JPS61296786A - Semiconductor light-emitting element - Google Patents

Semiconductor light-emitting element

Info

Publication number
JPS61296786A
JPS61296786A JP14005085A JP14005085A JPS61296786A JP S61296786 A JPS61296786 A JP S61296786A JP 14005085 A JP14005085 A JP 14005085A JP 14005085 A JP14005085 A JP 14005085A JP S61296786 A JPS61296786 A JP S61296786A
Authority
JP
Japan
Prior art keywords
layer
grown
substrate
growing
mesa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14005085A
Other languages
Japanese (ja)
Inventor
Masahiro Hosoda
昌宏 細田
Taiji Morimoto
泰司 森本
Hiroshi Hayashi
寛 林
Saburo Yamamoto
三郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP14005085A priority Critical patent/JPS61296786A/en
Publication of JPS61296786A publication Critical patent/JPS61296786A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To contrive the increase in output power by a method wherein the first layer is formed in sufficient thickness and the second layer is thinly formed in the process in which semiconductor layers are laminated in succession on the substrate having a stepping using a liquid-phase epitaxial method. CONSTITUTION:The mesa part 2, having four steppings on its slunting side, is formed on the surface 100 of an N-type arsenic GaAs substrate 1, and the surface 111 appears on the slunting side of the mesa part 2. An N-type gallium- aluminum-arsenide GaAlAs clad layer 4a is grown on the substrate 1 using the well known liquid-phase epitaxial growing method. At this time, the growing speed differs with the plane direction, and as the growing speed on the surface 11 is higher than that of the surface 100, the grown layer 4c in this pat is formed into the shape parallel with a staircase-like stepping 3, thereby enabling to have s large inclination. Accordingly, when the second growing layer is grown on said crystal, a V-group element is made insufficient on the upper part, because the V-group element, for example, is pulled nearer to the shoulder part, thereby enabling to reduce the growing speed at this part and to thin off the grown layer on the upper part.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体発光素子の構造に関し、特に、高出力
化等に対応することのできる半導体発光素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a semiconductor light emitting device, and more particularly to a semiconductor light emitting device that can accommodate higher output.

[従来の技術とその問題点] 例えば半導体レーザの高出力化を図るための手法の一つ
として電流励起領域であり、レーザ光の発光に係わる活
性層厚を薄くすることにより、この活性層14で発光す
る光をこの活性層を挾むようにして設けられたクラッド
層へしみ出させる事で活性層内の光密度を減少きせる構
造が考えられる。この構造を実現するための手段として
第2図で示したように、基板ll上に段差部12(メサ
部)を設けることにより、このメサ肩部上へ下部クラッ
ド層13及び活性層14積層する工程において■族元素
がメサ肩部へうばわれメサ上部の成長速度か鈍化する現
象を利用するものが知られている。15は上部クラッド
層、16はキャップ層、I7はZn拡散層である。しか
しながら、この構造ではV族元素を引き寄せる効果が口
型ガリウム・アルミニウム・砒素(GaA(!As)ク
ラッド層13の成長時で生じこのクラッド層13の段差
上部において薄層化するとともに、ノンドープガリウム
・アルミニウム・砒素(GaACAs)活性層14の成
長時には肩部の傾斜が緩やかになっており、段差上部に
おける薄層化の効果は期待できなくなるといった欠点が
あった。
[Prior art and its problems] For example, one of the methods for increasing the output power of a semiconductor laser is a current excitation region, and by reducing the thickness of the active layer involved in laser light emission, the active layer 14 A structure is conceivable in which the light density within the active layer is reduced by allowing the light emitted by the active layer to seep into a cladding layer provided to sandwich the active layer. As a means for realizing this structure, as shown in FIG. 2, a step portion 12 (mesa portion) is provided on the substrate ll, and a lower cladding layer 13 and an active layer 14 are laminated on this mesa shoulder. There is a known method that takes advantage of the phenomenon in which group III elements are carried away to the shoulders of the mesa, slowing down the growth rate at the top of the mesa. 15 is an upper cladding layer, 16 is a cap layer, and I7 is a Zn diffusion layer. However, in this structure, the effect of attracting group V elements occurs during the growth of the mouth-shaped gallium-aluminum-arsenic (GaA (!As)) cladding layer 13, and the layer becomes thinner at the top of the step of the cladding layer 13. When the aluminum-arsenic (GaACAs) active layer 14 is grown, the slope of the shoulder portion becomes gentle, and there is a drawback that the effect of thinning the layer at the top of the step cannot be expected.

