JPS6067585A - Production of zinc sulfide fluorescent substance - Google Patents

Production of zinc sulfide fluorescent substance

Info

Publication number
JPS6067585A
JPS6067585A JP17409983A JP17409983A JPS6067585A JP S6067585 A JPS6067585 A JP S6067585A JP 17409983 A JP17409983 A JP 17409983A JP 17409983 A JP17409983 A JP 17409983A JP S6067585 A JPS6067585 A JP S6067585A
Authority
JP
Japan
Prior art keywords
zinc sulfide
zinc
activator
phosphor
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17409983A
Other languages
Japanese (ja)
Inventor
Masayuki Kunieda
国枝 政之
Masamitsu Nishida
西田 正光
Tadashi Katsuta
勝田 忠司
Junichi Kato
純一 加藤
Yoichiro Yokoya
横谷 洋一郎
Hiroshi Ouchi
宏 大内
Koji Nitta
新田 恒治
Shunzo Oka
俊三 岡
Kazuo Deguchi
出口 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17409983A priority Critical patent/JPS6067585A/en
Publication of JPS6067585A publication Critical patent/JPS6067585A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To obtain a zinc sulfide fluorescent substance having fine particles of uniform particle size, by adding ammonia to a melt mixture of thiourea with a zinc salt and an activator to deposit zinc sulfide, and calcining the resultant zinc sulfide at a low temperature and then at a high temperature. CONSTITUTION:A mixture of thiourea with a zinc salt and an activator is melted and mixed, and ammonia is then added thereto to deposit zinc sulfide containing the activator in the melt. The resultant deposited zinc sulfide is then calcined at 350-600 deg.C in an inert atmosphere or sulfiding atmosphere to remove components other than the aimed fluorescent substance. The resultant calcined material is then calcined at 950-1,250 deg.C in the same atmosphere to give the aimed zinc sulfide fluorescent substance. USE:For cathode-ray tubes and electroluminescence.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は硫化亜鉛螢光体の製造方法に関するものであり
、粒度が均一な微粒子で、しかも高輝度の硫化亜鉛螢光
体が得られる方法を提供するものである。本発明の方法
によって得られる硫化亜鉛螢光体は陰極線管用螢光体、
エレクトロルミネッセンス用螢光体などとして用いるこ
とができる。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for producing a zinc sulfide phosphor, and is a method for obtaining a zinc sulfide phosphor having fine particles with uniform particle size and high brightness. It provides: The zinc sulfide phosphor obtained by the method of the present invention can be used as a phosphor for cathode ray tubes,
It can be used as a phosphor for electroluminescence.

(従来例の構成とその問題点) 硫化亜鉛螢光体は陰極線刺激により発光し、主にブラウ
ン管等に利用されたり、あるいは外部電界の印加によっ
て発光し、いわゆるエレクトロルミネッセンス発光装置
(以下KL発光装置と略称する)に利用されている。上
記EL発光装置に用いられる螢光体は、硫化亜鉛に賦活
剤として、銅、マンガン等、共賦活剤としてアルミニウ
ム、壇素あるいは臭素等を加え焼成したものがよく知ら
れている。これらの母体材料である硫化亜鉛は、緩衝液
を用いて酸性に保った硫酸亜鉛水溶液に硫化水素を導入
して飽和させ、硫化亜鉛を沈殿式せる方法等で得られて
いる。しかし、これらの方法で得られる硫化亜鉛の粒度
は広い範囲に分布しており、均一な粒度を得るのは困難
である。また、この方法で得られた硫化亜鉛に賦活剤、
共賦活剤を加えて熱処理した場合、異常粒成長をおこ1
−やすく、均一な粒度の硫化亜鉛螢光体が得られにくい
(Conventional structure and problems) Zinc sulfide phosphors emit light when stimulated with cathode rays, and are mainly used in cathode ray tubes, etc., or emit light when an external electric field is applied. ) is used. It is well known that the phosphor used in the above-mentioned EL light-emitting device is made by adding and baking zinc sulfide, an activator such as copper or manganese, and a co-activator such as aluminum, sodium chloride or bromine. Zinc sulfide, which is the base material for these materials, is obtained by introducing hydrogen sulfide into an aqueous zinc sulfate solution kept acidic using a buffer solution to saturate it, and precipitating zinc sulfide. However, the particle size of zinc sulfide obtained by these methods is distributed over a wide range, and it is difficult to obtain a uniform particle size. In addition, activator, zinc sulfide obtained by this method,
If a co-activator is added and heat treated, abnormal grain growth may occur1.
- It is difficult to obtain a zinc sulfide phosphor with uniform particle size.

