの量の異なるアルミナを含む4種類のアルミナ懸濁液を添加混合してから脱水し、それぞれにアルミナを付着させた4種類の希土類燐酸塩を得た。これを原料として焼成し、組成式がLa0.55Ce0.30Tb0.15PO4で、アルミニウムをそれぞれ10ppm、200ppm、350ppm及び500pm含有する4種類の希土類燐酸塩蛍光体を得た。図4は、この蛍光体の発光輝度の温度依存性を示したグラフである。図中の各蛍光体の線図は、■がアルミナ添加なし(A)、◆がアルミナ含有量10ppm(B)、▲がアルミナ含有量200ppm(C)、□がアルミナ含有量350ppm(D)、◇がアルミナ含有量500ppm(E)である。
The first solution containing a predetermined amount of rare earth element ions and phosphate ions is added to the second solution containing ammonium ions and nitrate ions and the pH value is adjusted to 1.2, and four kinds of rare earths having the same composition are added. Phosphate precipitates were generated, and four types of alumina suspensions containing different amounts of different aluminas prepared separately were added and mixed in each precipitate, followed by dehydration, and alumina was attached to each of the four suspensions. Kinds of rare earth phosphates were obtained. This was fired as a raw material to obtain four types of rare earth phosphate phosphors having a composition formula of La 0.55 Ce 0.30 Tb 0.15 PO 4 and containing 10 ppm, 200 ppm, 350 ppm and 500 pm of aluminum, respectively. FIG. 4 is a graph showing the temperature dependence of the emission luminance of this phosphor. The diagram of each phosphor in the figure shows that ■ is no alumina addition (A), ◆ is alumina content 10 ppm (B), ▲ is
蛍光体の発光輝度の温度依存性の測定は、金属製の試料板に蛍光体を乗せ、この試料板をヒーターで昇温し、加熱しながら蛍光体試料に253.7nmの紫外線を照射して発光させ、蛍光体の発光輝度と、その時の試料板の温度とを測定することによって求めた。図4において、横軸は蛍光体を乗せた試料板の温度であり、縦軸は蛍光体の発光輝度を示す。なお、縦軸の発光輝度は、図3で用いた標準蛍光体と同じ希土類燐酸塩蛍光体を標準蛍光体とし、その常温(25℃)における253.7nmの紫外線で励起したときの発光輝度を100とした時の相対値で示した。図4中、曲線AはAlを含有していない本発明の蛍光体の場合であり、曲線B、C、D及びEはそれぞれでAlの含有量を10ppm、200ppm、350ppm及び500ppmである本発明の蛍光体について示したものである。 The temperature dependence of the phosphor luminance is measured by placing the phosphor on a metal sample plate, heating the sample plate with a heater, and irradiating the phosphor sample with 253.7 nm ultraviolet rays while heating. Light was emitted, and the emission luminance of the phosphor and the temperature of the sample plate at that time were measured. In FIG. 4, the horizontal axis represents the temperature of the sample plate on which the phosphor is placed, and the vertical axis represents the light emission luminance of the phosphor. The emission luminance on the vertical axis is the emission luminance when excited with 253.7 nm ultraviolet light at room temperature (25 ° C.) using the same rare earth phosphate phosphor as the standard phosphor used in FIG. The relative value when 100 is assumed. In FIG. 4, curve A is the case of the phosphor of the present invention containing no Al, and curves B, C, D, and E are the present inventions having Al contents of 10 ppm, 200 ppm, 350 ppm, and 500 ppm, respectively. This phosphor is shown.