[発明の目的] 本発明は、上述した問題点をなくすためになされたもの
であり、信頼性にすぐれ高出力化に対応することのでき
る半導体発光素子を提供することを目的とする。
[Object of the Invention] The present invention has been made in order to eliminate the above-mentioned problems, and an object of the present invention is to provide a semiconductor light emitting device that has excellent reliability and can handle high output.

[発明の構成] この発明の半導体発光素子は段差を有する半導体基板上
に液相エピタキシャル成長法により順次成長層を積層す
ることにより形成される半導体発光素子において、前記
半導体基板の段差2段以上の連続した段差を有すること
を特徴とする。
[Structure of the Invention] A semiconductor light emitting device of the present invention is a semiconductor light emitting device formed by sequentially stacking growth layers on a semiconductor substrate having steps by a liquid phase epitaxial growth method, wherein the semiconductor substrate has two or more consecutive steps. It is characterized by having a step.

[発明の原理] 上記目的を達成するために、本発明では基板上に形成さ
れる段差(メサ部)が2段以上の連続した階段状となる
ように構成されている。このような基板結晶上へエピタ
キシャル成長により半導体層を積層すれば、面方位によ
り成長速度が異なるため、第1成長層は段差に沿うよう
に成長する。このため第1層の成長が終了した時点で成
長層上部の形状は基板に形成された段差の形状を良く残
しており肩部の傾斜は急峻である。従ってこの結晶上へ
第2成長層を成長させた場合肩部へ例えばV族元素が引
き寄せられるため上部においてV族元素が不足するよう
になりこの部分において成長速度が城少する。このため
上部で成長層が薄層化するというメサ構造の特徴が十分
に実現されることになる。基板に形成する段差の段数に
より第1成長層と第2成長層の層厚を制御することが可
能である。
[Principle of the Invention] In order to achieve the above object, the present invention is configured such that the step (mesa portion) formed on the substrate has a continuous step-like shape of two or more steps. When a semiconductor layer is laminated by epitaxial growth on such a substrate crystal, the first growth layer grows along the step because the growth rate differs depending on the plane orientation. For this reason, when the growth of the first layer is completed, the shape of the upper part of the grown layer clearly retains the shape of the step formed on the substrate, and the slope of the shoulder portion is steep. Therefore, when a second growth layer is grown on this crystal, group V elements, for example, are attracted to the shoulder portion, resulting in a shortage of group V elements in the upper portion, and the growth rate slows down in this portion. Therefore, the characteristic of the mesa structure that the growth layer becomes thinner in the upper part can be fully realized. It is possible to control the layer thicknesses of the first growth layer and the second growth layer by controlling the number of steps formed on the substrate.

[実施例] 以下本発明のI実施例を図面に基づいて説明する。[Example] Embodiment I of the present invention will be described below based on the drawings.