輝度の点においても、粒成長を促進して平均粒径10μ
m程度以上でなければ高輝度のものが得られにくい。そ
こで発明者らは、チオ尿素と亜鉛塩の溶融塩と賦活剤お
よびアルカリから、賦活剤を含有する硫化亜鉛を得、反
応によって生じた副産物や、未反応物を除去するために
純水で洗浄した後、不活性雰囲気と硫化性雰囲気のいず
れかで焼成すれば、粒径が小さく均一で、しかも高輝度
の硫化亜鉛螢光体が得られることを見い出した。しかし
、この方法によって得られた硫化亜鉛は、水による洗浄
のため、含水率が高く十分な乾燥が必要となり、また一
部は酸化されたり、硫酸亜鉛となったりする欠点を持っ
ている。そこで、硫化亜鉛に含まれる水分や硫化亜鉛の
酸化を防げば、さらに高輝度が期待できる。
In terms of brightness, it also promotes grain growth and reduces the average grain size to 10μ.
It is difficult to obtain high luminance unless the luminance is about m or more. Therefore, the inventors obtained zinc sulfide containing an activator from a molten salt of thiourea and zinc salt, an activator, and an alkali, and washed it with pure water to remove byproducts generated by the reaction and unreacted substances. The inventors have discovered that if the zinc sulfide phosphor is then fired in either an inert atmosphere or a sulfuric atmosphere, a zinc sulfide phosphor with small and uniform particle size and high brightness can be obtained. However, since the zinc sulfide obtained by this method is washed with water, it has a high moisture content and requires sufficient drying, and also has the disadvantage that some of it is oxidized or becomes zinc sulfate. Therefore, even higher brightness can be expected if the moisture contained in zinc sulfide and the oxidation of zinc sulfide are prevented.

(発明の目的) 本発明は上記のような欠点を除去し、微粒子で粒度のそ
ろった、しかも高輝度の硫化亜鉛螢光体を製造する方法
を提供するものである。
(Objective of the Invention) The present invention eliminates the above-mentioned drawbacks and provides a method for producing a zinc sulfide phosphor with fine particles of uniform particle size and high brightness.

(発明の構成) 本発明は、第1の工程でチオ尿素と亜鉛塩の溶融塩と賦
活剤およびアンモニアから、賦活剤を含有する硫化亜鉛
を得、第2の工程で、第1の工程より得られた硫化亜鉛
を、不活性雰囲気と硫化性雰囲気のいずれかで低温処理
し、第3の工程で、第2の工程より得られた硫化亜鉛を
、不活性雰囲気と硫化性雰囲気のいずれかで高温処理す
ることを特徴とする硫化亜鉛螢光体の製造方法を提供す
るものである。第2の工程において、具体的には第1の
工程で得られた賦活剤含有の硫化亜鉛を不活性雰囲気(
N2ガス、Arガス等)と硫化性雰囲気(cs2ガス、
H2Sガス等)のいずれかで、350〜600℃の温度
範囲で低温処理することを特徴とする硫化亜鉛螢光体の
製造方法を提供するものである。さらに具体的には、第
3の工程において、第2の工程で得られた硫化亜鉛を不
活性雰囲気(N2ガス、Arガス等)と硫化性雰囲気(
C82ガス、H2Sガス等)のいずれかで、950〜1
250℃の温度範囲で高温処理することを特徴とする硫
化亜鉛螢光体の製造方法を提供するものである。
(Structure of the Invention) The present invention provides zinc sulfide containing an activator from a molten salt of thiourea and zinc salt, an activator, and ammonia in a first step, and a second step in which zinc sulfide containing an activator is obtained from a molten salt of thiourea and a zinc salt, and The obtained zinc sulfide is subjected to low temperature treatment in either an inert atmosphere or a sulfiding atmosphere, and in the third step, the zinc sulfide obtained from the second step is treated in either an inert atmosphere or a sulfiding atmosphere. The present invention provides a method for manufacturing a zinc sulfide phosphor, which is characterized by high-temperature treatment. In the second step, specifically, the activator-containing zinc sulfide obtained in the first step is heated in an inert atmosphere (
N2 gas, Ar gas, etc.) and sulfidic atmosphere (CS2 gas,
The present invention provides a method for producing a zinc sulfide phosphor, which is characterized by performing low temperature treatment in a temperature range of 350 to 600° C. using either H2S gas, etc.). More specifically, in the third step, the zinc sulfide obtained in the second step is mixed in an inert atmosphere (N2 gas, Ar gas, etc.) and a sulfidic atmosphere (
C82 gas, H2S gas, etc.), 950 to 1
The present invention provides a method for producing a zinc sulfide phosphor, which is characterized by high temperature treatment in a temperature range of 250°C.

