JPS61295272A - Manufacture of silicon carbide formed body with high pore rate - Google Patents

Manufacture of silicon carbide formed body with high pore rate

Info

Publication number
JPS61295272A
JPS61295272A JP60135347A JP13534785A JPS61295272A JP S61295272 A JPS61295272 A JP S61295272A JP 60135347 A JP60135347 A JP 60135347A JP 13534785 A JP13534785 A JP 13534785A JP S61295272 A JPS61295272 A JP S61295272A
Authority
JP
Japan
Prior art keywords
silicon carbide
manufacture
carbon
formed body
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60135347A
Other languages
Japanese (ja)
Other versions
JPH0246546B2 (en
Inventor
小松 将博
中溝 実
英治 谷
尚道 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60135347A priority Critical patent/JPS61295272A/en
Publication of JPS61295272A publication Critical patent/JPS61295272A/en
Publication of JPH0246546B2 publication Critical patent/JPH0246546B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は触媒等を担持せしめる為の担体として活用出来
る高気孔率の炭化けい素成形体の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing a silicon carbide molded body having a high porosity and which can be used as a carrier for supporting a catalyst or the like.

〈従来の技術及びその問題点) 従来の高気孔率の炭化けい素としては、例えば特開昭5
7−53241号公報で示される様に、多数の焼結され
た炭化けい素粒子の間に存在する細孔に、けい素高分子
化合物、例えばポリカルボシラン。
<Prior art and its problems] As a conventional high porosity silicon carbide, for example,
As shown in Japanese Patent No. 7-53241, a silicon polymer compound such as polycarbosilane is applied to the pores existing between a large number of sintered silicon carbide particles.

ポリジメチルシロキサン、ポリジフェニルシロキサン、
ポリカルボシロキサン等のベンゼン溶液を含浸させ、乾
燥後、非酸化性雰囲気中で1250〜1500℃で焼成
して得られる炭化けい素があるが、製造方法が煩雑であ
ると共に原材料が高価であり、更には元になる多孔質の
炭化けい素体が必要であった。
polydimethylsiloxane, polydiphenylsiloxane,
There is silicon carbide obtained by impregnating it with a benzene solution such as polycarbosiloxane, drying it, and then firing it at 1250 to 1500°C in a non-oxidizing atmosphere, but the manufacturing method is complicated and the raw materials are expensive. Furthermore, a porous silicon carbide body was required as a base material.

又別の方法としては、特開昭60−5072号公報に示
される様に、もみ殻にFe”等を含浸させた後に乾燥し
、窒素雰囲気中で400〜1000℃で炭化し、その粉
末をホットプレスする方法があるが、これらの方法によ
って得られる炭化けい素は気孔率が34〜47%と低く
不十分であった。
Another method, as shown in JP-A-60-5072, is to impregnate rice husks with Fe, etc., dry them, carbonize them at 400 to 1000°C in a nitrogen atmosphere, and make the powder. There are hot pressing methods, but the silicon carbide obtained by these methods has a low porosity of 34 to 47%, which is insufficient.

く問題点を解決する為の手段〉 本発明は安価な材料から出発し、簡単な操作に   、
Means for Solving the Problems The present invention starts from inexpensive materials and is easy to operate.
.

より高い気孔率を有する炭化けい素成形体を得る方法を
提供せんとするものであり、その要旨はもみ殻及び又は
稲茎を、非酸化性雰囲気中400〜1000℃で炭化し
た後粉砕し、そのま−又はいったん空気中で酸化し、次
いで100〜400kg/cdの圧力下、 1700℃
以上で焼結し、得られた焼結体を酸化雰囲気中で400
℃以上に加熱し該焼結体中の炭素を焼失させることを特
徴とする高気孔率を有する炭化けい素成形体の製造方法
である。
The purpose of the present invention is to provide a method for obtaining a silicon carbide molded body having a higher porosity, the gist of which is to carbonize rice husks and/or rice stalks at 400 to 1000°C in a non-oxidizing atmosphere, and then crush them. Oxidize directly or in air, then at 1700°C under a pressure of 100 to 400 kg/cd.
The resulting sintered body was sintered in an oxidizing atmosphere for 400 min.
This is a method for producing a silicon carbide molded body having a high porosity, characterized by heating the sintered body to a temperature above .degree. C. to burn out the carbon in the sintered body.