図4から分かるように、Alを含有しない本発明の希土類燐酸塩蛍光体の場合は、その温度を100℃付近まで上昇させると従来の希土類燐酸塩蛍光体と同様に発光輝度が急激に低下し、温度消光は改善されないものの、これにAlを含有させた本発明の希土類燐酸塩蛍光体は、その温度を200℃以上にまで上昇させても発光輝度の低下は極めて少なく、温度消光がほとんど認められない。以上、LnがLaである希土類燐酸塩及び希土類燐酸塩蛍光体について詳述したが、LnがYやGdの場合にも同様の結果が得られることを確認している。 As can be seen from FIG. 4, in the case of the rare earth phosphate phosphor of the present invention that does not contain Al, when the temperature is raised to around 100 ° C., the emission luminance decreases sharply as in the case of the conventional rare earth phosphate phosphor. Although the temperature quenching is not improved, the rare earth phosphate phosphor of the present invention containing Al in the present invention has a very low decrease in emission luminance even when the temperature is increased to 200 ° C. or higher, and almost no temperature quenching is observed. I can't. As described above, the rare earth phosphate and the rare earth phosphate phosphor in which Ln is La have been described in detail, but it has been confirmed that similar results can be obtained when Ln is Y or Gd.
以下、実施例により本発明を説明する。
(実施例1)
純水中に酸化セリウム(CeO2)61.0g、酸化テルビウム(Tb4O7)33.1g及び酸化ランタン(La2O3)105.9gを加え、よく攪拌して各希土類酸化物の懸濁液とし、この中に比重1.42の硝酸を徐々に加えて各希土類酸化物を溶解させた。この時、各希土類酸化物の溶解を容易にするために、35%過酸化水素を加えながら、その液温を60℃まで加熱し攪拌をつづけて全量1000mlの透明な希土類硝酸塩の水溶液とした。
次いで、得られた希土類硝酸塩の水溶液を25℃まで冷却し、攪拌しながらこれに85%燐酸144gを純水と共に滴下して混合し、Ce、Tb及びLaの各希土類イオンの総イオン濃度が0.81モル/リットルであり、希土類イオンの総量:燐酸イオンが1:1.06である第1溶液を調製した。
Hereinafter, the present invention will be described by way of examples.
Example 1
Add 61.0 g of cerium oxide (CeO 2 ), 33.1 g of terbium oxide (Tb 4 O 7 ), and 105.9 g of lanthanum oxide (La 2 O 3 ) in pure water, and stir well to suspend each rare earth oxide. Nitric acid having a specific gravity of 1.42 was gradually added thereto to dissolve each rare earth oxide. At this time, in order to facilitate the dissolution of each rare earth oxide, the liquid temperature was heated to 60 ° C. while adding 35% hydrogen peroxide, and stirring was continued to obtain a total amount of 1000 ml of a transparent rare earth nitrate aqueous solution.
Next, the obtained aqueous solution of rare earth nitrate is cooled to 25 ° C., and while stirring, 144 g of 85% phosphoric acid is added dropwise with pure water and mixed, so that the total ion concentration of each rare earth ion of Ce, Tb and La is 0. A first solution having a total amount of rare earth ions: phosphate ions of 1: 1.06 was prepared.
一方、これとは別に、500mlの純水中に28%アンモニア水100mlを加え、攪拌しながらこれに比重1.42の硝酸を徐々に加えてpHを1.2に調整し、第2溶液とした。
次に、第2溶液中に、第1溶液を400ml/時間の滴下速度で攪拌しながらゆっくりと滴下することによって、希土類塩酸塩の沈殿を生成させた。この時、第1溶液の添加と共に第2溶液のpH値が刻々変化したので、その都度アンモニア水を同時に加えて第2溶液のpHを常に約1.2となるように調整した。
その後、得られた希土類燐酸塩の沈殿をデカンテーションにより洗浄し、濾過して120℃で乾燥した後、オープニング60ミクロンの篩により篩い分けして実施例1の希土類燐酸塩274gを得た。原料の配合量から換算して理論収量は280.4gなので、収率は98%であった。
On the other hand, 100 ml of 28% ammonia water is added to 500 ml of pure water, and nitric acid having a specific gravity of 1.42 is gradually added to this while stirring to adjust the pH to 1.2. did.
Next, the rare earth hydrochloride precipitate was generated by slowly dropping the first solution into the second solution while stirring at a dropping rate of 400 ml / hour. At this time, since the pH value of the second solution changed every time as the first solution was added, the pH of the second solution was constantly adjusted to about 1.2 by simultaneously adding ammonia water each time.