第1図(a)〜(e)は本発明を適用したダブルへテロ
構造の半導体レーザの製作工程を示したものである。n
型ガリウム・砒素(GaAs)基板Iの(100)面に
は斜辺が4個の段差を有するメサ部2が形成されており
、その斜辺には(111)面が現れている(第1図(a
))。このような基板lに周知の液相エピタキシャル成
長の手法を用いn型ガリウム・アルミニウム・砒素(G
aAQAs)クラッド層4aを成長させる。この時、面
方位により成長速度に差があり、(111)面における
成長速度は(100)面におけるそれより大きいために
、この部分における成長層4Cは階段状段差部3に沿っ
た形状となり、大きな傾きを有することになる(第1図
(b))。次にこのクラッド層よりアルミニウム(Aの
混晶比の小さなノンドープガリウム・アルミニウム・砒
素(GaA12As)活性層5aを成長する。この時融
液中のV族元素である砒素(As)はメサ肩部5cに引
き寄せられメサ上部5bで砒素(As)の濃度が希薄に
なるiその結果メサ上部5bで成長速度が遅くなり薄層
の活性層が形成される(第1図(C))。しかる後n型
ガリウム・アルミニウム・砒素(GaAσAs)クラッ
ド層6(第1図(d))、 n型ガリウム・砒素(Ga
As)キャップ層7を順次成長する。モしてメサ部の上
方よりp型ガリウム・アルミニウム・砒素(GaA12
As)クラッド層6へ到達するようにZn拡散領域8を
形成する(第1図(e))。このようにして製作された
半導体レーザは必要な層厚をもつクラッド層4bと十分
に薄層化した活性層5bを有するので高出力化に適した
構造となる。尚、このような階段状段差部は通常の化学
エツチング性はもちろんRI BE(リアクティブイオ
ンビームエツチング)等の周知の手法により形成しうろ
ことは明らかである。
FIGS. 1(a) to 1(e) show the manufacturing process of a double heterostructure semiconductor laser to which the present invention is applied. n
A mesa portion 2 having four steps on the oblique side is formed on the (100) plane of the type gallium arsenide (GaAs) substrate I, and the (111) plane appears on the oblique side (see Fig. 1). a
)). Using a well-known liquid phase epitaxial growth method on such a substrate l, n-type gallium aluminum arsenic (G
aAQAs) Grow the cladding layer 4a. At this time, the growth rate differs depending on the plane orientation, and the growth rate on the (111) plane is higher than that on the (100) plane, so the growth layer 4C in this part has a shape that follows the stepped portion 3. This results in a large slope (Fig. 1(b)). Next, a non-doped gallium-aluminum-arsenic (GaA12As) active layer 5a of aluminum (with a small mixed crystal ratio of A) is grown from this cladding layer. 5c, the concentration of arsenic (As) becomes dilute in the mesa upper part 5b.As a result, the growth rate slows down in the mesa upper part 5b and a thin active layer is formed (Fig. 1 (C)). n-type gallium-aluminum-arsenic (GaAσAs) cladding layer 6 (Fig. 1(d));
As) Cap layer 7 is grown sequentially. The p-type gallium, aluminum, arsenic (GaA12
As) A Zn diffusion region 8 is formed so as to reach the cladding layer 6 (FIG. 1(e)). The semiconductor laser manufactured in this manner has a cladding layer 4b having a necessary layer thickness and an active layer 5b which is sufficiently thinned, so that it has a structure suitable for high output. It is clear that such a stepped portion can be formed not only by ordinary chemical etching but also by a well-known method such as RIBE (reactive ion beam etching).

本実施例においては段差部は4段であったが下部クラッ
ド層と活性層の層厚を所定のもの制御するのは段数を変
更することにより可能であることは明らかである。
In this embodiment, there were four steps, but it is clear that the thicknesses of the lower cladding layer and the active layer can be controlled to a predetermined value by changing the number of steps.

また、ここではガリウム・アルミニウム・砒素(GaA
&As)系の半導体レーザについて説明したが本発明は
基板上に積層構造を有する半導体素子においてその構成
材料を問わず広く適用できることは言うまでもない。
In addition, gallium, aluminum, arsenic (GaA
Although a &As) type semiconductor laser has been described, it goes without saying that the present invention can be widely applied to semiconductor devices having a stacked structure on a substrate, regardless of the constituent materials thereof.

[発明の効果] 以上述べたように本発明によれば、段差を有する基板上
に液相エピタキシャル成長法により半導体層を順次積層
する工程において、第1層厚を十分に保ちかつ第2層厚
を薄くするようにして形成したので半導体素子の再現性
、信頼性が大幅に向上し、高出力化の半導体発光素子を
製造することができる。
[Effects of the Invention] As described above, according to the present invention, in the step of sequentially stacking semiconductor layers by liquid phase epitaxial growth on a substrate having steps, the first layer thickness can be maintained sufficiently and the second layer thickness can be increased. Since it is formed to be thin, the reproducibility and reliability of the semiconductor device are greatly improved, and a semiconductor light emitting device with high output can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e)は本発明を適用した半導体レーザ
の製作工程を示す断面図、第2図は従来の構造による半
導体レーザの断面図である。 l・・・基板、 2・・・メサ部、 3・・・階段状段
差部、4、下部クラッド層、  5・・活性層6・・・
上部クラッド層、  7・・・キャップ層、8・・・Z
n拡散層。 特許出願人  シャープ株式会社 代理人弁理士 前出 葆 外2名 1G2図
FIGS. 1(a) to 1(e) are cross-sectional views showing the manufacturing process of a semiconductor laser to which the present invention is applied, and FIG. 2 is a cross-sectional view of a semiconductor laser having a conventional structure. 1...Substrate, 2...Mesa portion, 3...Step-like stepped portion, 4, Lower cladding layer, 5...Active layer 6...
Upper cladding layer, 7... Cap layer, 8... Z
n diffusion layer. Patent Applicant: Sharp Co., Ltd. Representative Patent Attorney: Mr. Aoki and two others 1G2

Claims (1)

【特許請求の範囲】[Claims] (1)段差を有する半導体基板上に液相エピタキシャル
成長法により順次成長層を積層することにより形成され
る半導体発光素子において、前記半導体基板の段差2段
以上の連続した段差を有することを特徴とする半導体発
光素子。
(1) A semiconductor light emitting device formed by sequentially stacking growth layers by liquid phase epitaxial growth on a semiconductor substrate having steps, characterized in that the semiconductor substrate has two or more continuous steps. Semiconductor light emitting device.
JP14005085A 1985-06-25 1985-06-25 Semiconductor light-emitting element Pending JPS61296786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14005085A JPS61296786A (en) 1985-06-25 1985-06-25 Semiconductor light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14005085A JPS61296786A (en) 1985-06-25 1985-06-25 Semiconductor light-emitting element

Publications (1)

Publication Number Publication Date
JPS61296786A true JPS61296786A (en) 1986-12-27

Family

ID=15259818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14005085A Pending JPS61296786A (en) 1985-06-25 1985-06-25 Semiconductor light-emitting element

Country Status (1)

Country Link
JP (1) JPS61296786A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5037776A (en) * 1989-03-10 1991-08-06 International Business Machines Corporation Method for the epitaxial growth of a semiconductor structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5037776A (en) * 1989-03-10 1991-08-06 International Business Machines Corporation Method for the epitaxial growth of a semiconductor structure

Similar Documents

Publication Publication Date Title
US5739552A (en) Semiconductor light emitting diode producing visible light
US5359209A (en) Efficient light emitting diodes with modified window layers
US6433364B2 (en) Semiconductor light emitting device capable of increasing light emitting efficiency
JP4121551B2 (en) Light emitting device manufacturing method and light emitting device
JPH07176788A (en) Light emitting diode
JPH04352374A (en) Semiconductor light-emitting device
JPH08293623A (en) Method of manufacturing light emitting diode
US6465812B1 (en) Semiconductor light emitting device
JP3459003B2 (en) Semiconductor device and manufacturing method thereof
JPS61296786A (en) Semiconductor light-emitting element
JP2001085742A (en) Semiconductor light emitting element and its manufacturing method
JPH0818100A (en) Compound semiconductor light emitting diode
JP2559373B2 (en) Method for manufacturing semiconductor laser device
JPH0738147A (en) Semiconductor light emitting device
JPH0665237B2 (en) Method for manufacturing two-dimensional quantization element
JP2680762B2 (en) Semiconductor light emitting device
JP2003133584A (en) Semiconductor light emitting element
JPH02181980A (en) Light-emitting diode
KR940000687B1 (en) Led and manufacturing method thereof
JP2564334B2 (en) Semiconductor laser device
JP3015909B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPS6324692A (en) Manufacture of multifunction semiconductor device
JPH06291364A (en) Semiconductor light emitting device and its manufacturing method
JPH0634409B2 (en) Light emitting diode
JP2621850B2 (en) Light emitting diode