〈作用〉 もみ殻や稲茎の炭化物は、シリカと炭素とで構成され、
シリカが約60重量%、残部が炭素である。
<Function> Charcoal of rice husks and rice stalks is composed of silica and carbon.
Approximately 60% by weight silica and the remainder carbon.

炭素(C)とシリカ(Si02)から炭化けい素が生じ
る反応は次の連続する2つの反応が起こっているものと
考えられる。即ち、 C+5i02→SiO+CO(1) 2C十S i O−= S i C十CO(2)ここで
(1)の反応は1400℃付近から起こり始め、(2)
の反応はそれよりも高温で起こる。又SiOはガスの状
態であり、触媒が存在しないと(2)・の反応は遅い為
、一部のSiOは揮散してしまう。
The reaction in which silicon carbide is produced from carbon (C) and silica (Si02) is thought to involve the following two consecutive reactions. That is, C+5i02→SiO+CO(1) 2C0S i O−=S i C0CO(2) Here, the reaction (1) starts to occur around 1400°C, and (2)
reaction occurs at higher temperatures. Furthermore, SiO is in a gas state, and if a catalyst is not present, the reaction (2) will be slow, so some SiO will volatilize.

もみ殻や稲茎の炭化物の組成は上述の通りであるので、
もし炭化物中の5i02が全てSiCになったとしても
計算上はCが過剰であるが、この様に5iOzの一部が
SiOとして揮散する為に、得られる焼結体はCがより
過剰となっている。この様なCがより過剰の焼結体を大
気中の酸化性雰囲気中にて400℃以上に加熱し、炭素
を焼失させることにより、炭素のあった所を気孔とする
事で、高い気孔率を有する炭化けい素焼結体が得られる
のである。
The composition of the carbonized rice husks and rice stalks is as described above, so
Even if all of the 5iO2 in the carbide becomes SiC, there will be an excess of C in calculations, but because some of the 5iOz evaporates as SiO, the resulting sintered body will have an even greater excess of C. ing. A sintered body with an excess of carbon is heated to 400°C or higher in an oxidizing atmosphere in the air to burn off the carbon and create pores where the carbon was, resulting in a high porosity. A silicon carbide sintered body having the following properties is obtained.

〈実施例〉 以下本発明方法を実施例を示し乍ら詳述する。<Example> The method of the present invention will be described in detail below with reference to Examples.

11員上 もみ殻を、窒素ガス気流中500℃で炭化し、該炭化物
をライカイ機で16時間粉砕した。この炭化もみ殻粉末
をホットプレスのモールド内に入れ、200kg/ci
の圧力で、温度を1700℃まで昇温し、その温度に1
時間保持した。
The 11-membered upper rice husk was carbonized at 500° C. in a nitrogen gas stream, and the carbide was pulverized using a Raikai machine for 16 hours. This carbonized rice husk powder was put into a hot press mold and 200 kg/ci
The temperature was raised to 1700℃ at a pressure of
Holds time.

上記昇温の過程で、1200℃付近に於いて、ホットプ
レス装置に付属しているマイクロメーターが急速に回転
し、モールド内での体積の収縮が起こっているとみられ
る現象があった。その後は緩やかな体積の収縮がみられ
、1600℃付近からSiCが生成する反応、及びSi
Oガスの揮散に伴なうとみられる様な体積の収縮があっ
た。
During the temperature increase process, the micrometer attached to the hot press device rotated rapidly at around 1200° C., causing a phenomenon that appeared to be causing volumetric contraction within the mold. After that, a gradual volume contraction was observed, and a reaction to generate SiC from around 1600°C and a
There was a volumetric contraction that appeared to be accompanied by the volatilization of O gas.

炉からモールドを取出す場合、モールドを包んでいる炭
素繊維が白(なっており、SiOが付着している事が確
認された。又得られた焼結体は黒色を呈しており炭素が
混合されていることが判った。
When the mold was taken out of the furnace, the carbon fibers surrounding the mold were found to be white, indicating that SiO was attached.The obtained sintered body was black, indicating that carbon was mixed in. It turns out that there is.

この焼結体を空気中で700℃に加熱し3時間保持する
ことにより、淡白い炭化けい素成形体を得た。
This sintered body was heated to 700° C. in air and held for 3 hours to obtain a pale silicon carbide molded body.