Thereafter, the obtained precipitate of rare earth phosphate was washed by decantation, filtered, dried at 120 ° C., and then sieved with an opening 60 micron sieve to obtain 274 g of the rare earth phosphate of Example 1. The theoretical yield was 280.4 g in terms of the amount of raw material, so the yield was 98%.
実施例1の希土類燐酸塩の組成は、La0.55Ce0.30Tb0.15(PO4)1.02であり、490nmの波長における粉末反射率は酸化マグネシウム粉末の99%であり、外観上、体色は認められなかった。
次に、実施例1の希土類燐酸塩240g、アルミナ(Al2O3)1.2g、融剤の四硼酸リチウム(Li2B4O7)2.4g及び融剤の硼酸(H3BO3)24gとをそれぞれ秤取して十分に混合し石英ルツボに入れて、2%の水素を含有する窒素ガス雰囲気下で1200℃で2時間焼成し、得られた焼成物を粉砕、洗浄、乾燥及び篩い分けの各処理を順次行い、組成式がLa0.55Ce0.30Tb0.15PO4であり、Alを220ppm含有する実施例1の希土類燐酸塩蛍光体を得た。
The composition of the rare earth phosphate of Example 1 is La 0.55 Ce 0.30 Tb 0.15 (PO 4 ) 1.02 , the powder reflectance at a wavelength of 490 nm is 99% of the magnesium oxide powder, Body color was not recognized in appearance.
Next, 240 g of rare earth phosphate of Example 1, 1.2 g of alumina (Al 2 O 3 ), 2.4 g of lithium tetraborate (Li 2 B 4 O 7 ) as a flux, and boric acid (H 3 BO 3 ) as a flux 24g and weighed and mixed well, put in a quartz crucible, baked at 1200 ° C for 2 hours in a nitrogen gas atmosphere containing 2% hydrogen, pulverized, washed and dried And each process of sieving was performed sequentially, the composition formula was La 0.55 Ce 0.30 Tb 0.15 PO 4 , and the rare earth phosphate phosphor of Example 1 containing 220 ppm of Al was obtained.
実施例1の希土類燐酸塩蛍光体に対して253.7nmの紫外線を照射して励起した時の発光輝度は、標準蛍光体として用いた従来の希土類燐酸塩蛍光体の発光輝度と同等であり、また、実施例1の蛍光体を空気中で800℃でベーキングした後に、前記と同様に測定した発光輝度は、前記標準蛍光体の98%であって、蛍光体の加熱処理による熱劣化は僅かであった。
また、実施例1の蛍光体の25℃に対する200℃における蛍光体の相対発光輝度は101%であり、温度消光は全く認められなかった。
The emission luminance when the rare earth phosphate phosphor of Example 1 is excited by irradiation with ultraviolet rays of 253.7 nm is equivalent to the emission luminance of the conventional rare earth phosphate phosphor used as the standard phosphor, In addition, after the phosphor of Example 1 was baked in air at 800 ° C., the emission luminance measured in the same manner as described above was 98% of the standard phosphor, and thermal degradation due to heat treatment of the phosphor was slight. Met.
Further, the phosphor of Example 1 had a relative light emission luminance of 101% at 200 ° C. with respect to 25 ° C., and no temperature quenching was observed.
(実施例2)
実施例1で調製した第1溶液と第2溶液を用い、第2溶液中に第1溶液を滴下して希土類燐酸塩の沈殿を生成させた後、これを濾別する前に、原料の配合量から換算した希土類燐酸塩の理論収量の5000ppmに相当するAlを含むアルミナ含有スラリーを添加し、十分に攪拌してから濾過した以外は実施例1と同様にして実施例2の希土類燐酸塩276gを得た。原料の配合量から換算して理論収量は280.4gなので、収率は98%であった。
(Example 2)
The first solution and the second solution prepared in Example 1 were used, the first solution was dropped into the second solution to form a rare earth phosphate precipitate, and then the raw materials were mixed before filtering. 276 g of the rare earth phosphate of Example 2 was added in the same manner as in Example 1 except that an alumina-containing slurry containing Al corresponding to 5000 ppm of the theoretical yield of the rare earth phosphate converted from the amount was added and sufficiently stirred. Got. The theoretical yield was 280.4 g in terms of the amount of raw material, so the yield was 98%.