(実施例の説明) 実施例1 塩化亜鉛znC7!21モルとチオ尿素C3(NF2)
21.5モルを500mAのフラスコ内に入れ、さらに
塩化亜鉛1モルに対し、0.2モルパーセントの塩化第
一銅CuCjlと塩化アルミニウムAj?CA13・6
H20を添加しフラスコ内を攪拌しながら140〜15
0℃にオイルバスで加熱した。チオ尿素と塩化亜鉛が溶
融塩になったところで、溶融塩を攪拌しながら、フラス
コ内にアンモニアガスNH3を21/minの流量で6
0分間流した。冷却後、この冷却によシ得られた粉末を
石英製の管状炉中において、硫化水素ガスH2S雰囲気
中で600℃で1時間低温処理し、螢光体以外の成分を
除去した後、硫化水素ガスH2S雰囲気中で、1150
℃で1時間高温処理した。その後、過5− 剰の銅化合物を除去するため、5重量係のシアン化ナト
リウム水溶液と純水で十分洗浄し、銅、アルミニウム賦
活の螢光体を得た。このようにして得た硫化亜鉛螢光体
を走査型電子顕微鏡によシ粒度分布を測定したところ、
その分布範囲は、20〜7.0μmであった。この螢光
体を用いて通常の方法でEL発光装置を作製しその輝度
を評価した。すなワチシアノエチルセルローズのアセト
ン溶液に螢光体粉末を分散し、この混合物を透明電極層
付きのガラス基板上に塗布した。シアノエチルセルロー
ズと螢光体の配合比は、体積比で1=1とした。
(Description of Examples) Example 1 Zinc chloride znC7!21 mol and thiourea C3 (NF2)
21.5 mol was placed in a flask at 500 mA, and 0.2 mol percent of cuprous chloride CuCjl and aluminum chloride Aj? CA13・6
140-15 while adding H20 and stirring inside the flask.
Heated to 0°C in an oil bath. When thiourea and zinc chloride have become molten salt, ammonia gas NH3 is added into the flask at a flow rate of 21/min while stirring the molten salt.
It was run for 0 minutes. After cooling, the powder obtained by this cooling was placed in a quartz tube furnace and subjected to low temperature treatment at 600°C for 1 hour in a hydrogen sulfide gas H2S atmosphere to remove components other than the phosphor. In a gas H2S atmosphere, 1150
High temperature treatment was performed at ℃ for 1 hour. Thereafter, in order to remove the excess copper compound, it was thoroughly washed with a 5 weight part sodium cyanide aqueous solution and pure water to obtain a copper- and aluminum-activated phosphor. The particle size distribution of the zinc sulfide phosphor thus obtained was measured using a scanning electron microscope.
Its distribution range was 20-7.0 μm. Using this phosphor, an EL light emitting device was fabricated using a conventional method, and its brightness was evaluated. A phosphor powder was dispersed in an acetone solution of cyanoethyl cellulose, and this mixture was coated on a glass substrate with a transparent electrode layer. The mixing ratio of cyanoethyl cellulose and phosphor was 1=1 in terms of volume ratio.

さらにシアノエチルセルローズのアセトン溶液に酸化チ
タン粉末を分散した混合物で絶縁層を形成した後、金属
電極を蒸着してEL発光装置とした。
Furthermore, an insulating layer was formed using a mixture of titanium oxide powder dispersed in an acetone solution of cyanoethyl cellulose, and then a metal electrode was deposited to form an EL light emitting device.

発光層、絶縁層の厚さは、それぞれ15μm、7μmで
あった。この装置に1kHz 、 100Vの交流電界
を印加したところ、緑色で発光し、それの輝度は、11
8fLであった。
The thicknesses of the light emitting layer and the insulating layer were 15 μm and 7 μm, respectively. When a 1kHz, 100V alternating current electric field was applied to this device, it emitted green light with a brightness of 11
It was 8fL.

実施例2 塩化亜鉛ZnCA21モル、チオ尿素C3(NF2)2
6− 1.5モル、さらに塩化亜鉛ZnCA!21モルに対し
て03モルパーセントの塩化第一銅CuC7と塩化アル
ミニウムAβC13・6H20を添加し、フラスコ内を
攪拌しながら140〜150℃にオイルバスで加熱した
Example 2 Zinc chloride ZnCA 21 mol, thiourea C3 (NF2)2
6- 1.5 mole plus zinc chloride ZnCA! Cuprous chloride CuC7 and aluminum chloride AβC13.6H20 were added in an amount of 03 mole percent based on 21 moles, and the flask was heated to 140 to 150° C. in an oil bath while stirring.

チオ尿素と塩化亜鉛が溶融塩になったところで、溶融塩
を攪拌しながら、フラスコ内にアンモニアガスNH3を
2j!/minの流量で60分間流し、賦活剤含有の硫
化亜鉛を析出させだ。冷却後、この粉末を石英製の管状
炉中において、窒素ガスN2雰囲気で、350℃で1時
間低温処理し、その後窒素ガスN2雰囲気で950℃で
2時間高温処理した後、シアン水溶液、純水で洗浄し、
銅、アルミニウム賦活の螢光体を得だ。この螢光体の粒
度分布は、1.0〜60μmであった。この螢光体を用
いて、実施例1と同様の方法でEL発光装置を作製した
。発光層1絶縁層の厚きは、14μm、 13μmであ
った。この装置に、1 kHz 、100Vの交流電界
を印加したところ、緑色で発光し、それの輝度は90 
fLであった。
When thiourea and zinc chloride have become molten salt, while stirring the molten salt, add 2j! of ammonia gas NH3 into the flask. The solution was allowed to flow for 60 minutes at a flow rate of /min to precipitate zinc sulfide containing an activator. After cooling, this powder was placed in a quartz tube furnace and subjected to a low temperature treatment at 350°C for 1 hour in a nitrogen gas N2 atmosphere, and then a high temperature treatment at 950°C for 2 hours in a nitrogen gas N2 atmosphere, followed by a cyanide aqueous solution and pure water. Wash with
Copper and aluminum activated phosphors were obtained. The particle size distribution of this phosphor was 1.0 to 60 μm. Using this phosphor, an EL light emitting device was produced in the same manner as in Example 1. The thickness of the insulating layer of the light emitting layer 1 was 14 μm and 13 μm. When a 1 kHz, 100 V alternating current electric field was applied to this device, it emitted green light with a brightness of 90
It was fL.

比較例1 比較のため、本発明者らが見出した前述の純水による洗
浄を行なって硫化亜鉛螢光体を製造する方法を比較例と
して挙げる。すなわち、塩化亜鉛ZnCA21モルとチ
オ尿素C3(NH2)21.5モルをフラスコ内に入れ
、きらに塩化亜鉛1モルに対し0.2モル係の塩化第一
銅と塩化アルミニウムを添加し攪拌しながら140〜1
50℃で加熱した。チオ尿素と塩化亜鉛が溶融塩になっ
たところで、これを攪拌しながら、アンモニアガスを2
13/rn i nの流量で60分間流した。冷却後、
純水で洗浄した後、150℃で乾燥した。この粉末を石
英製の管状炉中において、硫化水素ガス雰囲気で750
℃で0.5時間、濱らに1150℃で1時間処理した後
、シアン水溶液、純水で洗浄し、螢光体を得だ。この螢
光体の粒度分布は、20〜7.0μmであυ、実施例1
と同様な方法でEL発光装置を作製した。発光層、絶縁
層の厚さは、それぞれ15μm、7μmでちった。1k
Hz。
Comparative Example 1 For comparison, a method discovered by the present inventors for producing a zinc sulfide phosphor by washing with pure water will be described as a comparative example. That is, 21 moles of zinc chloride ZnCA and 21.5 moles of thiourea C3 (NH2) were placed in a flask, and cuprous chloride and aluminum chloride were added in an amount of 0.2 moles per 1 mole of zinc chloride. 140-1
Heated at 50°C. When thiourea and zinc chloride have become molten salt, while stirring, add 2 ammonia gas.
It was run for 60 minutes at a flow rate of 13/rn i n. After cooling,
After washing with pure water, it was dried at 150°C. This powder was placed in a quartz tube furnace at 750°C in a hydrogen sulfide gas atmosphere.
After treatment at 1150° C. for 0.5 hour and 1 hour at 1150° C., the phosphor was obtained by washing with a cyan aqueous solution and pure water. The particle size distribution of this phosphor was 20 to 7.0 μm, and Example 1
An EL light emitting device was manufactured in the same manner as described above. The thicknesses of the light emitting layer and the insulating layer were 15 μm and 7 μm, respectively. 1k
Hz.

100vの交流電界の印加によυ、緑色に発光し、その
輝度は100 fLであった。
When an alternating current electric field of 100 V was applied, it emitted green light with a luminance of 100 fL.

比較例2 烙らに比較のために、比較例1と若干態様の異なる方法
で硫化亜鉛螢光体を得た。すなわち、塩化亜鉛1モル、
チオ原素1.5モル、さらに塩化亜鉛1モルに対して0
.3モル係の塩化第一銅と塩化アルミニウムを添加し、
攪拌しながら140〜150℃に加熱した。チオ尿素と
塩化亜鉛が溶融塩になったところで、攪拌しながら、ア
ンモニアガスを2j+/minの流量で60分間流し、
賦活剤含有の硫化亜鉛を析出させた。冷却後、純水で洗
浄した後、この粉末を石英製の管状炉で窒素ガス雰囲気
中で、950℃で2時間熱処理した後、シアン水溶液、
純水で洗浄し、螢光体を得た。この螢光体の粒度分布は
1.5〜6.0μmでアシ、実施例1と同様の方法でE
L発光装置を作製した。発光層、絶縁層の厚さはそれぞ
れ、14μm、7μmであった。この装置にl kHz
、100Vの交流電界を印加したところ、緑色発光し、
その輝度は75fLでおった。
Comparative Example 2 For comparison, a zinc sulfide phosphor was obtained using a method slightly different from that of Comparative Example 1. That is, 1 mole of zinc chloride,
0 for 1.5 mole of thio element and 1 mole of zinc chloride
.. Add 3 moles of cuprous chloride and aluminum chloride,
It was heated to 140-150°C while stirring. When thiourea and zinc chloride became molten salt, ammonia gas was flowed at a flow rate of 2j+/min for 60 minutes while stirring.
Zinc sulfide containing an activator was deposited. After cooling and washing with pure water, this powder was heat-treated at 950°C for 2 hours in a nitrogen gas atmosphere in a quartz tubular furnace, and then treated with a cyanide aqueous solution,
A phosphor was obtained by washing with pure water. The particle size distribution of this phosphor was 1.5 to 6.0 μm.
An L-light emitting device was fabricated. The thicknesses of the light emitting layer and the insulating layer were 14 μm and 7 μm, respectively. l kHz to this device
, when an AC electric field of 100V was applied, it emitted green light,
Its brightness was 75 fL.

上記実施例および比較例から明らかなように、本発明に
よって得られる硫化亜鉛螢光体は、比較例のものと比べ
て高輝度である。
As is clear from the above Examples and Comparative Examples, the zinc sulfide phosphor obtained by the present invention has higher brightness than that of the Comparative Example.

9− なお、低温処理温度は、350〜600℃が望ましい。9- Note that the low temperature treatment temperature is preferably 350 to 600°C.

この温度は塩化アンモニウム等副産物の昇華温度以上か
ら、カーボン等分解物付着の影響の少ない温度まででち
る。さらに高温処理温度は、950〜1250℃が望ま
しい。この温度は、比較的粒径が大きく高輝度が望める
温度以上から、硫化亜鉛母体の昇華の少ない温度までで
ある。
This temperature ranges from the sublimation temperature of by-products such as ammonium chloride to a temperature at which the adhesion of decomposition products such as carbon has little effect. Further, the high temperature treatment temperature is preferably 950 to 1250°C. This temperature ranges from a temperature above which the particle size is relatively large and high brightness can be expected, to a temperature at which sublimation of the zinc sulfide matrix is small.

(発明の効果) 本発明の方法によって得られる硫化亜鉛螢光体は、従来
の硫酸亜鉛水溶液から得られるものに比べて、粒径が小
さく、均一であるとともに、比較例のように、チオ尿素
と亜鉛塩の溶融塩と賦活剤およびアンモニアから得られ
る硫化亜鉛を純水で洗浄し乾燥した後に高温処理して得
られる硫化亜鉛螢光体に比べて、高輝度でおるという利
点を有する。本発明の方法によって得られる硫化亜鉛螢
光体は、上記の利点をもつために、たとえばEL発光装
置用螢光体として用いられた場合、均質で薄い発光層を
容易に形成することができ、低電圧高輝度化、製造の容
易さ、信頼性等を達成するこ10− とができる。
(Effects of the Invention) The zinc sulfide phosphor obtained by the method of the present invention has a smaller and more uniform particle size than that obtained from a conventional zinc sulfate aqueous solution, and also has thiourea It has the advantage of higher brightness than a zinc sulfide phosphor obtained by washing zinc sulfide obtained from a molten salt of zinc salt, an activator, and ammonia with pure water, drying it, and then treating it at high temperature. Since the zinc sulfide phosphor obtained by the method of the present invention has the above-mentioned advantages, when used as a phosphor for an EL light-emitting device, for example, a homogeneous and thin light-emitting layer can be easily formed. It is possible to achieve low voltage, high brightness, ease of manufacture, reliability, etc.

特許出願人 松下電器産業株式会社 11−Patent applicant: Matsushita Electric Industrial Co., Ltd. 11-

Claims (2)

【特許請求の範囲】[Claims] (1) チオ尿素と亜飴塩、および賦活剤の混合物を溶
融、混合しきらにアンモニアを加えて融液中に賦活剤を
含有する硫化亜鉛を析出させる第1の工程と、前記第1
の工程よシ得られた硫化亜鉛を、不活性雰囲気と、硫化
性雰囲気のいずれかで低温処理し、螢光体以外の成分を
除去する第2の工程と、前記第2の工程よシ得られた硫
化亜鉛を、不活性雰囲気と硫化性雰囲気のいずれかで高
温処理する第3の工程とを有することを特徴とする硫化
亜鉛螢光体の製造方法。
(1) A first step of melting and mixing a mixture of thiourea, ammonium salt, and an activator, and adding ammonia to the mixture to precipitate zinc sulfide containing an activator in the melt;
A second step in which the zinc sulfide obtained in the step is subjected to low temperature treatment in either an inert atmosphere or a sulfuric atmosphere to remove components other than the phosphor; A method for manufacturing a zinc sulfide phosphor, comprising a third step of treating the zinc sulfide obtained at high temperature in either an inert atmosphere or a sulfiding atmosphere.
(2) 低温°処理温度を、350〜600℃の範囲に
保持する第2の工程と、高温処理温度を、950〜12
50℃の範囲に保持する第3の工程を有することを特徴
とする特許請求の範囲第(1)項記載の硫化亜鉛螢光体
の製造方法。
(2) A second step in which the low temperature treatment temperature is maintained in the range of 350 to 600 °C, and the high temperature treatment temperature is maintained in the range of 950 to 12 °C.
A method for producing a zinc sulfide phosphor according to claim 1, which comprises a third step of maintaining the temperature in a range of 50°C.
JP17409983A 1983-09-22 1983-09-22 Production of zinc sulfide fluorescent substance Pending JPS6067585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17409983A JPS6067585A (en) 1983-09-22 1983-09-22 Production of zinc sulfide fluorescent substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17409983A JPS6067585A (en) 1983-09-22 1983-09-22 Production of zinc sulfide fluorescent substance

