JPS6130010B2 - - Google Patents

Info

Publication number
JPS6130010B2
JPS6130010B2 JP885681A JP885681A JPS6130010B2 JP S6130010 B2 JPS6130010 B2 JP S6130010B2 JP 885681 A JP885681 A JP 885681A JP 885681 A JP885681 A JP 885681A JP S6130010 B2 JPS6130010 B2 JP S6130010B2
Authority
JP
Japan
Prior art keywords
slag
hot metal
iron
high basicity
pig iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP885681A
Other languages
Japanese (ja)
Other versions
JPS57123906A (en
Inventor
Morihiro Sumita
Hiroyuki Nakajima
Takao Morita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP885681A priority Critical patent/JPS57123906A/en
Publication of JPS57123906A publication Critical patent/JPS57123906A/en
Publication of JPS6130010B2 publication Critical patent/JPS6130010B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高塩基度スラグからの鉄分の回収方法
に関するものである。 近年、極低硫鋼、極低燐鋼の開発に伴ない各成
分の管理が益々厳しくなつている。通常の製鋼方
法では不純物の大半は転炉吹錬の工程で除去され
ているが、この場合転炉の操業負担が大きくな
る。そこで転炉の操業負担を軽減するためと、各
成分管理の容易化を目的として溶銑の段階で各種
の不純物をあらかじめ脱処理することが行なわ
れ、種種の方法が提案されている。 すなわち例えば容器内で溶銑を脱珪処理し、そ
の際生成したスラグを分離した後に、脱燐処理
し、生成したスラグを排滓して残留した溶銑を転
炉で吹錬し、他方前記脱燐処理に際して生成した
スラグは冷却して粉砕し磁選により粒鉄を回収し
ている。 ところで脱燐処理に際して生成したスラグは第
1表に示す如く高塩基度(CaO/SiO2:3〜
5)であるため、第2図の塩基度と流動性の関係
を示すグラフからも明らかなように流動性が悪
く、固い性状を示すためスラグ内には鉄分(粒
鉄)が多く取込まれている(第3図参照)。
The present invention relates to a method for recovering iron from high basicity slag. In recent years, with the development of ultra-low sulfur steel and ultra-low phosphorus steel, control of each component has become increasingly strict. In normal steelmaking methods, most of the impurities are removed during the converter blowing process, but in this case, the operational burden on the converter increases. Therefore, in order to reduce the operating burden of the converter and to facilitate the management of each component, various impurities are removed in advance at the hot metal stage, and various methods have been proposed. That is, for example, hot metal is desiliconized in a container, the slag generated at that time is separated, and then subjected to dephosphorization treatment, the generated slag is slaged off, and the remaining hot metal is smelted in a converter; The slag produced during processing is cooled and crushed, and granulated iron is recovered by magnetic separation. By the way, the slag produced during the dephosphorization process has a high basicity (CaO/SiO 2 :3~3) as shown in Table 1.
5), as is clear from the graph showing the relationship between basicity and fluidity in Figure 2, the fluidity is poor and the slag exhibits hard properties, so a large amount of iron (granular iron) is incorporated into the slag. (See Figure 3).