実施例2の希土類燐酸塩の組成は、La0.55Ce0.30Tb0.15(PO4)1.02であり、Alを4370ppm付着していた。この希土類燐酸塩は、490nmの波長における粉末反射率は酸化マグネシウム粉末の99%であり、外観上、体色は認められなかった。
次に、実施例1の希土類燐酸塩に代えて、実施例2の希土類燐酸塩を用い、アルミナを省略した以外は、実施例1と同様にして組成式がLa0.55Ce0.30Tb0.15(PO4)1.02で、Alの含有量が350ppmの実施例2の希土類燐酸塩蛍光体を得た。
The composition of the rare earth phosphate of Example 2 was La 0.55 Ce 0.30 Tb 0.15 (PO 4 ) 1.02 , and 4370 ppm of Al was deposited. This rare earth phosphate had a powder reflectance at a wavelength of 490 nm of 99% of the magnesium oxide powder, and no body color was recognized in appearance.
Next, the composition formula was La 0.55 Ce 0.30 Tb in the same manner as in Example 1 except that the rare earth phosphate of Example 2 was used instead of the rare earth phosphate of Example 1 and alumina was omitted. The rare earth phosphate phosphor of Example 2 having 0.15 (PO 4 ) 1.02 and an Al content of 350 ppm was obtained.
実施例2の希土類燐酸塩蛍光体に対して253.7nmの紫外線を照射して励起した時の発光輝度は、実施例1で用いた標準蛍光体の発光輝度と同等であり、また、実施例2の蛍光体を空気中で800℃でベーキングした後に、前記と同様に測定した発光輝度は、前記標準蛍光体の98%であって、蛍光体の加熱処理による熱劣化は僅かであった。
また、実施例2の蛍光体の25℃に対する200℃における蛍光体の相対発光輝度は101%であり、温度消光は全く認められなかった。
The light emission luminance when the rare earth phosphate phosphor of Example 2 is excited by being irradiated with ultraviolet rays of 253.7 nm is equivalent to the light emission luminance of the standard phosphor used in Example 1. After the phosphor of No. 2 was baked at 800 ° C. in the air, the emission luminance measured in the same manner as described above was 98% of that of the standard phosphor, and thermal degradation due to heat treatment of the phosphor was slight.
Moreover, the relative light emission luminance of the phosphor of Example 2 at 200 ° C. with respect to 25 ° C. was 101%, and no temperature quenching was observed.
(比較例1)
純水中に酸化セリウム(CeO2)76.1g、酸化テルビウム(Tb4O7)38g及び酸化ランタン(La2O3)139.4gを加え、よく攪拌して各希土類酸化物の懸濁液とし、この中に比重1.42の硝酸を徐々に加えて各希土類酸化物を溶解させた。この時、各希土類酸化物の溶解を容易にするために、35%過酸化水素を加えながら、その液温を60℃まで加熱し攪拌をつづけ、Ce、Tb及びLaの各希土類イオンの総イオン濃度が1.5モル/リットルの透明な希土類硝酸塩の水溶液を1500ml調製し、第1溶液とした。
(Comparative Example 1)
Add 76.1 g of cerium oxide (CeO 2 ), 38 g of terbium oxide (Tb 4 O 7 ) and 139.4 g of lanthanum oxide (La 2 O 3 ) in pure water, and stir well to suspend each rare earth oxide suspension. In this, nitric acid having a specific gravity of 1.42 was gradually added to dissolve each rare earth oxide. At this time, in order to facilitate dissolution of each rare earth oxide, while adding 35% hydrogen peroxide, the liquid temperature was heated to 60 ° C. and stirring was continued, and the total ions of each rare earth ion of Ce, Tb, and La 1500 ml of a transparent rare earth nitrate aqueous solution having a concentration of 1.5 mol / liter was prepared as a first solution.