Publications (1)

Publication Number Publication Date
JPS6067585A true JPS6067585A (en) 1985-04-17

Family

ID=15972627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17409983A Pending JPS6067585A (en) 1983-09-22 1983-09-22 Production of zinc sulfide fluorescent substance

Country Status (1)

Country Link
JP (1) JPS6067585A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01129090A (en) * 1987-11-13 1989-05-22 Kohjin Co Ltd Production of phosphor
US7070756B2 (en) * 2003-08-04 2006-07-04 Fuji Photo Film Co., Ltd. Process for producing zinc sulfide particles
JP2009512740A (en) * 2005-09-29 2009-03-26 ザ ディレクター ジェネラル ディフェンス リサーチ アンド ディベロップメント オーガニゼーション SEMICONDUCTOR NANOCRYSTAL FOR DISPLAY / BIOLABEL AND SINGLE SOURCE SOLID PRECURSOR MATRIX FOR PRODUCING DOOPED SEMICONDUCTOR NANOCRYSTAL

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01129090A (en) * 1987-11-13 1989-05-22 Kohjin Co Ltd Production of phosphor
US7070756B2 (en) * 2003-08-04 2006-07-04 Fuji Photo Film Co., Ltd. Process for producing zinc sulfide particles
JP2009512740A (en) * 2005-09-29 2009-03-26 ザ ディレクター ジェネラル ディフェンス リサーチ アンド ディベロップメント オーガニゼーション SEMICONDUCTOR NANOCRYSTAL FOR DISPLAY / BIOLABEL AND SINGLE SOURCE SOLID PRECURSOR MATRIX FOR PRODUCING DOOPED SEMICONDUCTOR NANOCRYSTAL

Similar Documents

Publication Publication Date Title
JP2756044B2 (en) Encapsulated electroluminescent phosphor and method of making same
US20100193740A1 (en) Method of producing an electroluminescence phosphor
JPS6067585A (en) Production of zinc sulfide fluorescent substance
JP2000198978A (en) Preparation of gallium nitride fluorescent substance, preparation of gallium oxide and gallium oxide
US4272397A (en) Method of preparing flake-like ceramic particle of zinc sulfide phosphor
JPS6067584A (en) Production of zinc sulfide fluorescent substance
JPH01315485A (en) Fluorescent substance coated with phosphate for el illuminant and production thereof
WO2003095588A1 (en) Method of manufacturing a luminescent material
JPS61145277A (en) Low-speed electron beam excitation phosphor, light-emitting composition and fluorescent display tube
EP1412098A2 (en) Encapsulated long life electroluminescent phosphor
JPH01204991A (en) Production of phosphor for el
CN106854466B (en) Red fluorescent powder excited by electron beam and preparation method thereof
JP2006008806A (en) Phosphor precursor, electroluminescent phosphor, their production methods and dispersed electroluminescence element
JPS5822494B2 (en) Method for producing europium-activated tin oxide phosphor
US6849297B1 (en) Encapsulated long life electroluminescent phosphor
JPS608071B2 (en) Method for producing zinc sulfide phosphor
JP2586147B2 (en) Method for producing ZnS: Cu-based phosphor
JPH02105888A (en) Phosphor material
US2409574A (en) Luminescent material and method of manufacture
JPH0430431B2 (en)
JP2009161680A (en) Method for preparing highly crystalline fluorescent material
JPS6131747B2 (en)
JP2006045319A (en) Method for producing phosphor particle, phosphor particle and dispersion type electroluminescence element
JPH05148481A (en) Production of fluorescent material
JP2586148B2 (en) Method for producing ZnS: Mn, Cu-based phosphor