【表】 従来はこれらの鉄分の回収は前記した如く冷滓
(20〜30Kg/t―p)として回収しているが回収
プラント建設投資および回収ランニングコストと
して回収粒鉄トン当り約2000〜3000円を負担する
必要がある。 しかしながら、前記の如き鉄分回収方法を採用
するには、スラグ排出、冷却、鉄分回収の処理工
程ならびにそのための付帯設備を必要とし、また
冷滓とするために、排滓作業に伴なう鉄分ロス
(約4.0Kg/t―pig)を余儀なくするという難点
がある。 本発明の目的とするところは、溶銑の予備処理
工程において発生するスラグ中の鉄分の回収を、
スラグ排出、冷滓化、破砕、磁選による鉄分の回
収という工程を必要とせずに、溶融状態において
スラグ中の鉄分を、処理すべき溶銑中に効率よく
移行せしめて回収する方法を提供せんとするにあ
る。 本発明者らは、受銑容器内での溶銑の脱燐工程
において発生した高塩基度スラグを、溶銑を別に
準備された容器に移しかえることによつて、前記
受銑容器内に残留せしめ、この受銑容器内に高炉
からの新たな溶銑を受銑し、スラグ改質剤を添加
して流動性のよい混合スラグ(第1表参照)を生
成させることによつて、前記高塩基度スラグ中に
取込まれていた鉄分を効率よく溶銑中に回収しう
ることを確めた。 すなわち本発明の要旨とするところは下記のと
おりである。 (1) 溶銑予備処理工程において発生した高塩基度
スラグを収容した受銑容器内に、高炉からの溶
銑を受銑し、これに酸化鉄を主成分とするスラ
グ改質剤を添加するかあるいは前記高塩基度ス
ラグを収容した受銑容器内にあらかじめ前記ス
ラグ改質剤を添加した高炉からの溶銑を受銑す
ることを特徴とする高塩基度スラグからの鉄分
回収方法。 (2) 溶銑予備処理工程において発生した高塩基度
スラグを収容した受銑容器内に、高炉からの溶
銑を受銑し、これに酸化鉄を主成分とするスラ
グ改質剤を添加するかあるいは前記高塩基度ス
ラグを収容した受銑容器内にあらかじめ前記ス
ラグ改質剤を添加した高炉からの溶銑を受銑
し、受銑後に得られた混合スラグを排滓するこ
とにより受銑容器内に残留した溶銑を、脱燐用
フラツクスの添加の下に脱燐処理し、その際生
成した高塩基度スラグを循環使用することを特
徴とする高塩基度スラグからの鉄分回収方法。 以下、本発明を更に詳細に説明する。 第1図は溶銑の脱燐処理工程において生成した
高塩基度スラグ(20〜30Kg/t―p)を溶銑から
分離した後、冷滓化して鉄分を回収する従来法の
フローシートを示す。この従来法においては、高
塩基度スラグは約3〜5の塩基度を有するため流
動性が悪く固い性状を有するので、スラグ中に鉄
分が比較的多く含まれており、その量は発生スラ
グ量に対して17〜18%にも達するため産業上回収
処理が必須であり、回収処理プラント建設投資と
そのランニングコストの負担を余儀なくされてい
た。 之に対し本発明は、受銑容器内の溶銑に対して
例えばミルスケール等の酸化鉄とCaO,CaF2
らなる混合フラツクスを添加して撹拌して脱燐処
理を行ない、脱燐処理後の溶銑を他の容器に移し
かえ、その際生成した高塩基度の脱燐スラグ(20
〜30Kg/t―p)を受銑容器内に残留せしめ、之
に新たな溶銑を受銑することによつて高塩基度ス
ラグと溶銑を接触せしめて溶銑中へスラグの鉄分
を移行せしめて回収しようとするものである。そ
の際、高塩基度スラグは流動性が悪く該スラグ中
に取込まれている鉄分の溶銑への移行が行なわれ
難いのでスラグの流動性を高めるべくスラグ改質
剤を添加し、混合スラグを生成せしめる。このス
ラグ改質剤は例えばミルスケールである。このス
ラグ改質剤の添加により脱珪スラグが生成し、之
により溶銑処理が同時に行なわれるようにするの
が有利である。なおスラグ改質剤の添加は高塩基
度スラグを収容した容器内に予め添加しておいて
もよい。 かくして溶銑と接触している高塩基度スラグは
スラグ改質剤の存在により流動性のよい混合スラ
グ(35〜55Kg/t―p)を生成する。この混合ス
ラグの段階ではスラグ中に鉄分が取込まれること
もなく容易にスラグと分離して溶銑中へ回収さ
れ、スラグは表層に浮遊する。そでこの時点で表
層部のスラグを例えばスラグドラツガー等で掻出
せば鉄分の排出ロスは殆んどなくなる。以後は容
器内に残留した溶銑を前記した如く脱燐フラツク
スの添加により脱燐処理した後、転炉により製錬
する。その際生成した高塩基度スラグは容器内に
残留せしめられて、前記した如く鉄分回収のため
に循環する。第4図は本発明の実施の態様を示す
フローシート、第5図は本発明の他の実施態様を
示すフローシートである。 本発明を実施例にもとづいて説明する。 容器内で溶銑300tonに脱燐用混合フラツクス
(酸化鉄:CaO:CaF2=4:2:1)50Kg/t―
pを添加し脱燐処理し、その際生成した溶融スラ
グ25Kg(CaO53%、SiO215%、P2O57%塩基度
3.5)を、処理溶銑を別の容器に移すことによつ
て、残留せしめたまま高炉受銑位置に戻し、一方
高炉から出銑した新溶銑にあらかじめミルスケー
ル30Kg/t―p添加して脱珪処理しながら、前記
容器に受銑した。その際脱珪処理により生成たス
ラグ20Kg/t―pと混合して混合スラグ(CaO45
%、SiO225%、P2O54%)45Kg/t―pが生成し
た。この混合スラグの流動性は良好であり、スラ
グ中の鉄分は溶銑中へ移行した。この混合スラグ
をスラグドラツガーで掻き出した後、残留した溶
銑を脱燐処理した。この混合スラグ中の鉄分含有
量は0.5Kg/t―pであり、粒鉄回収処理はまつ
たく不要であつた。
[Table] Conventionally, these iron contents have been recovered as cold slag (20 to 30 kg/t-p) as described above, but the investment in construction of a recovery plant and recovery running costs are about 2,000 to 3,000 yen per ton of recovered iron granules. need to bear the burden. However, in order to adopt the above-mentioned iron recovery method, processing steps for slag discharge, cooling, and iron recovery, as well as associated equipment are required, and in order to produce cold slag, the iron loss associated with the slag removal work is required. (approximately 4.0Kg/t-pig). The purpose of the present invention is to recover the iron content in the slag generated during the pretreatment process of hot metal.
To provide a method for efficiently transferring and recovering iron in slag in a molten state into hot metal to be treated, without requiring the steps of slag discharge, cold slag, crushing, and recovery of iron by magnetic separation. It is in. The present inventors caused the high basicity slag generated in the dephosphorization process of hot metal in the pig iron receiving container to remain in the pig iron receiving container by transferring the hot metal to a separately prepared container, New hot metal from the blast furnace is received in this pig iron receiving container, and a slag modifier is added to produce mixed slag with good fluidity (see Table 1), thereby converting the high basicity slag into It was confirmed that the iron contained in the hot metal can be efficiently recovered into the hot metal. That is, the gist of the present invention is as follows. (1) Hot metal from a blast furnace is received in a pig iron receiving vessel containing high basicity slag generated in the hot metal pretreatment process, and a slag modifier mainly composed of iron oxide is added to it, or A method for recovering iron from high basicity slag, which comprises receiving hot metal from a blast furnace to which the slag modifier has been added in advance into a receiving container containing the high basicity slag. or Hot metal from a blast furnace to which the slag modifier has been added in advance is received into a pig iron receiving container containing the high basicity slag, and the mixed slag obtained after pig iron is discharged into the pig iron receiving container. A method for recovering iron from high basicity slag, which comprises dephosphorizing residual hot metal with the addition of a dephosphorizing flux, and recycling the high basicity slag produced during the dephosphorization process. The present invention will be explained in more detail below. FIG. 1 shows a flow sheet of a conventional method in which high basicity slag (20 to 30 kg/t-p) produced in the hot metal dephosphorization process is separated from the hot metal and then turned into cold slag to recover iron. In this conventional method, the high basicity slag has a basicity of about 3 to 5 and has poor fluidity and hard properties, so the slag contains a relatively large amount of iron, and the amount of iron is However, as the amount reaches 17% to 18% of total waste, recovery and treatment are essential in industry, and the company is forced to invest in the construction of a recovery and treatment plant and bear the burden of its running costs. In contrast, in the present invention, a mixed flux consisting of iron oxide such as mill scale, CaO, and CaF 2 is added to the hot metal in the pig iron receiving vessel, and the mixture is stirred to perform dephosphorization treatment. The hot metal is transferred to another container, and the highly basic dephosphorization slag (20
~30Kg/t-p) remains in the pig iron receiving vessel, and by receiving new hot metal, the high basicity slag and hot metal are brought into contact and the iron content of the slag is transferred into the hot metal and recovered. This is what I am trying to do. At this time, high basicity slag has poor fluidity and it is difficult for the iron incorporated in the slag to transfer to hot metal, so a slag modifier is added to increase the fluidity of the slag, and the mixed slag is Generate. This slag modifier is, for example, mill scale. Advantageously, the addition of this slag modifier produces a desiliconized slag, so that the hot metal treatment is carried out at the same time. Note that the slag modifier may be added in advance into a container containing high basicity slag. Thus, the highly basic slag in contact with the hot metal produces a mixed slag (35-55 kg/t-p) with good fluidity due to the presence of the slag modifier. At this mixed slag stage, iron is not incorporated into the slag and is easily separated from the slag and recovered into the hot metal, and the slag floats on the surface layer. At this point, if the slag in the surface layer is scraped out using a slag dragger, for example, the iron discharge loss will be almost eliminated. Thereafter, the hot metal remaining in the container is dephosphorized by adding dephosphorizing flux as described above, and then smelted in a converter. The highly basic slag produced at this time is left in the container and circulated for iron recovery as described above. FIG. 4 is a flow sheet showing an embodiment of the present invention, and FIG. 5 is a flow sheet showing another embodiment of the present invention. The present invention will be explained based on examples. Mixed flux for dephosphorization (iron oxide: CaO: CaF 2 = 4:2:1) 50 kg/t - 300 tons of hot metal in a container
25 kg of molten slag (CaO 53%, SiO 2 15%, P 2 O 5 7% basicity) was added and dephosphorized.
3.5), the treated hot metal is transferred to another container and returned to the blast furnace receiving position while remaining, while 30 kg/t-p of mill scale is added in advance to the new hot metal tapped from the blast furnace to desiliconize it. During processing, pig iron was received into the vessel. At that time, mixed slag (CaO45
%, SiO 2 25%, P 2 O 5 4%) 45 Kg/t-p was produced. The fluidity of this mixed slag was good, and the iron content in the slag migrated into the hot metal. After this mixed slag was scraped out with a slag dragger, the remaining hot metal was dephosphorized. The iron content in this mixed slag was 0.5 kg/t-p, and no granular iron recovery treatment was required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の溶銑処理に際してのスラグ鉄分
回収工程のフローシート、第2図はスラグ塩基度
と流動性の関係を示す図、第3図はスラグ流動性
とスラグ中粒鉄含有量との関係を示す図、第4図
は本発明によるスラグ鉄分回収工程を示すフロー
シート、第5図は本発明の他の実施例における鉄
分回収工程を示すフローシートである。
Figure 1 is a flow sheet of the slag iron recovery process during conventional hot metal processing, Figure 2 is a diagram showing the relationship between slag basicity and fluidity, and Figure 3 is a diagram showing the relationship between slag fluidity and iron content in slag. FIG. 4 is a flow sheet showing the slag iron recovery process according to the present invention, and FIG. 5 is a flow sheet showing the iron recovery process in another embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 溶銑予備処理工程において発生した高塩基度
スラグを収容した受銑容器内に、高炉からの溶銑
を受銑し、これに酸化鉄を主成分とするスラグ改
質剤を添加するかあるいは前記高塩基度スラグを
収容した受銑容器内にあらかじめ前記スラグ改質
剤を添加した高炉からの溶銑を受銑することを特
徴とする高塩基度スラグからの鉄分回収方法。 2 溶銑予備処理工程において発生した高塩基度
スラグを収容した受銑溶器内に、高炉からの溶銑
を受銑し、これに酸化鉄をを主成分とするスラグ
改質剤を添加するかあるいは前記高塩基度スラグ
を収容した受銑容器内にあらかじめ前記スラグ改
質剤を添加した高炉からの溶銑を受銑し、受銑後
に得られた混合スラグを排滓することにより受銑
容器内に残留した溶銑を、脱燐用フラツクスの添
加の下に脱燐処理し、その際生成した高塩基度ス
ラグを循環使用することを特徴とする高塩基度ス
ラグからの鉄分回収方法。
[Scope of Claims] 1. Hot metal from a blast furnace is received into a pig iron receiving vessel containing high basicity slag generated in a hot metal pretreatment process, and a slag modifier mainly composed of iron oxide is applied to the pig iron receiving vessel. A method for recovering iron from high basicity slag, which comprises receiving hot metal from a blast furnace to which the above-mentioned slag modifier has been added or the above-mentioned slag modifier has been added in advance in a pig iron receiving vessel containing the above-mentioned high basicity slag. 2. Hot metal from the blast furnace is received into a pig iron receiving vessel containing high basicity slag generated in the hot metal pretreatment process, and a slag modifier mainly composed of iron oxide is added to it, or Hot metal from a blast furnace to which the slag modifier has been added in advance is received into a pig iron receiving container containing the high basicity slag, and the mixed slag obtained after pig iron is discharged into the pig iron receiving container. A method for recovering iron from high basicity slag, which comprises dephosphorizing the remaining hot metal with the addition of a dephosphorizing flux, and recycling the high basicity slag produced during the dephosphorization process.
JP885681A 1981-01-23 1981-01-23 Method for recovering iron content from high basicity slag Granted JPS57123906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP885681A JPS57123906A (en) 1981-01-23 1981-01-23 Method for recovering iron content from high basicity slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP885681A JPS57123906A (en) 1981-01-23 1981-01-23 Method for recovering iron content from high basicity slag

Publications (2)

Publication Number Publication Date
JPS57123906A JPS57123906A (en) 1982-08-02
JPS6130010B2 true JPS6130010B2 (en) 1986-07-10

Family

ID=11704361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP885681A Granted JPS57123906A (en) 1981-01-23 1981-01-23 Method for recovering iron content from high basicity slag

Country Status (1)

Country Link
JP (1) JPS57123906A (en)

Also Published As

Publication number Publication date
JPS57123906A (en) 1982-08-02

Similar Documents

Publication Publication Date Title
US4260414A (en) Process for recovering and utilizing useful substances from molten metal produced during reduction treatment of steel slag
JP2582692B2 (en) Converter steelmaking method
JP3293383B2 (en) How to use hot metal slag
JPH04120209A (en) Slag forming agent reutilizing converter slag
JPS6130010B2 (en)
JP3470857B2 (en) Dephosphorization refining method of hot metal in converter type refining vessel
CN112029949B (en) Method for treating zinc-containing waste steel by adopting converter full-three-step smelting process
CN114045376A (en) Method for desulfurizing molten steel in converter tapping process
JPH0853705A (en) Steelmaking method
JP3744133B2 (en) Method for removing slag generated during the manufacture of stainless steel and method for reusing waste slag
JPH0141681B2 (en)
JP3924059B2 (en) Steelmaking method using multiple converters
JPH01176040A (en) Method for recovering metal from molten iron desulfurized slag
JP3158912B2 (en) Stainless steel refining method
JPH0524962B2 (en)
JPS5855504A (en) Manufacture for pig and steel
JPS5916921A (en) Method for removing adhered slag
JP3218629B2 (en) Hot metal dephosphorization method
KR950013281B1 (en) Deposphorization of ingot steel
JP3742543B2 (en) Hot metal desulfurization method
JPS6250543B2 (en)
JP3224506B2 (en) Slag for roadbed material and method of manufacturing the same
JP3414811B2 (en) Recovery method of residual alloy components in slag after refining when smelting low alloy steel
JP3793390B2 (en) Hot metal desiliconization and desulfurization methods
JP2000328121A (en) Dephosphorization method of molten iron