一方、これとは別に、85%燐酸66gを純水中に投入し、加熱して60℃に保ちながら、さらに28%アンモニア水を液のpHが1.4となるまで徐々に加えて、pH1.4の燐酸の溶液500mlを調製し、第2溶液とした。
次に、第2溶液を60℃に加熱し、その中に、60℃に保温された第1溶液を500ml/時間の滴下速度で滴下し、同時に、5.6%のアンモニア水を滴下して第2溶液のpH値が常に約1.4となるように調整することにより、希土類燐酸塩の沈殿を生成させ、そのまま60℃に加熱して1時間保持した。なお、滴下された希土類硝酸塩溶液中の総希土類イオンと、上記燐酸の溶液中の硝酸イオンとのモル比は1:1.15であった。
On the other hand, 66 g of 85% phosphoric acid is added to pure water, heated and kept at 60 ° C., and further 28% ammonia water is gradually added until the pH of the liquid becomes 1.4. A 500 ml solution of 4 phosphoric acid was prepared and used as the second solution.
Next, the second solution is heated to 60 ° C., and the first solution kept at 60 ° C. is dropped at a dropping rate of 500 ml / hour, and at the same time, 5.6% ammonia water is dropped. By adjusting the pH value of the second solution so as to be always about 1.4, a precipitate of rare earth phosphate was formed, heated to 60 ° C., and held for 1 hour. The molar ratio of the total rare earth ions in the dropped rare earth nitrate solution to the nitrate ions in the phosphoric acid solution was 1: 1.15.
このようにして得た希土類燐酸塩の沈殿は、純水でデカンテーションにより洗浄し、濾別後、120℃で乾燥し、オープニング60ミクロンの篩で篩い分けし、176gの比較例1の希土類燐酸塩を得た。原料の配合量から換算して理論収量は177.9gなので、収率は99%であった。
比較例1の希土類燐酸塩の組成は、La0.55Ce0.30Tb0.15(PO4)1.06であり、490nmの波長における粉末反射率は酸化マグネシウム粉末の98%で、わずかに褐色の体色を呈していた。
The precipitate of the rare earth phosphate thus obtained was washed with decantation with pure water, filtered, dried at 120 ° C., sieved with an opening 60 micron sieve, and 176 g of the rare earth phosphate of Comparative Example 1 Salt was obtained. Since the theoretical yield was 177.9 g in terms of the amount of raw material, the yield was 99%.
The composition of the rare earth phosphate of Comparative Example 1 was La 0.55 Ce 0.30 Tb 0.15 (PO 4 ) 1.06 , and the powder reflectance at a wavelength of 490 nm was 98% of the magnesium oxide powder, Had a brown body color.
次いで、実施例1の希土類燐酸塩240gに代えて比較例1の希土類燐酸塩120gを用い、四硼酸リチウム(Li2B4O7)の添加量を2.4gから1.2g、硼酸(H3BO3)の添加量を24gから12gに変更した以外は、実施例1と同様にして、組成式がLa0.55Ce0.30Tb0.15PO4の比較例1の希土類燐酸塩蛍光体を得た。 Next, 120 g of the rare earth phosphate of Comparative Example 1 was used in place of 240 g of the rare earth phosphate of Example 1, the amount of lithium tetraborate (Li 2 B 4 O 7 ) added was 2.4 to 1.2 g, and boric acid (H 3 BO 3 ) The rare earth phosphate of Comparative Example 1 having the composition formula of La 0.55 Ce 0.30 Tb 0.15 PO 4 in the same manner as in Example 1 except that the amount added was changed from 24 g to 12 g. A phosphor was obtained.
比較例1の希土類燐酸塩蛍光体に対して253.7nmの紫外線を照射して励起した時の発光輝度は、実施例1で用いた標準蛍光体の発光輝度と同等であり、また、比較例1の蛍光体を空気中で800℃でベーキングした後に、前記と同様に測定した発光輝度は、前記標準蛍光体の93%であって、蛍光体の熱劣化に伴う発光輝度の低下が認められた。
また、比較例1の蛍光体の25℃に対する200℃における蛍光体の相対発光輝度は88%であり、顕著な温度消光が認められた。
The emission luminance when the rare earth phosphate phosphor of Comparative Example 1 is excited by irradiation with ultraviolet rays of 253.7 nm is equivalent to the emission luminance of the standard phosphor used in Example 1, and Comparative Example After the phosphor No. 1 was baked at 800 ° C. in the air, the emission luminance measured in the same manner as described above was 93% of the standard phosphor, and a decrease in emission luminance due to thermal deterioration of the phosphor was observed. It was.