この場合の炭素の焼失量は53.1重量%であり、得ら
れた炭化けい素成形体中のシリカの量は4.4重量%で
、気孔率は79,4%であった。この実施例1により得
られた炭化けい素成形体のX線回折図を図面に示すが、
回折線の角度から得られた炭化けい素はα型炭化けい素
であることが判る。
In this case, the amount of carbon burnt off was 53.1% by weight, the amount of silica in the obtained silicon carbide molded body was 4.4% by weight, and the porosity was 79.4%. The X-ray diffraction diagram of the silicon carbide molded body obtained in this Example 1 is shown in the drawing.
It can be seen from the angle of the diffraction lines that the silicon carbide obtained is α-type silicon carbide.

遺」1例」工 実施例1でのホットプレス温度1700℃を1850℃
に変え、他は全て実施例1と同様にした。
The hot press temperature in Example 1 was changed from 1700°C to 1850°C.
, and everything else was the same as in Example 1.

この場合の炭素焼失量は41.8重量%であり、得られ
た炭化けい素成形体の収縮は19.5%で、もし5i0
2がSiOとして一部分でも焼失していないとすれば2
6.9%とならなければならないので5i02の一部が
SiOとして揮散している事を示している。又得られた
炭化けい素成形体中のシリカの量は4.4重量%で、気
孔率は79.6%であった。この実施例2により得られ
た炭化けい素成形体のX線回折図を図面に示すが、回折
線の角度から得られた炭化けい素は、α型炭化けい素で
あることが判る。
In this case, the amount of carbon burned out was 41.8% by weight, and the shrinkage of the obtained silicon carbide molded body was 19.5%.
If even a part of 2 is not burnt out as SiO, then 2
Since it must be 6.9%, this indicates that a part of 5i02 is volatilized as SiO. The amount of silica in the obtained silicon carbide molded body was 4.4% by weight, and the porosity was 79.6%. The X-ray diffraction diagram of the silicon carbide molded article obtained in Example 2 is shown in the drawing, and it can be seen from the angle of the diffraction lines that the obtained silicon carbide is α-type silicon carbide.

以上の実施例1,2により得られた炭化けい素のX線回
折図が示す様に、回折強度はホットプレス温度を185
0℃とした実施例2の方が大であるが、不純物として含
有しているシリカの量はほぼ同程度であるので、回折強
度の増大は生成される炭化けい素の結晶性の増加による
ものと思われる。
As shown in the X-ray diffraction diagrams of silicon carbide obtained in Examples 1 and 2 above, the diffraction intensity increases with the hot pressing temperature at 185
Although it is larger in Example 2 at 0°C, the amount of silica contained as an impurity is approximately the same, so the increase in diffraction intensity is due to an increase in the crystallinity of the silicon carbide produced. I think that the.

なお本発明方法に於いて、炭素を含有する焼結体を酸化
性雰囲気中で加熱する場合、その加熱温度が低いと炭素
の焼失に長時間を要するので少なくとも400℃以上の
温度にする事が望ましい。
In addition, in the method of the present invention, when heating a sintered body containing carbon in an oxidizing atmosphere, if the heating temperature is low, it will take a long time to burn off the carbon, so the temperature should be at least 400°C or higher. desirable.

〈発明の効果〉 以上述べて来た如く、本発明方法によれば安価な材料を
原料とし、簡単な操作により気孔率が約80%もある炭
化けい素成形体を得る事が出来る。
<Effects of the Invention> As described above, according to the method of the present invention, a silicon carbide molded body having a porosity of about 80% can be obtained by using inexpensive materials as raw materials and by simple operations.

そして本発明方法で得られる炭化けい素成形体は不純物
としてのシリカが少ないので耐熱性及び耐食性に優れて
おり、それ自体が不活性であるという炭化けい素の特長
と相俟って担体としての優れた効果を奏するものである
The silicon carbide molded product obtained by the method of the present invention has excellent heat resistance and corrosion resistance because it contains little silica as an impurity, and together with the feature of silicon carbide that it is inert itself, it is suitable as a carrier. It has excellent effects.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例1及び2に示す方法で得られた炭
化けい素成形体のX線回折図。
The drawings are X-ray diffraction diagrams of silicon carbide molded bodies obtained by the methods shown in Examples 1 and 2 of the present invention.

