JPS61295374A - Formation apparatus for accumulated film by glow discharge decomposition method - Google Patents

Formation apparatus for accumulated film by glow discharge decomposition method

Info

Publication number
JPS61295374A
JPS61295374A JP13394385A JP13394385A JPS61295374A JP S61295374 A JPS61295374 A JP S61295374A JP 13394385 A JP13394385 A JP 13394385A JP 13394385 A JP13394385 A JP 13394385A JP S61295374 A JPS61295374 A JP S61295374A
Authority
JP
Japan
Prior art keywords
cylindrical
deposited film
anode electrode
electrode
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13394385A
Other languages
Japanese (ja)
Inventor
Yasutomo Fujiyama
藤山 靖朋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP13394385A priority Critical patent/JPS61295374A/en
Publication of JPS61295374A publication Critical patent/JPS61295374A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5093Coaxial electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form stably an accumulated film which is uniform and homogeneous by providing a coaxial cylindrical anodic electrode between a cylindrical cathodic electrode and a coaxial cylindrical base material and separating a reaction chamber into a plasma discharge space and a film formation space. CONSTITUTION:A coaxial cylindrical anode electrode 11 is provided between a cylindrical base body 6 and a cathodic electrode 3. When impressing the high frequency voltage between the cathodic electrode 3 and the anodic electrode 11, the plasma discharge is caused in a plasma discharge space C between both electrodes 3, 11. The introduced gaseous silane is decomposed in the plasma discharge space C to produce an ionic particle and a neutral radical particle or the like. Among the produced ionoic particles, a negative ionic particle is flown to the anodic electrode 11 side and a positive ionic particle is flown to the cathodic electrode 3 side. The negative ionic particle and electron are caught on the anodic electrode 11 and only the neutral particle is introduced into a film formation space D through a drawing-out port 11a. The introduced particle flows toward and exhaust port 9 and a semiconductor film is accumulated on the surface of a base material 6.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、基体上に堆積膜、とりわけ機能性膜、特に半
導体ディバイス、電子写真用感光ディバイス、画像入力
用ラインセンサー、撮像ディバイス、光起電力素子等に
用いるアモルファス半導体膜を形成する装置に関する。
Detailed Description of the Invention [Technical Field to which the Invention Pertains] The present invention relates to a film deposited on a substrate, particularly a functional film, particularly a semiconductor device, a photosensitive device for electrophotography, a line sensor for image input, an imaging device, and a photosensitive device. The present invention relates to an apparatus for forming an amorphous semiconductor film used in power devices and the like.

〔従来技術の説明〕[Description of prior art]

従来、半導体ディバイス、電子写真用感光ディバイス、
画像入力用ラインセンサー、撮像ディバイス、光起電力
素子、その他各種のエレクトロニクス素子、光学素子等
に用いる素子部材として、例えばアモルファスシリコン
(以下、ra−8iJと記す。)、水素化アモルファス
シリコン(以下、ra−3i:HJと記す。)等のアモ
ルファス半導体等の堆積膜が提案され、その中のいくつ
かは実用に付されている。そして、こうした堆積膜は、
グロー放電分解法、即ち、原料ガスを直流又は高周波グ
ロー放電によって分解し、ガラス、石英、ステンレスな
どの基板上に薄膜状の堆積膜を形成する方法により形成
されることが知られており、そのための装置も各種提案
されている。
Conventionally, semiconductor devices, photosensitive devices for electrophotography,
For example, amorphous silicon (hereinafter referred to as RA-8iJ), hydrogenated amorphous silicon (hereinafter referred to as Deposited films of amorphous semiconductors such as ra-3i (referred to as HJ) have been proposed, and some of them have been put into practical use. And, these deposited films are
It is known that it is formed by the glow discharge decomposition method, that is, a method in which raw material gas is decomposed by direct current or high-frequency glow discharge to form a thin deposited film on a substrate such as glass, quartz, or stainless steel. Various devices have also been proposed.

こうした従来のグロー放電分解法による堆積膜の形成装
置として1例えば、第2図に示すごとき円筒状基体上に
効率よく堆積膜を形成することができる堆積膜の形成装
置が知られている。
As an example of a conventional apparatus for forming a deposited film using the glow discharge decomposition method, there is a known apparatus for forming a deposited film, as shown in FIG. 2, which can efficiently form a deposited film on a cylindrical substrate.

第2図は従来の円筒状基体への堆積膜形成のための装置
の1例を示す断面略図である。
FIG. 2 is a schematic cross-sectional view showing an example of a conventional apparatus for forming a deposited film on a cylindrical substrate.

図中、1は円筒状反応容器であり、土壁1周囲壁、およ
び底壁により密封され反応室を形成しておシ、内部には
同軸円筒状基体6を設置しである。反応容器1の周囲壁
の上下端部に絶縁リング2a 、 2bを配設するとと
もに、上、下絶縁リング2a 、 2bの間を二重壁構
造のカソード電極3とする。即ち、二重壁構造とした壁
のうち。
In the figure, 1 is a cylindrical reaction vessel, which is sealed by a soil wall 1 surrounding wall and a bottom wall to form a reaction chamber, and a coaxial cylindrical base 6 is installed inside. Insulating rings 2a and 2b are disposed at the upper and lower ends of the peripheral wall of the reaction vessel 1, and a double-walled cathode electrode 3 is provided between the upper and lower insulating rings 2a and 2b. That is, among the walls that have a double wall structure.