Moreover, the relative light emission luminance of the phosphor of Comparative Example 1 at 200 ° C. with respect to 25 ° C. was 88%, and remarkable temperature quenching was recognized.
(比較例2)
酸化セリウム(CeO2)49.2g、酸化テルビウム(Tb4O7)28.0g及び酸化ランタン(La2O3)89.6gを比較例1と同様にして硝酸に溶解して希土類硝酸塩溶液とし、この中に蓚酸を添加してCe、Tb及びLaの希土類元素の蓚酸塩を共沈させ、これを濾別した後、乾燥し、次いで600℃で1時間焼成して得たLa、Ce及びTbの共沈酸化物169.3gと燐酸水素2アンモニウム〔(NH4)2HPO4〕132.1gとを秤取し、十分に混合した後、これをアルミナ坩堝に入れて空気中で700℃で2時間焼成した。
(Comparative Example 2)
49.2 g of cerium oxide (CeO 2 ), 28.0 g of terbium oxide (Tb 4 O 7 ) and 89.6 g of lanthanum oxide (La 2 O 3 ) were dissolved in nitric acid in the same manner as in Comparative Example 1 to obtain a rare earth nitrate solution. Then, oxalic acid was added thereto to coprecipitate Ce, Tb and La rare earth element oxalates, which were filtered off, dried and then calcined at 600 ° C. for 1 hour to obtain La, Ce and 169.3 g of Tb coprecipitated oxide and 132.1 g of diammonium hydrogen phosphate [(NH 4 ) 2 HPO 4 ] were weighed and mixed well, and then put in an alumina crucible at 700 ° C. in air. For 2 hours.
この焼成物を室温まで冷却し、これに融剤として四硼酸リチウム(Li2B4O7)2.4g及び融剤の硼酸(H3BO3)24gを加えて十分に混合し、これをアルミナルツボに詰め、実施例1と同様にして焼成、粉砕、洗浄、乾燥、篩い分けの処理を順次行って、組成式がLa0.55Ce0.30Tb0.15PO4の比較例2の希土類燐酸塩蛍光体を得た。 The fired product was cooled to room temperature, and 2.4 g of lithium tetraborate (Li 2 B 4 O 7 ) and 24 g of boric acid (H 3 BO 3 ) as a flux were added thereto and mixed well. Comparative Example 2 in which the composition formula is La 0.55 Ce 0.30 Tb 0.15 PO 4 after being packed in an alumina crucible and sequentially subjected to firing, pulverization, washing, drying, and sieving in the same manner as in Example 1. A rare earth phosphate phosphor was obtained.
比較例2の希土類燐酸塩蛍光体に対して253.7nmの紫外線を照射して励起した時の発光輝度は、実施例1で用いた標準蛍光体の発光輝度の98%であった。また、比較例2の蛍光体を空気中で800℃でベーキングした後に、前記と同様に測定した発光輝度は、前記標準蛍光体の90%であって、蛍光体の熱劣化に伴う発光輝度の低下が顕著であった。
また、比較例2の蛍光体の25℃に対する200℃における蛍光体の相対発光輝度は80%であり、顕著な温度消光が認められた。
The emission brightness when the rare earth phosphate phosphor of Comparative Example 2 was excited by irradiation with ultraviolet rays of 253.7 nm was 98% of the emission brightness of the standard phosphor used in Example 1. Further, after the phosphor of Comparative Example 2 was baked at 800 ° C. in the air, the emission luminance measured in the same manner as described above was 90% of the standard phosphor, and the emission luminance associated with thermal deterioration of the phosphor. The decrease was significant.