Claims (1)

【特許請求の範囲】 1、もみ殻及び又は稲茎を、非酸化性雰囲気中400〜
1000℃で炭化した後粉砕し、そのまゝ又はいったん
空気中で酸化し、次いで100〜400kg/cm^2
の圧力下、1700℃以上で焼結し、得られた焼結体を
酸化雰囲気中で400℃以上に加熱し該焼結体中の炭素
を焼失させることを特徴とする高気孔率を有する炭化け
い素成形体の製造方法。 2、得られる炭化けい素成形体の気孔率が50%以上で
あることを特徴とする特許請求の範囲第1項記載の製造
方法。
[Claims] 1. Rice husks and/or rice stalks are heated in a non-oxidizing atmosphere to
After carbonizing at 1000℃, pulverizing it, oxidizing it as it is or once in the air, and then oxidizing it at 100-400kg/cm^2
Carbonization with high porosity characterized by sintering at 1700°C or higher under a pressure of A method for producing a silicon molded body. 2. The manufacturing method according to claim 1, wherein the silicon carbide molded body obtained has a porosity of 50% or more.
JP60135347A 1985-06-20 1985-06-20 Manufacture of silicon carbide formed body with high pore rate Granted JPS61295272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60135347A JPS61295272A (en) 1985-06-20 1985-06-20 Manufacture of silicon carbide formed body with high pore rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60135347A JPS61295272A (en) 1985-06-20 1985-06-20 Manufacture of silicon carbide formed body with high pore rate

Publications (2)

Publication Number Publication Date
JPS61295272A true JPS61295272A (en) 1986-12-26
JPH0246546B2 JPH0246546B2 (en) 1990-10-16

Family

ID=15149643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60135347A Granted JPS61295272A (en) 1985-06-20 1985-06-20 Manufacture of silicon carbide formed body with high pore rate

Country Status (1)

Country Link
JP (1) JPS61295272A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230470A (en) * 1988-07-19 1990-01-31 Satake Eng Co Ltd Manufacture of porous grindstone and porous grindstone
CN1042830C (en) * 1992-11-27 1999-04-07 中南工业大学 Preparing graphite silicon carbide coating and carbon silicon compound by using rice husk

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230470A (en) * 1988-07-19 1990-01-31 Satake Eng Co Ltd Manufacture of porous grindstone and porous grindstone
CN1042830C (en) * 1992-11-27 1999-04-07 中南工业大学 Preparing graphite silicon carbide coating and carbon silicon compound by using rice husk

Also Published As

Publication number Publication date
JPH0246546B2 (en) 1990-10-16

Similar Documents

Publication Publication Date Title
JP3581879B2 (en) Alumina porous body and method for producing the same
US5321223A (en) Method of sintering materials with microwave radiation
US4105455A (en) Method of producing dense sintered silicon carbide body from polycarbosilanes
CN101323524A (en) Preparation of oriented hole silicon carbide porous ceramic
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
JPH0251863B2 (en)
JP2015074565A (en) Spherical silicon carbide powder and method for producing the same
JPH0362643B2 (en)
JPS61295272A (en) Manufacture of silicon carbide formed body with high pore rate
KR100213315B1 (en) Manufacturing method of carbon-sintered body
JPH11130558A (en) Porous silicon carbide sintered product and its production
JPH11147707A (en) Activated carbon honeycomb structure and its production
JPS5849509B2 (en) Manufacturing method of silicon nitride sintered body
JPS6241768A (en) Manufacture of aluminum nitride sintered body
JPS605072A (en) Manufacture of silicon carbide formed body
JPS6328873B2 (en)
JPH02271919A (en) Production of fine powder of titanium carbide
JPH0244078A (en) Porous ceramic composite material and production thereof
JPS6058190B2 (en) Method for manufacturing silicon nitride-silicon carbide molded body
JP3277295B2 (en) Method for producing high-temperature silicon carbide heating element
JPS59116176A (en) Manufacture of ceramic sintered body
JPS6057280B2 (en) Manufacturing method of diaphragm for audio equipment
JPH03215375A (en) Production of porous silicon carbide having low density
JP3696300B2 (en) Silicon nitride sintered body and method for producing the same
JPH0733547A (en) Production of porous silicon carbide sintered compact

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term