外側の壁6aは、電気的に接地された高周波電源4に導
線を介して接続する。内側壁3bは外側壁3aと電気的
に接続していて、壁面には原料ガスを反応容器1内に吹
き出すためのガス放出口6Cを複数設ける。5は原料ガ
ス供給管であシ、カソード電極3の外側壁6aを貫通し
て設け、一端は外側壁3aと内側壁3bとで形成される
空間Aに開口し、他端は原料ガス供給源(図示せず)に
連通している。円筒状基体6は、アルミニウム等の金属
でできておシ、電気的に接地してアノード電極となり、
前記カソード電極5と円筒状基体(アノード電極)6の
間に高周波電圧を印加してプラズマ放電を生起せしめる
。円軸円筒状基体6の内部には、基体6を堆積膜形成に
最適な温度にまで加熱するためのヒーター7を内蔵せし
める。8は円筒状支持体を回転させるためのモーターで
ある。9は反応容器1の底壁に設けられた排気口であり
1反応容器内部を真空排気するために、バルブ手段10
を備えた排気管を介して排気装置(図示せず)に接続す
る。
The outer wall 6a is connected to an electrically grounded high frequency power source 4 via a conductive wire. The inner wall 3b is electrically connected to the outer wall 3a, and a plurality of gas discharge ports 6C for blowing out raw material gas into the reaction vessel 1 are provided on the wall surface. Reference numeral 5 denotes a raw material gas supply pipe, which is provided to penetrate the outer wall 6a of the cathode electrode 3, one end of which opens into the space A formed by the outer wall 3a and the inner wall 3b, and the other end of which is connected to the raw material gas supply source. (not shown). The cylindrical base 6 is made of metal such as aluminum, and is electrically grounded to serve as an anode electrode.
A high frequency voltage is applied between the cathode electrode 5 and the cylindrical substrate (anode electrode) 6 to generate plasma discharge. A heater 7 is built into the cylindrical substrate 6 to heat the substrate 6 to an optimum temperature for forming a deposited film. 8 is a motor for rotating the cylindrical support. Reference numeral 9 denotes an exhaust port provided on the bottom wall of the reaction vessel 1, and a valve means 10 is provided to evacuate the inside of the reaction vessel 1.
It is connected to an exhaust system (not shown) via an exhaust pipe equipped with an exhaust pipe.

上述のような堆積膜形成装置を用いて1円筒状基体乙の
表面にアモルファス半導体膜を堆積するには、以下のよ
うにして行なわれる。
An amorphous semiconductor film is deposited on the surface of a cylindrical substrate B using the above-described deposited film forming apparatus as follows.

即ち、排気装置(図示せず)により反応容器1内一部の
ガスを排気口9から真空排気すると共に1円筒状基体6
をヒーター7により200〜300℃に加熱、保持し、
モーター8を駆動して回転せしめる。次に原料ガス供給
管5から、例えばアモルファスシリコン堆積膜を形成す
る場合であればシランガス等の原料ガスを空間A内に導
入する。空間A内に導入された原料ガスは、カソード電
極の内側壁3bの壁面に設けた多数のガス放出口3Cを
通って1カソード内壁3bと円筒状基体(アノード電極
)6とに囲まれた反応空間Bに放出される。
That is, a part of the gas inside the reaction vessel 1 is evacuated from the exhaust port 9 by an exhaust device (not shown), and the cylindrical substrate 6 is
is heated to and maintained at 200 to 300°C by heater 7,
The motor 8 is driven and rotated. Next, a source gas such as silane gas is introduced into the space A from the source gas supply pipe 5, for example, in the case of forming an amorphous silicon deposited film. The raw material gas introduced into the space A passes through a large number of gas discharge ports 3C provided on the wall surface of the inner wall 3b of the cathode electrode, and passes through the reaction chamber surrounded by the inner cathode wall 3b and the cylindrical substrate (anode electrode) 6. It is released into space B.

次に1周波数13.56M)(zの高周波電圧を電源4
からカソード電極3に印加すると、カソード電極内側壁
3bから電子が円筒状基体(アノード電極)乙に向けて
放出される。放出された電子は、シランガス等の分子と
衝突し、ガス分子を分解し、イオン粒子や中性ラジカル
粒子等を生成する。円筒状基体6表面には、これらの電
子。
Next, one frequency 13.56M) (z high frequency voltage is
When an electric current is applied to the cathode electrode 3, electrons are emitted from the inner wall 3b of the cathode electrode toward the cylindrical substrate (anode electrode) B. The emitted electrons collide with molecules such as silane gas, decompose the gas molecules, and generate ion particles, neutral radical particles, and the like. These electrons are on the surface of the cylindrical substrate 6.

イオン粒子及び中性ラジカル粒子等が飛来するが、アモ
ルファス半導体膜の堆積に寄与するものは主として中性
ラジカル粒子であシ、これらの中性ラジカル粒子間また
は中性ラジカル粒子と原料ガスの間の、あるいは中性ラ
ジカル粒子と基体表面の間の複雑な反応の結果、基体6
上に堆積膜が形成されると考えられる。一方、電子やイ
オン粒子は形成中おるいは形成後の堆積膜へ衝突し、ダ
ンプリングボンド、ボイド、 SiH2結合等のアモル
ファス半導体膜には好ましくない構造欠陥の密度を増大
させる原因となることが判明している。
Although ion particles and neutral radical particles fly in, it is mainly the neutral radical particles that contribute to the deposition of the amorphous semiconductor film. , or as a result of a complex reaction between neutral radical particles and the substrate surface, the substrate 6
It is considered that a deposited film is formed thereon. On the other hand, electrons and ion particles collide with the deposited film during or after formation, which can increase the density of structural defects that are undesirable for amorphous semiconductor films, such as dumping bonds, voids, and SiH2 bonds. It's clear.

即ち、従来のグロー放電分解法による堆積膜の形成装置
においては、内部に設置した基体を直接プラズマ雰囲気
に曝らす構造となっているため、形成される堆積膜の諸
特性を低下せしめることが多々あり、高品質で均一かつ
均質な。
In other words, in the conventional apparatus for forming a deposited film using the glow discharge decomposition method, the structure is such that the substrate installed inside is directly exposed to a plasma atmosphere, so there is no risk of degrading the various properties of the deposited film that is formed. Many, high quality, uniform and homogeneous.

優れた所望の特性を有する堆積膜を効率的にしかも常時
安定して得ることは困難である。
It is difficult to efficiently and always stably obtain a deposited film having excellent desired properties.

また、堆積膜の形成に影響を与えるものとして、原料ガ
ス濃度、ガス圧、ガス流量、投入パワー等があるが、従
来の装置においては、基体6表面上に形成される堆積膜
の膜厚分布を均一とするために、原料ガス放出口6Cの
分布を調整していた。しかし、ガス分解過程においては
、プラズマ強度分布が、カソード電極形状、電位降下、
あるいはカソード電極3と円筒状基体(アノード電極)
6の間隔等の影響を強く受けて不均一となるため、ガス
放出口5Cの分布のみの調整だけでは、膜厚分布を均一
にすることは困難である。
In addition, although there are factors that influence the formation of the deposited film, such as source gas concentration, gas pressure, gas flow rate, input power, etc., in the conventional apparatus, the thickness distribution of the deposited film formed on the surface of the base 6 is In order to make it uniform, the distribution of the raw material gas discharge ports 6C was adjusted. However, in the gas decomposition process, the plasma intensity distribution depends on the cathode shape, potential drop, and
Or the cathode electrode 3 and the cylindrical substrate (anode electrode)
Since the film thickness distribution is strongly affected by the spacing between the gas discharge ports 5C and the like, it is difficult to make the film thickness distribution uniform by adjusting only the distribution of the gas discharge ports 5C.

さらにまた、プラズマで生成された正イオン粒子により
カソード電極材料がスパッタされ1円筒状基体6の表面
に飛来することにより1堆積膜中に不純物として混入し
、堆積膜の諸特性を低下させる原因の1つとなるという
問題もある。
Furthermore, the cathode electrode material is sputtered by positive ion particles generated by the plasma and flies onto the surface of the cylindrical substrate 6, which causes it to be mixed into the deposited film as impurities, which causes deterioration of various properties of the deposited film. There is also the problem of becoming one.

〔発明の目的〕[Purpose of the invention]

本発明は、上述のごとき従来の装置における諸問題を克
服して、半導体ディバイス、電子写真用感光ディバイス
、画像入力用ラインセンサー、撮像ディバイス、光起電
力素子、その他の各種エレクトロニクス素子、光学素子
等に用いる素子部材としての堆積膜を、グロー放電分解
法により、定常的に安定して形成しうる装置を提供する
ことを目的とするものである。
The present invention overcomes the problems in conventional devices as described above, and provides semiconductor devices, photosensitive devices for electrophotography, line sensors for image input, imaging devices, photovoltaic devices, various other electronic devices, optical devices, etc. It is an object of the present invention to provide an apparatus capable of regularly and stably forming a deposited film as an element member used in a device using a glow discharge decomposition method.

即ち1本発明の主たる目的は、プラズマ衝撃による堆積
膜の損傷をなりシ、均一かつ均質にして、良質の、優れ
た所望の特性を有する堆積膜を定常的に安定して形成し
うるグロー放電分解法による堆積膜の形成装置を提供す
ることにある。
That is, one main object of the present invention is to provide a glow discharge that can eliminate damage to a deposited film caused by plasma bombardment, make it uniform and homogeneous, and constantly and stably form a deposited film of good quality and excellent desired characteristics. An object of the present invention is to provide an apparatus for forming a deposited film using a decomposition method.

また1本発明の他の目的は、形成される堆積膜の膜厚及
び膜質の制御を容易に行なうことができ、膜厚分布が均
一でかつ膜質が均一な堆積膜を形成することができるグ
ロー放電分解法による堆積膜の形成装置を提供すること
にある。
Another object of the present invention is to provide a glow that can easily control the thickness and quality of the deposited film to be formed, and can form a deposited film with a uniform thickness distribution and uniform quality. An object of the present invention is to provide an apparatus for forming a deposited film using a discharge decomposition method.

〔発明の構成〕[Structure of the invention]

本発明は、上述の目的を達成しうるグロー放電分解法に
よる堆積膜の形成装置を提供するものである。
The present invention provides an apparatus for forming a deposited film using a glow discharge decomposition method that can achieve the above-mentioned objects.

本発明者は、従来の装置における前述の諸問題を克服す
べく、鋭意研究を続けたところ、基体が直接プラズマ雰
囲気に曝らされることがないようにするためには、従来
同じであったプラズマ放電空間と成膜空間を分離させれ
ばよいという知見を得た。さらに研究を重ねたところ。
In order to overcome the above-mentioned problems in the conventional apparatus, the present inventor continued intensive research and found that in order to prevent the substrate from being directly exposed to the plasma atmosphere, it was found that We obtained the knowledge that it is sufficient to separate the plasma discharge space and the film formation space. After further research.

円筒状カソード電極3と同軸円筒状基体6の間に、同軸
円筒状アノード電極を設置することにより1反応室をプ
ラズマ放電空間と成膜空間とに分離せしめ、該円筒状ア
ノード電極に、プラズマ放電生起のための対向電極とし
ての機能の他に、基体6がプラズマ雰囲気に直接曝され
ることを防ぐためのプラズマ遮蔽板としての機能を保有
させればよいという知見を得た。
By installing a coaxial cylindrical anode electrode between the cylindrical cathode electrode 3 and the coaxial cylindrical substrate 6, one reaction chamber is separated into a plasma discharge space and a film forming space, and the cylindrical anode electrode is connected to the plasma discharge It has been found that in addition to the function as a counter electrode for plasma generation, it is sufficient to have a function as a plasma shielding plate to prevent the base 6 from being directly exposed to a plasma atmosphere.

本発明の装置はこの知見に基づいて完成せしめたもので
あり、上壁1側壁及び下壁で包囲密封形成されてなる反
応室を備えた円筒状反応容器と1反応室に原料ガスを導
入する手段と1反応室内を真空排気する手段とを有し1
反応容器内に設置された同軸円筒状基体上にグロー放電
分解法により堆積膜を形成する装置において、反応容器
の側壁を兼ねる円筒状カソード電極と。
The apparatus of the present invention was completed based on this knowledge, and includes a cylindrical reaction vessel equipped with a reaction chamber surrounded and sealed by an upper wall, a side wall, and a lower wall, and a raw material gas introduced into the reaction chamber. and a means for evacuating the inside of the reaction chamber.
In an apparatus for forming a deposited film by a glow discharge decomposition method on a coaxial cylindrical substrate placed in a reaction vessel, a cylindrical cathode electrode also serves as a side wall of the reaction vessel.

該円筒状カソード電極の内部に円筒状アノード電極を同
軸状に配置するとともに1該アノード電極の内部に前記
円筒状基体を同軸状に配置したことを特徴とするもので
あシ、さらに好ましくは前記円筒状カソード電極と前記
円筒状アノード電極とをグロー放電を生起しうる間隔に
保ってプラズマ放電空間を形成せしめ、かつ、該円筒状
アノード電極の壁面にグロー放電分解により生成したイ
オン粒子および電子の通過を阻止し、中性ラジカル粒子
および未分解反応ガスのみを選択的に通過せしめる形状
とした複数の開口を設けたことを特徴とするものである
A cylindrical anode electrode is coaxially arranged inside the cylindrical cathode electrode, and the cylindrical base body is coaxially arranged inside the anode electrode. The cylindrical cathode electrode and the cylindrical anode electrode are kept at a distance that allows glow discharge to occur, thereby forming a plasma discharge space, and the wall surface of the cylindrical anode electrode contains ion particles and electrons generated by glow discharge decomposition. It is characterized by having a plurality of openings shaped to block passage of the gas and selectively allow only neutral radical particles and undecomposed reaction gas to pass through.

本発明の装置における同軸円筒状アノード電極は、上述
のように円筒状基体が電子やイオン粒子による衝撃をう
けることを防ぐだめの遮蔽板としての機能を有する他、
プラズマ中の正イオン粒子がカソード電極表面をスパッ
タすることにより飛び出した電極材料が円筒状基体表面
に到達するのを妨げる遮蔽板としての機能をも有するも
のである。さらにまた、円筒状アノード電極に開口した
中性ラジカル粒子引き出し口の形状6分布を調整するこ
とにより、膜の堆積に寄与する中性ラジカル粒子の濃度
分布を調整することができ、形成される堆積膜の膜厚分
布を制御することができるとともに、従来の装置のよう
にプラズマ強度分布の変化による中性ラジカル粒子濃度
変化の影響をうけにくくなシ。
The coaxial cylindrical anode electrode in the device of the present invention has a function as a shielding plate to prevent the cylindrical substrate from being bombarded by electrons and ion particles as described above.
It also has the function of a shielding plate that prevents electrode material ejected by sputtering of positive ion particles in plasma from reaching the surface of the cylindrical substrate. Furthermore, by adjusting the shape 6 distribution of the neutral radical particle outlet opened in the cylindrical anode electrode, it is possible to adjust the concentration distribution of neutral radical particles that contribute to film deposition, and the resulting deposit In addition to being able to control the film thickness distribution, it is not susceptible to changes in neutral radical particle concentration due to changes in plasma intensity distribution, unlike conventional devices.

その結果、膜質が均質で、膜厚分布の均一な堆積膜を再
現性よく形成することができるものである。
As a result, a deposited film with uniform film quality and uniform thickness distribution can be formed with good reproducibility.

本発明の前記構成の、グロー放電分解法による堆積膜の
形成装置を図面の実施例により、より詳しく説明するが
、本発明はこれによって限定されるものではない。第1
図は1本発明の至適な1例の装置の断面略図である。
DETAILED DESCRIPTION OF THE INVENTION The apparatus for forming a deposited film by the glow discharge decomposition method having the above-mentioned structure of the present invention will be explained in more detail with reference to the embodiments of the drawings, but the present invention is not limited thereto. 1st
The figure is a schematic cross-sectional view of an apparatus according to one preferred embodiment of the present invention.

図中、前述の従来の装置と同一の機能を有する部分につ
いては、第2図と同一の記号を用いた。即ち、1は反応
容器、  2a、2bは絶縁リング。
In the figure, the same symbols as in FIG. 2 are used for parts having the same functions as those of the conventional device described above. That is, 1 is a reaction vessel, 2a and 2b are insulating rings.

3はカソード電極、 3aはその外側壁、 3bはその
内側壁、 3cは3bに設けられたガス放出口% 4は
高周波電源、5は原料ガス供給管、6は同軸円筒状基体
、7はヒーター、8はモーター、9は排気口、10はバ
ルブを示している。11は同様に電気的に接地されてい
る。カソード電極5と同軸状アノード電極11の間に高
周波電力を印加した場合、カソード電極内側壁3bとア
ノード電極11の間に形成される空間Cでプラズマ放電
が生起される。アノード電極11は、プラズマ放電が、
アノード電極11と円筒状基体乙の間に形成される成膜
空間りに漏れることがないようにプラズマ遮蔽板として
機能するとともに、プラズマ放電空間Cで生成された中
性粒子を成膜空間り内に導入しうるように、アノードが
好ましい。該アノード電極11を円筒状基体6とカソー
ド電極内側壁3bの間に設けることにより、プラズマ放
電空間Cで生成された電子や負イオン粒子はアノード電
極11に捕獲され。
3 is a cathode electrode, 3a is its outer wall, 3b is its inner wall, 3c is a gas discharge port provided in 3b, 4 is a high frequency power source, 5 is a raw material gas supply pipe, 6 is a coaxial cylindrical base, 7 is a heater , 8 is a motor, 9 is an exhaust port, and 10 is a valve. 11 is similarly electrically grounded. When high frequency power is applied between the cathode electrode 5 and the coaxial anode electrode 11, plasma discharge is generated in the space C formed between the cathode electrode inner wall 3b and the anode electrode 11. The anode electrode 11 has plasma discharge,
It functions as a plasma shielding plate to prevent leakage into the film forming space formed between the anode electrode 11 and the cylindrical substrate B, and also directs neutral particles generated in the plasma discharge space C into the film forming space. An anode is preferred so that it can be introduced into the By providing the anode electrode 11 between the cylindrical substrate 6 and the cathode electrode inner wall 3b, electrons and negative ion particles generated in the plasma discharge space C are captured by the anode electrode 11.

中性ラジカル粒子や未−分一解ガス等の中性粒子のみを
成膜空間り内に導入することが可能となる。
It becomes possible to introduce only neutral particles such as neutral radical particles and undecomposed gas into the film forming space.

なお、アノード電極11と円筒状基体6は電気的に接地
され、同電位に保たれているため、両者の間ではプラズ
マ放電は生起しない構造となっている。
Note that since the anode electrode 11 and the cylindrical substrate 6 are electrically grounded and maintained at the same potential, the structure is such that no plasma discharge occurs between them.

上述の本発明の装置を用いて堆積膜を形成するには次の
ようにして行なう。
A deposited film is formed using the above-described apparatus of the present invention as follows.

例えば電子写真用感光ディバイスとしてのアモルファス
シリコン(以下、ra−8iJと記す。)半導体膜を製
造する場合忙は1円筒状基体としてアルミニウムドラム
を用い、原料ガスとしてはSiH4,Si2H6等のシ
ランガス、あるいはハロゲン化シランガス等を用いる。
For example, when manufacturing an amorphous silicon (hereinafter referred to as RA-8iJ) semiconductor film as a photosensitive device for electrophotography, an aluminum drum is used as a cylindrical substrate, and a silane gas such as SiH4, Si2H6, etc. is used as a raw material gas, or Use halogenated silane gas, etc.

これらの原料ガスは一種を用いるかあるいは二種以上を
併用することもでき、 He 、 Ar等の不活性ガス
により稀釈して用いることもできる。さらに、a−8i
堆積膜中にはn型不純物、p型不純物、その他の原子を
ドーピングさせることができ、そのためには。
These raw material gases may be used alone or in combination of two or more, and may be diluted with an inert gas such as He or Ar. Furthermore, a-8i
For this purpose, the deposited film can be doped with n-type impurities, p-type impurities, and other atoms.

n型不純物原子、p型不純物原子、その他の原子を供給
しうる原料ガスを、単独で、あるいは前述の原料ガスに
混合して用いることができる。
Raw material gases capable of supplying n-type impurity atoms, p-type impurity atoms, and other atoms can be used alone or in combination with the aforementioned raw material gases.

最初にパルプ10を開いて反応容器内部のガスを真空排
気装置(図示せず)により排気口9を介して真空排気し
1反応容器内の気圧を好ましくは5 X 1Q−’To
rr以下、よシ好ましくは1×管5から、円筒状二重壁
構造のカソード電極6の内部Aに導入する。原料ガスは
カソード電極の内側壁3bに開口したガス放出口3Cか
ら、プラズマ放電空間Cに放出される。バルブ11を調
節して、ガスを導入したときの反応容器内の圧力を、好
ましくはlX10−2〜100Torr、より好ましく
はI X 10”−2〜1Torrとする。一方1円筒
状基体6であるアルミニウム製ドラムをヒーター7によ
り30〜450℃、好ましくは200〜300℃に加熱
し、モーター8を駆動して回転せしめる。
First, the pulp 10 is opened and the gas inside the reaction vessel is evacuated through the exhaust port 9 using a vacuum exhaust device (not shown) to reduce the pressure inside the reaction vessel to preferably 5 x 1Q-'To.
rr or less, preferably from the 1× tube 5 into the interior A of the cathode electrode 6 having a cylindrical double wall structure. The source gas is discharged into the plasma discharge space C from a gas discharge port 3C opened in the inner wall 3b of the cathode electrode. Adjust the valve 11 so that the pressure inside the reaction vessel when the gas is introduced is preferably 1 x 10-2 to 100 Torr, more preferably 1 x 10''-2 to 1 Torr. The aluminum drum is heated to 30 to 450°C, preferably 200 to 300°C, by the heater 7, and the motor 8 is driven to rotate it.

こうしたところで、カソード電極3とアノード電極11
との間に高周波電源4から高周波電圧を印加すると、カ
ソード電極3とアノード電極11の間のプラズマ放電空
間Cでプラズマ放電が生起される。プラズマ放電空間C
では導入されたシランガスが分解され、イオン粒子、中
性ラジカル粒子等が生成される。ここでアノード電極1
1は、カソード電極5が負の電位になっているのに対し
て、接地されて正の電位となっており、生成されたイオ
ン粒子の内の負イオン粒子と電子はアノード電極11側
へ、正イオン粒子はカソード電極3側へ飛来する。アノ
ード電極11で負イオン粒子や電子が捕獲され中性ラジ
カル粒子および未分解ガス等の中性粒子のみが、中性粒
子引き出し口11aを通って成膜空間りに導入される。
At this point, the cathode electrode 3 and the anode electrode 11
When a high frequency voltage is applied from the high frequency power supply 4 between the cathode electrode 3 and the anode electrode 11, a plasma discharge is generated in the plasma discharge space C between the cathode electrode 3 and the anode electrode 11. Plasma discharge space C
Then, the introduced silane gas is decomposed and ionic particles, neutral radical particles, etc. are generated. Here, anode electrode 1
1 is grounded and has a positive potential, whereas the cathode electrode 5 has a negative potential, and the negative ion particles and electrons among the generated ion particles go to the anode electrode 11 side. Positive ion particles fly toward the cathode electrode 3 side. Negative ion particles and electrons are captured by the anode electrode 11, and only neutral particles such as neutral radical particles and undecomposed gas are introduced into the film forming space through the neutral particle outlet 11a.

成膜空間りに導入された中性ラジカル粒子等は、ヒータ
ー7によって加熱されたアルミニウムドラム表面に沿っ
て、排気口9に向って流れ、アルミニウム基体6の表面
にa−8i半導体膜を堆積する。堆積に寄与しなかった
中性ラジカル粒子や未分解ガスは、円筒状基体乙の中心
軸方向上下端に配設された排気口9から排気装置(図示
せず)により堆積膜の形成装置外へと排気される。
The neutral radical particles introduced into the film forming space flow toward the exhaust port 9 along the surface of the aluminum drum heated by the heater 7, and deposit an A-8I semiconductor film on the surface of the aluminum substrate 6. . Neutral radical particles and undecomposed gases that did not contribute to the deposition are removed from the deposition film forming apparatus by an exhaust device (not shown) through exhaust ports 9 provided at the upper and lower ends of the cylindrical substrate B in the central axis direction. is exhausted.

〔発明の効果の概略〕[Summary of effects of the invention]

本発明の装置は1円筒状カソード電極とその内部の同軸
円筒状基体の間に、中性ラジカル粒子引き出し口を有す
る同軸円筒状アノード電極を設けたことにより、該同軸
円筒状アノード電極がプラズマ放電生起のための対向電
極としての機能を果す他に1円筒状基体が直接プラズマ
に曝されることを防ぐプラズマ遮蔽板としての機能を果
すため1円筒状基体上に堆積中の膜が電子や゛負イオン
粒子の衝撃により損傷をうけることがなくなり、構造欠
陥の密度が極めて小さく、良好な所望の特性を有する堆
積膜を、効率的に安定して得ることができる。
In the device of the present invention, a coaxial cylindrical anode electrode having a neutral radical particle extraction port is provided between a cylindrical cathode electrode and a coaxial cylindrical base inside the cathode electrode, so that the coaxial cylindrical anode electrode can discharge plasma. In addition to serving as a counter electrode for plasma generation, the film being deposited on the cylindrical substrate also functions as a plasma shielding plate to prevent the cylindrical substrate from being directly exposed to plasma. It is possible to efficiently and stably obtain a deposited film that is not damaged by the impact of negative ion particles, has an extremely low density of structural defects, and has good desired properties.

また6本発明の装置は、前記円筒状アノード電極が、プ
ラズマ中の正イオン粒子が円筒状カソード電極表面をス
パッタリングすることにより飛び出した電極材料が円筒
状基体表面に到達するのを妨げる遮蔽板としての機能を
果たすため、カソード電極材料が堆積膜中に混入して不
純物として作用し、半導体緒特性を低下させるという現
象が生じることを防止しうるものである。
Further, in the device of the present invention, the cylindrical anode electrode serves as a shielding plate that prevents electrode material ejected by positive ion particles in the plasma from sputtering on the cylindrical cathode electrode surface from reaching the cylindrical substrate surface. Therefore, it is possible to prevent the cathode electrode material from being mixed into the deposited film, acting as an impurity, and deteriorating the semiconductor properties.

さらにまた1本発明の装置は、前記円筒状アノード電極
に設けた中性ラジカル粒子引き出し口の形状および分布
を調整することにより、堆積膜の形成に寄与する中性ラ
ジカル粒子の濃度分布を調整できるものである。従って
、従来のグロー放電法による堆積膜の形成装置の場合の
ようにプラズマ強度分布の変化による中性ラジカル粒子
濃度変化の影響を受けることなく、膜厚および膜質分布
の均一な堆積膜を再現性良く、効率的に形成することが
できるものである。
Furthermore, the device of the present invention can adjust the concentration distribution of neutral radical particles contributing to the formation of a deposited film by adjusting the shape and distribution of the neutral radical particle outlet provided in the cylindrical anode electrode. It is something. Therefore, it is possible to reproducibly produce a deposited film with uniform thickness and quality distribution without being affected by changes in neutral radical particle concentration due to changes in plasma intensity distribution, unlike in the case of conventional deposition film forming equipment using the glow discharge method. It can be formed easily and efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例装置の断面略図。 第2図は、従来のグロー放電法による堆積膜の形成装置
の断面略図である。
FIG. 1 is a schematic cross-sectional view of an apparatus according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of a conventional apparatus for forming a deposited film using a glow discharge method.

Claims (7)

【特許請求の範囲】[Claims] (1)グロー放電分解法による堆積膜の形成装置におい
て、反応容器を兼ねる円筒状カソード電極の内部に、円
筒状アノード電極を同軸状に配置するとともに、該円筒
状アノード電極の内部に堆積膜を形成させるための円筒
状基体を同軸状に配置したことを特徴とする堆積膜の形
成装置。
(1) In an apparatus for forming a deposited film using a glow discharge decomposition method, a cylindrical anode electrode is arranged coaxially inside a cylindrical cathode electrode that also serves as a reaction vessel, and a deposited film is placed inside the cylindrical anode electrode. A deposited film forming apparatus characterized in that cylindrical substrates for forming a deposited film are arranged coaxially.
(2)円筒状カソード電極と円筒状アノード電極とは、
絶縁材により電気的に絶縁分離されていることを特徴と
する特許請求の範囲第(1)項目記載の堆積膜の形成装
置。
(2) What is a cylindrical cathode electrode and a cylindrical anode electrode?
The deposited film forming apparatus according to claim 1, wherein the deposited film forming apparatus is electrically isolated by an insulating material.
(3)円筒状カソード電極と円筒状アノード電極とを、
グロー放電を生起しうる間隔に保ち、プラズマ放電空間
を形成したことを特徴とする特許請求の範囲第(1)項
目記載の堆積膜の形成装置。
(3) A cylindrical cathode electrode and a cylindrical anode electrode,
The apparatus for forming a deposited film according to claim 1, wherein a plasma discharge space is formed by maintaining an interval at which a glow discharge can occur.
(4)円筒状アノード電極の壁面に、グロー放電分解に
より生成したイオン粒子および電子の通過を阻止し、中
性ラジカル粒子および未分解反応ガスのみを選択的に通
過せしめる形状とした複数の開口穴を有することを特徴
とする特許請求の範囲第(1)項目記載の堆積膜の形成
装置。
(4) Multiple opening holes in the wall of the cylindrical anode electrode are shaped to block the passage of ion particles and electrons generated by glow discharge decomposition, and selectively allow only neutral radical particles and undecomposed reaction gas to pass through. An apparatus for forming a deposited film according to claim (1), characterized in that the apparatus comprises:
(5)円筒状アノード電極と円筒状基体により形成され
る空間の中心軸上下端部に反応容器内を真空排気するた
めの排気口を配置したことを特徴とする特許請求の範囲
第(1)項目記載の堆積膜の形成装置。
(5) Claim (1) characterized in that exhaust ports for evacuating the inside of the reaction vessel are arranged at the upper and lower ends of the central axis of the space formed by the cylindrical anode electrode and the cylindrical base. An apparatus for forming a deposited film as described in the item.
(6)円筒状基体がアルミニウム等の金属からなり、電
気的に接地されていることにより、円筒状アノード電極
と同電位に保たれていることを特徴とする特許請求の範
囲第(1)項目記載の堆積膜の形成装置。
(6) Item (1) of the claim, characterized in that the cylindrical substrate is made of a metal such as aluminum and is electrically grounded so that it is maintained at the same potential as the cylindrical anode electrode. An apparatus for forming the deposited film described above.
(7)円筒状基体の内部に、それを加熱するための加熱
手段を配設したことを特徴とする特許請求の範囲第(1
)項目記載の堆積膜形成装置。
(7) Claim (1) characterized in that a heating means for heating the cylindrical base is disposed inside the cylindrical base.
) The deposited film forming apparatus described in the item.
JP13394385A 1985-06-21 1985-06-21 Formation apparatus for accumulated film by glow discharge decomposition method Pending JPS61295374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13394385A JPS61295374A (en) 1985-06-21 1985-06-21 Formation apparatus for accumulated film by glow discharge decomposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13394385A JPS61295374A (en) 1985-06-21 1985-06-21 Formation apparatus for accumulated film by glow discharge decomposition method

Publications (1)

Publication Number Publication Date
JPS61295374A true JPS61295374A (en) 1986-12-26

Family

ID=15116693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13394385A Pending JPS61295374A (en) 1985-06-21 1985-06-21 Formation apparatus for accumulated film by glow discharge decomposition method

Country Status (1)

Country Link
JP (1) JPS61295374A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007042017A1 (en) * 2005-10-14 2007-04-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process and device for the plasma treatment of objects

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007042017A1 (en) * 2005-10-14 2007-04-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process and device for the plasma treatment of objects

Similar Documents

Publication Publication Date Title
US4438188A (en) Method for producing photosensitive film for electrophotography
US5039376A (en) Method and apparatus for the plasma etching, substrate cleaning, or deposition of materials by D.C. glow discharge
JPH04198476A (en) Plasma treating device
JPH0541705B2 (en)
JPS61295374A (en) Formation apparatus for accumulated film by glow discharge decomposition method
JPH0776781A (en) Plasma vapor growth device
WO2008001809A1 (en) Microwave plasma processing device
JPS61295375A (en) Formation apparatus for accumulated film by glow discharge decomposition method
JPS62188777A (en) Bias sputtering device
JPH0892746A (en) Plasma chemical vapor deposition and device therefor
JP3310875B2 (en) Plasma CVD equipment
JPH05275350A (en) Semiconductor manufacturing equipment
JP3615919B2 (en) Plasma CVD equipment
JPS6062113A (en) Plasma cvd equipment
JPH05206071A (en) Microwave plasma processor
JP2648684B2 (en) Plasma gas phase reactor
JPH1022279A (en) Inductive coupled plasma cvd device
JPH0249386B2 (en) PURAZUMACVD SOCHI
EP0418438A1 (en) Method and apparatus for the plasma etching, substrate cleaning or deposition of materials by D.C. glow discharge
JP2649331B2 (en) Plasma processing method
JP3991446B2 (en) Thin film forming equipment
JP2670561B2 (en) Film formation method by plasma vapor phase reaction
JPH0686664B2 (en) Deposited film forming device by glow discharge method
JP2776087B2 (en) Electrophotographic photoreceptor manufacturing equipment
JPS60220927A (en) Manufacturing device for semiconductor