Moreover, the relative light emission luminance of the phosphor of Comparative Example 2 at 200 ° C. with respect to 25 ° C. was 80%, and remarkable temperature quenching was observed.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008235860A JP5051079B2 (en) | 2008-09-16 | 2008-09-16 | Rare earth phosphate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008235860A JP5051079B2 (en) | 2008-09-16 | 2008-09-16 | Rare earth phosphate |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35767599A Division JP4219514B2 (en) | 1999-12-16 | 1999-12-16 | Rare earth phosphate manufacturing method, rare earth phosphate phosphor, and rare earth phosphate phosphor manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009051727A JP2009051727A (en) | 2009-03-12 |
JP5051079B2 true JP5051079B2 (en) | 2012-10-17 |
Family
ID=40503141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008235860A Expired - Lifetime JP5051079B2 (en) | 2008-09-16 | 2008-09-16 | Rare earth phosphate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5051079B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2672281B1 (en) * | 1991-02-04 | 1993-04-16 | Rhone Poulenc Chimie | LANTHANE MIXED PHOSPHATE, TERBIUM AND CERIUM, MANUFACTURING METHOD THEREOF. |
FR2679242A1 (en) * | 1991-07-19 | 1993-01-22 | Rhone Poulenc Chimie | MIXED PHOSPHATE OF LANTHANE, TERBIUM AND CERIUM, PROCESS FOR THE PRODUCTION THEREOF FROM INSOLUBLE SALTS FROM RARE EARTHS |
FR2694281B1 (en) * | 1992-07-29 | 1994-09-16 | Rhone Poulenc Chimie | Process for the preparation of rare earth phosphates and products obtained. |
JPH09296168A (en) * | 1996-03-05 | 1997-11-18 | Toshiba Corp | Production of rare earth phosphate phosphor |
-
2008
- 2008-09-16 JP JP2008235860A patent/JP5051079B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2009051727A (en) | 2009-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4219514B2 (en) | Rare earth phosphate manufacturing method, rare earth phosphate phosphor, and rare earth phosphate phosphor manufacturing method | |
JP5932934B2 (en) | Method for producing aluminate phosphor, BAM, YAG, and CAT by alum method | |
JP2003500515A (en) | Method for producing spherical zinc orthosilicate-based green light-emitting phosphor | |
CN109370580B (en) | Bismuth ion activated titanium aluminate fluorescent powder and preparation method and application thereof | |
CN1974718A (en) | Cerium activated ultraviolet emitting RE phosphate phosphor and its prepn process | |
CN111808608A (en) | Phosphor compound, and preparation method and composition thereof | |
JP2552145B2 (en) | Phosphor particles, phosphor blends and fluorescent lamps | |
WO2010137533A1 (en) | Process for producing surface-treated fluorescent-substance particles, and surface-treated fluorescent-substance particles | |
JP2002212553A (en) | Lanthanum phosphate fluorophor for vacuum ultraviolet and rare gas discharge lamp | |
Lakshmanan et al. | Rare earth doped CaSO4 luminescence phosphors for applications in novel displays–new recipes | |
KR100351635B1 (en) | Process for preparing spherical blue phosphor based on aluminates | |
JP5051079B2 (en) | Rare earth phosphate | |
WO2014006755A1 (en) | Silicate phosphor and process for manufacturing same | |
JPH0141673B2 (en) | ||
KR950009041B1 (en) | Luminous compositions and process for their preparation and fluorescent lamp | |
JP2001303039A (en) | Inorganic fluorescent substance and method for producing the same | |
JPH11172244A (en) | Phosphor, manufacture thereof and fluorescent lamp | |
JP3606277B2 (en) | Cold cathode discharge tube and its lighting device | |
JP4303989B2 (en) | Fluorescent substance and fluorescent lamp | |
JPH10298548A (en) | Light-emitting fluorescent material when subjected to vacuum ultraviolet excitation and its production | |
JP2536752B2 (en) | Fluorescent body | |
KR100687131B1 (en) | Blue Phosphor for Plasma Display and Lamp Applications and Method of Making | |
JPH01126391A (en) | Fluorescent material | |
JP2001059085A (en) | Blue color fliorescent material used for plasma display and lamp and its production | |
CN101767780B (en) | Green-emitting rare earth phosphate phosphor precursor, green-emitting phosphor and preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20090730 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090814 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120626 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120709 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5051079 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150803 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |