CN101323524A - A preparation method of silicon carbide porous ceramics with aligned pores - Google Patents
A preparation method of silicon carbide porous ceramics with aligned pores Download PDFInfo
- Publication number
- CN101323524A CN101323524A CNA2008100179707A CN200810017970A CN101323524A CN 101323524 A CN101323524 A CN 101323524A CN A2008100179707 A CNA2008100179707 A CN A2008100179707A CN 200810017970 A CN200810017970 A CN 200810017970A CN 101323524 A CN101323524 A CN 101323524A
- Authority
- CN
- China
- Prior art keywords
- silicon carbide
- preparation
- granularity
- adopts
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 72
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 69
- 239000000919 ceramic Substances 0.000 title claims abstract description 39
- 239000011148 porous material Substances 0.000 title claims abstract description 27
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- 238000005245 sintering Methods 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000000843 powder Substances 0.000 claims abstract description 8
- 239000002994 raw material Substances 0.000 claims abstract description 8
- 239000010439 graphite Substances 0.000 claims abstract description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000012298 atmosphere Substances 0.000 claims abstract description 6
- 238000009825 accumulation Methods 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 238000005516 engineering process Methods 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 238000009826 distribution Methods 0.000 claims 5
- 235000013339 cereals Nutrition 0.000 claims 4
- 241000209456 Plumbago Species 0.000 claims 2
- 238000001816 cooling Methods 0.000 claims 2
- 239000000377 silicon dioxide Substances 0.000 claims 2
- 239000000428 dust Substances 0.000 claims 1
- 235000013312 flour Nutrition 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- 238000012856 packing Methods 0.000 claims 1
- 238000010792 warming Methods 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 7
- 229910002804 graphite Inorganic materials 0.000 abstract description 5
- 239000004615 ingredient Substances 0.000 abstract description 3
- 239000011863 silicon-based powder Substances 0.000 abstract description 3
- 229910052814 silicon oxide Inorganic materials 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- 229910021426 porous silicon Inorganic materials 0.000 description 5
- 238000001953 recrystallisation Methods 0.000 description 5
- 229910010293 ceramic material Inorganic materials 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000004088 foaming agent Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052574 oxide ceramic Inorganic materials 0.000 description 2
- 239000011224 oxide ceramic Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- FIPWRIJSWJWJAI-UHFFFAOYSA-N Butyl carbitol 6-propylpiperonyl ether Chemical compound C1=C(CCC)C(COCCOCCOCCCC)=CC2=C1OCO2 FIPWRIJSWJWJAI-UHFFFAOYSA-N 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000011825 aerospace material Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Landscapes
- Ceramic Products (AREA)
Abstract
本发明公开了一种定向排列孔碳化硅多孔陶瓷的制备方法,首先按重量百分比,在基本原料碳化硅10~100%中加入碳粉0~30%,硅粉0~50%,氧化硅粉0~60%;其中碳化硅粒度为W3.5~P220,采用一种粒度或两种粒度级配;然后采用粉末堆积或陶瓷常规成形工艺将混合均匀的配料组成制成生坯,置于石墨坩埚或匣钵中;将坩埚或匣钵放入温度梯度为15~30℃/cm温度场的真空气氛烧结炉中,在压力为0.2~1×105Pa的氩气条件下升温至1900-2500℃,保温0.5-3小时;最后在气体保护下自然降温冷却,取出烧结体,即得到具有定向排列开孔结构的重结晶碳化硅多孔陶瓷。The invention discloses a preparation method of silicon carbide porous ceramics with oriented arrangement holes. Firstly, 0-30% of carbon powder, 0-50% of silicon powder and silicon oxide powder are added to 10-100% of basic raw material silicon carbide according to weight percentage. 0-60%; the particle size of silicon carbide is W3.5-P220, using one particle size or two particle size gradations; then use powder accumulation or ceramic conventional forming process to make the green body from the uniformly mixed ingredients, and place it in graphite In a crucible or sagger; put the crucible or sagger into a vacuum atmosphere sintering furnace with a temperature gradient of 15-30°C/cm, and raise the temperature to 1900-1900- 2500°C, keep warm for 0.5-3 hours; finally cool down naturally under gas protection, take out the sintered body, and obtain a recrystallized silicon carbide porous ceramic with an oriented arrangement of open pores.
Description
技术领域 technical field
本发明涉及一种可用作过滤产品或催化剂载体等的定向排列孔结构的重结晶碳化硅多孔陶瓷的制备方法。The invention relates to a preparation method of a recrystallized silicon carbide porous ceramic with a directional arrangement pore structure that can be used as a filter product or a catalyst carrier.
背景技术 Background technique
碳化硅陶瓷材料具有仅次于金刚石的硬度,极高的热导率,相对低的热膨胀系数,优异的抗热震性能和抗蠕变能力,高温强度以及耐磨性能好,化学稳定性高,不溶于一般的酸和混合酸中,与沸腾的盐酸、硫酸、氢氟酸不发生反应。碳化硅还具有半导体特性,具有负温度系数的特点。因此,它作为一种性能优异的高温陶瓷,在与热工、燃烧、化工、环保等有关的工业领域有广泛的应用前景。Silicon carbide ceramic material has hardness second only to diamond, extremely high thermal conductivity, relatively low thermal expansion coefficient, excellent thermal shock resistance and creep resistance, high temperature strength and wear resistance, high chemical stability, It is insoluble in common acids and mixed acids, and does not react with boiling hydrochloric acid, sulfuric acid, and hydrofluoric acid. Silicon carbide also has semiconductor properties and has the characteristics of a negative temperature coefficient. Therefore, as a high-temperature ceramic with excellent performance, it has broad application prospects in industrial fields related to thermal engineering, combustion, chemical industry, and environmental protection.
多孔陶瓷是一种经高温烧成、烧结体内具有大量彼此相通并与材料表面相贯通孔道结构的功能陶瓷材料。可广泛应用于熔融金属过滤、催化剂载体、汽车尾气净化和吸音降噪领域以及传感器、生物材料、航天材料等领域。目前已有的多孔陶瓷的材质多为氧化物陶瓷,但是氧化物陶瓷在硬度与耐磨性,热传导与抗热震性、耐腐蚀性,以及导电性方面难以与碳化硅陶瓷相比。在许多特殊的应用场合对多孔陶瓷材料性能提出了新的技术要求。这些要求与碳化硅材料本身所具有的优点非常匹配。目前已开发出了商业化的多孔碳化硅陶瓷材料的汽车尾气过滤器,以及高温金属熔体浇铸过滤器。Porous ceramic is a kind of functional ceramic material which is fired at high temperature and has a large number of pores in the sintered body that communicate with each other and the surface of the material. It can be widely used in the fields of molten metal filtration, catalyst carrier, automobile exhaust purification, sound absorption and noise reduction, sensors, biological materials, aerospace materials and other fields. Most of the existing porous ceramics are made of oxide ceramics, but oxide ceramics are difficult to compare with silicon carbide ceramics in terms of hardness and wear resistance, heat conduction and thermal shock resistance, corrosion resistance, and electrical conductivity. In many special applications, new technical requirements are put forward for the performance of porous ceramic materials. These requirements are well matched with the advantages that silicon carbide material itself has. At present, commercialized porous silicon carbide ceramic materials have been developed for automobile exhaust filters, as well as high-temperature metal melt casting filters.
现有多孔碳化硅陶瓷的造孔技术主要通过加入碳粉、淀粉,以及各种有机物胶体作为造孔剂;或者采用木材、聚氨酯泡沫塑料作为多孔(泡沫)模版;或者选用高固碳含量的树脂、树脂+碳化硅,或者树脂+硅粉成形,经高温裂解形成多孔坯体作为前驱体。而多孔SiC陶瓷的烧结则通过添加氧化物在高温时形成低熔点相粘接碳化硅;或者在烧结时外加硅(也可以在坯体中加入),烧结时气相或液相硅与碳反应形成的碳化硅粘结坯体中原有碳化硅,或者直接生成碳化硅多孔体。The pore-making technology of existing porous silicon carbide ceramics is mainly by adding carbon powder, starch, and various organic colloids as pore-forming agents; or using wood and polyurethane foam as a porous (foam) template; or using resins with high carbon-fixing content , Resin+silicon carbide, or resin+silicon powder is formed, and the porous green body is formed by high temperature cracking as a precursor. The sintering of porous SiC ceramics is by adding oxides to form a low-melting point phase bonded silicon carbide at high temperature; or adding silicon (also can be added to the green body) during sintering, and the gas phase or liquid phase silicon reacts with carbon during sintering to form The silicon carbide bonded the original silicon carbide in the green body, or directly generated silicon carbide porous body.
采用造孔剂、发泡法或模板法造孔,不仅需要选择合适的造孔剂、发泡剂与模板,同时造孔剂、发泡剂或模板的去除大多需要在氧化条件下进行,容易造成碳化硅原料颗粒的氧化,因此多用于氧化物结合碳化硅多孔陶瓷制备。碳化硅固有的优异性能不能得到充分发挥。Using pore forming agent, foaming method or template method to form pores not only needs to select the appropriate pore forming agent, foaming agent and template, but also most of the removal of pore forming agent, foaming agent or template needs to be carried out under oxidative conditions, which is easy It causes the oxidation of silicon carbide raw material particles, so it is mostly used in the preparation of oxide-bonded silicon carbide porous ceramics. The inherent excellent performance of silicon carbide cannot be fully utilized.
反应烧结制备过程中,反应生成碳化硅的体积膨胀,或者多余反应物(例如金属硅)对坯体孔隙的填充,难以获得高气孔率的材料,同时材料的使用温度受到限制。已有技术制得的多孔(泡沫)碳化硅陶瓷的气孔结构均为随机取向,材料有关性能各项同性。During the preparation process of reaction sintering, it is difficult to obtain a material with high porosity due to the volume expansion of silicon carbide produced by the reaction, or the filling of the pores of the green body by excess reactants (such as metal silicon), and the use temperature of the material is limited. The pore structure of the porous (foam) silicon carbide ceramics prepared in the prior art is all randomly oriented, and the relevant properties of the material are isotropic.
发明内容 Contents of the invention
本发明的目的是提供一种具有定向排列孔结构的碳化硅多孔陶瓷的制备方法,该方法无需添加造孔剂与烧结第二相,只需通过对高温重结晶烧结过程的控制得到碳化硅多孔陶瓷烧结体,其中碳化硅颗粒之间是重结晶过程形成的纯碳化硅结合,且碳化硅颗粒通过择优取向定向排列,同时在晶粒之间形成一种定向排列的孔结构。The purpose of the present invention is to provide a preparation method of silicon carbide porous ceramics with oriented pore structure, which does not need to add pore-forming agent and sintering second phase, and only needs to obtain porous silicon carbide by controlling the high-temperature recrystallization sintering process. Ceramic sintered body, in which the silicon carbide particles are bonded by pure silicon carbide formed during the recrystallization process, and the silicon carbide particles are oriented through the preferred orientation, and at the same time an oriented pore structure is formed between the grains.
为达到以上目的,本发明采取如下技术方案予以实现:To achieve the above object, the present invention takes the following technical solutions to achieve:
一种定向孔碳化硅多孔陶瓷的制备方法,包括下述步骤:A preparation method of oriented hole silicon carbide porous ceramics, comprising the following steps:
第一步,按重量百分比,在基本原料碳化硅10~100%中加入碳粉0~30%,硅粉0~50%,氧化硅粉0~60%;其中碳化硅粒度为W3.5~P220,采用一种粒度或两种粒度级配;The first step is to add 0-30% of carbon powder, 0-50% of silicon powder and 0-60% of silicon oxide powder to 10-100% of the basic raw material silicon carbide by weight percentage; wherein the particle size of silicon carbide is W3.5- P220, using one grain size or two grain size gradations;
第二步,采用粉末堆积或陶瓷常规成形工艺将混合均匀的配料组成制成生坯,置于石墨坩埚或匣钵中;The second step is to use powder accumulation or conventional ceramic forming technology to make the uniformly mixed ingredients into a green body, and place it in a graphite crucible or a sagger;
第三步,将坩埚或匣钵放入具有温度梯度为15~30℃/cm温度场的真空气氛烧结炉中,在压力为0.5×104~1×105Pa的氩气条件下升温至1900~2500℃,保温0.5-3小时;The third step is to put the crucible or sagger into a vacuum atmosphere sintering furnace with a temperature gradient of 15-30 °C/cm, and raise the temperature to 1900~2500℃, keep warm for 0.5-3 hours;
第四步,在第三步的气体保护下自然降温冷却,取出烧结体,得到具有定向排列孔结构的重结晶碳化硅多孔陶瓷。In the fourth step, the temperature is naturally lowered and cooled under the protection of the gas in the third step, and the sintered body is taken out to obtain a recrystallized silicon carbide porous ceramic with an aligned pore structure.
上述方案中,所述碳化硅采用两种粒度级配的方法是,粒度为P120的碳化硅与粒度为P180的碳化硅重量之比为4/6或3/7或6/4;粒度为P60的碳化硅与粒度为P120的碳化硅重量之比为4/6;粒度为W14的碳化硅与粒度为W3.5的碳化硅重量之比为4/6。所述的温度梯度沿炉体内成垂直向或径向分布。所述粉末堆积是,将配料组成混合均匀后直接装入所要求外形产品的石墨坩埚或匣钵中震实。In the above scheme, the method of adopting two particle size gradations for the silicon carbide is that the weight ratio of the silicon carbide with a particle size of P120 to the silicon carbide with a particle size of P180 is 4/6 or 3/7 or 6/4; the particle size is P60 The weight ratio of silicon carbide with particle size P120 is 4/6; the weight ratio of silicon carbide with particle size W14 to silicon carbide with particle size W3.5 is 4/6. The temperature gradient is distributed vertically or radially along the furnace body. The powder accumulation is that the ingredients are evenly mixed and then directly loaded into a graphite crucible or a sagger of a product with a required shape and shaken.
本发明的基本原理是利用碳化硅在1900-2500℃下所发生的分解反应,对分解、升华、气相传输,以及对气相重新结晶过程的控制,实现碳化硅颗粒之间的定向重结晶烧结,形成定向开孔、或中空形状的径向或轴向开孔结构的重结晶碳化硅多孔陶瓷。The basic principle of the present invention is to use the decomposition reaction of silicon carbide at 1900-2500°C to control the decomposition, sublimation, gas phase transmission, and gas phase recrystallization process to realize directional recrystallization and sintering between silicon carbide particles. Recrystallized silicon carbide porous ceramics with directional openings, or hollow radial or axial opening structures.
与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:
1.在烧结炉内采用具有温度梯度的温度场(垂直或径向温度场),可控制碳化硅在高温烧结时的蒸发-凝聚方向,获得在轴向或径向定向排列开孔结构的重结晶碳化硅多孔陶瓷制品。1. A temperature field with a temperature gradient (vertical or radial temperature field) is used in the sintering furnace, which can control the evaporation-condensation direction of silicon carbide during high-temperature sintering, and obtain the heavy weight of the open-pore structure in the axial or radial direction. Crystalline silicon carbide porous ceramic articles.
2.通过合理选择碳化硅的颗粒度及级配,以及其它组分的加入量;可获得不同气孔率、孔径尺寸要求的定向排列开孔结构的重结晶碳化硅多孔陶瓷制品。2. By rationally selecting the particle size and gradation of silicon carbide, and the addition of other components, recrystallized silicon carbide porous ceramic products with directional arrangement and open-pore structure can be obtained with different porosity and pore size requirements.
3.通过对烧结时气氛压力的控制,调整碳化硅高温烧结时的蒸发-凝聚速度,可调整定向排列开孔结构的重结晶碳化硅多孔陶瓷制品的气孔率与孔径大小。3. By controlling the atmosphere pressure during sintering and adjusting the evaporation-condensation rate during high-temperature sintering of silicon carbide, the porosity and pore size of recrystallized silicon carbide porous ceramic products with directional arrangement and open-pore structure can be adjusted.
4.使用结合剂成形坯体时生坯密度的控制,或不使用结合剂时松装坯体震实密度的控制,也可辅助调节定向排列开孔结构的重结晶碳化硅多孔陶瓷制品的气孔率与孔径尺寸。4. The control of the density of the green body when using a binder to form the green body, or the control of the tap density of the loose-packed green body when not using a binder, can also assist in adjusting the pores of recrystallized silicon carbide porous ceramic products with directional arrangement and opening structure rate and aperture size.
制备所得到的碳化硅多孔陶瓷的晶体结构为纯α-相碳化硅,晶体之间的结合是通过再结晶实现的,气孔方向可以根据烧结炉温度场温度梯度沿轴向或者径向定向分布,具有高度的方向性,可以获得气孔率30-70%、孔径尺寸2微米~2毫米的碳化硅多孔陶瓷。其物理化学性能稳定,可以满足特定的使用要求,例如作为渗透膜的支撑材料或其它功能材料,具有使用温度范围宽,应用领域广的优点。The crystal structure of the prepared silicon carbide porous ceramics is pure α-phase silicon carbide, and the bonding between crystals is realized through recrystallization. The direction of pores can be distributed along the axial or radial direction according to the temperature gradient of the temperature field of the sintering furnace. It has a high degree of directionality, and can obtain silicon carbide porous ceramics with a porosity of 30-70% and a pore size of 2 microns to 2 mm. Its physical and chemical properties are stable and can meet specific application requirements. For example, it can be used as a support material for a permeable membrane or other functional materials. It has the advantages of a wide temperature range and a wide range of applications.
附图说明 Description of drawings
下面结合附图及具体实施例对本发明做进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
图1为本发明的实施例3的试样3-1的组织与气孔的显微结构形态。其中图1(a)、(b)分别为不同放大倍数的显微照片。从图1可以看出,本发明多孔陶瓷的显微组织是由定向排列的棒状气孔和碳化硅颗粒组成,并且内外组织基本均匀一致,碳化硅颗粒之间的连接紧密。Fig. 1 is the structure and microstructural morphology of pores of sample 3-1 of Example 3 of the present invention. Figure 1(a) and (b) are photomicrographs of different magnifications respectively. It can be seen from Fig. 1 that the microstructure of the porous ceramic of the present invention is composed of rod-shaped pores and silicon carbide particles arranged in an orientation, and the internal and external structures are basically uniform, and the connection between the silicon carbide particles is tight.
具体实施方式 Detailed ways
本发明一共做了8个实施例,实施例1~8的原料组成列于表1。The present invention has done 8 embodiments altogether, and the raw material composition of embodiment 1~8 is listed in table 1.
表1本发明多孔碳化硅陶瓷的原料组成(WT%)The raw material composition (WT%) of porous silicon carbide ceramics of the present invention of table 1
按照表1实施例1~8的配方,原料中加入陶瓷常用粘合剂,也可以使用高固碳含量的酚醛树脂作为粘合剂,使用常规成形方法,将原料、粘合剂混合均匀;制成不同密度的生坯;干燥后放入石墨坩埚或匣钵中;也可以不使用粘合剂,将混合好的粉料直接震实装入具有所要求外形产品的石墨坩埚或匣钵中。将坩埚或匣钵放入高温真空气氛烧结炉中,通过发热体和炉体的设计造成炉体内垂直或径向的温度梯度;烧结炉可以采用电阻加热,也可以采用感应加热方式,也可以使用一般的高温真空气氛烧结炉,注意装炉位置,以使坩埚处于15~30℃的温度梯度空间。在0.5×104~1×105Pa的氩气条件下升温至1900-2500℃,保温0.5-3小时,最后在气体保护下自然降温冷却;得到具有定向排列孔结构的高温重结晶多孔碳化硅烧结体。每个实施例均制备两个试样,共十六个试样,其具体成形及烧结工艺参数参见表2。According to the formulations of Examples 1 to 8 in Table 1, common adhesives for ceramics are added to the raw materials, and phenolic resins with high carbon-fixing content can also be used as adhesives, and conventional forming methods are used to mix the raw materials and adhesives evenly; into green bodies of different densities; after drying, put them into graphite crucibles or saggars; you can also directly shake the mixed powder into graphite crucibles or saggars with required shape products without using binders. Put the crucible or sagger into a high-temperature vacuum atmosphere sintering furnace, and create a vertical or radial temperature gradient in the furnace body through the design of the heating element and the furnace body; the sintering furnace can be heated by resistance or by induction heating. For a general high-temperature vacuum atmosphere sintering furnace, pay attention to the furnace installation position so that the crucible is in a temperature gradient space of 15-30°C. Raise the temperature to 1900-2500°C under the condition of 0.5×10 4 ~1×10 5 Pa argon gas, keep it warm for 0.5-3 hours, and finally cool down naturally under the protection of gas; obtain high-temperature recrystallized porous carbonization with oriented pore structure Silicon sintered body. Two samples were prepared for each embodiment, a total of sixteen samples, the specific forming and sintering process parameters are shown in Table 2.
表2本发明多孔碳化硅陶瓷成形及烧结工艺参数Table 2 Porous silicon carbide ceramics forming and sintering process parameters of the present invention
本发明高温烧成得到的实施例1~8碳化硅多孔陶瓷试样,分别使用分析天平和SX-2700扫描电镜测量了样品的气孔率,气孔定向排列效果,结果列于表3。The silicon carbide porous ceramic samples of Examples 1 to 8 obtained by firing at high temperature in the present invention were respectively measured with an analytical balance and a SX-2700 scanning electron microscope for their porosity and pore alignment effect, and the results are listed in Table 3.
表3本发明碳化硅多孔陶瓷样品的气孔参数Table 3 Pore parameters of silicon carbide porous ceramic samples of the present invention
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100179707A CN101323524B (en) | 2008-04-15 | 2008-04-15 | Preparation of oriented hole silicon carbide porous ceramic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100179707A CN101323524B (en) | 2008-04-15 | 2008-04-15 | Preparation of oriented hole silicon carbide porous ceramic |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101323524A true CN101323524A (en) | 2008-12-17 |
CN101323524B CN101323524B (en) | 2011-04-06 |
Family
ID=40187253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008100179707A Expired - Fee Related CN101323524B (en) | 2008-04-15 | 2008-04-15 | Preparation of oriented hole silicon carbide porous ceramic |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101323524B (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102391012A (en) * | 2011-08-02 | 2012-03-28 | 西安交通大学 | Method for preparing recrystallized silicon carbide porous ceramic by combining carbothermic reduction |
CN102417366A (en) * | 2011-08-30 | 2012-04-18 | 北京理工大学 | Pore gradient silicon carbide porous ceramic and preparation method thereof |
CN102515800A (en) * | 2011-12-20 | 2012-06-27 | 叶乐 | Microporous graphite silicon carbide brick |
CN101654376B (en) * | 2009-08-26 | 2012-11-28 | 武汉科技大学 | Porous light heat-insulation and heat-preservation material and preparation method thereof |
CN103939509A (en) * | 2014-04-22 | 2014-07-23 | 浙江天乐新材料科技有限公司 | Al/Sic and Cu/Sic composite material friction pair used for railway vehicle and manufacturing method thereof |
CN105254322A (en) * | 2015-11-04 | 2016-01-20 | 陕西科技大学 | Preparation method of oriented porous SiC ceramic with crystal boundary containing metal phases |
CN105272264A (en) * | 2015-11-04 | 2016-01-27 | 陕西科技大学 | Method for preparing compound co-continuous phase SiC/Si composite material |
CN107311671A (en) * | 2017-06-30 | 2017-11-03 | 长兴泓矿炉料有限公司 | A kind of oxidation resistant carbon SiClx series refractory material and preparation method thereof |
CN107382364A (en) * | 2017-06-30 | 2017-11-24 | 长兴泓矿炉料有限公司 | A kind of light weight low-loss carborundum series refractory material and preparation method thereof |
CN107427753A (en) * | 2015-03-16 | 2017-12-01 | 三井金属矿业株式会社 | Porous plastid, Porous conjugant, molten metal filter, burn till manufacture method with assembly fixture and porous plastid |
CN106007720B (en) * | 2016-05-11 | 2018-08-31 | 陕西固勤材料技术有限公司 | A kind of sewage disposal silicon carbide compound Zero-valent Iron porous ceramics and preparation method |
CN108624963A (en) * | 2018-05-16 | 2018-10-09 | 福建北电新材料科技有限公司 | A kind of raw material sintering process of carborundum crystals for the growth of PVT methods |
CN110981495A (en) * | 2019-12-31 | 2020-04-10 | 江西中材新材料有限公司 | Porous sound-absorbing material and preparation method thereof |
CN112851394A (en) * | 2021-02-03 | 2021-05-28 | 潍坊工商职业学院 | Preparation method of porous silicon carbide ceramic |
CN115340385A (en) * | 2022-08-30 | 2022-11-15 | 武汉工程大学 | A kind of silicon carbide porous ceramic with controllable pore size and its preparation method |
CN115956064A (en) * | 2020-09-07 | 2023-04-11 | 日本碍子株式会社 | Refractory material |
CN117222609A (en) * | 2021-04-21 | 2023-12-12 | 住友化学株式会社 | Method for producing porous ceramic sintered body and porous ceramic sintered body |
CN117285375A (en) * | 2023-09-22 | 2023-12-26 | 合肥陶陶新材料科技有限公司 | Porous ceramic and production process thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1187291C (en) * | 2003-04-11 | 2005-02-02 | 中国科学院上海硅酸盐研究所 | Preparation method of silicon carbide porous ceramics using yeast powder as pore-forming agent |
CN1288112C (en) * | 2004-10-11 | 2006-12-06 | 西安交通大学 | Method for preparing silicon nitride/silicon carbide porous ceramic |
CN100395211C (en) * | 2005-06-14 | 2008-06-18 | 清华大学 | A method for preparing porous silicon carbide ceramics with high porosity |
-
2008
- 2008-04-15 CN CN2008100179707A patent/CN101323524B/en not_active Expired - Fee Related
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101654376B (en) * | 2009-08-26 | 2012-11-28 | 武汉科技大学 | Porous light heat-insulation and heat-preservation material and preparation method thereof |
CN102391012A (en) * | 2011-08-02 | 2012-03-28 | 西安交通大学 | Method for preparing recrystallized silicon carbide porous ceramic by combining carbothermic reduction |
CN102417366A (en) * | 2011-08-30 | 2012-04-18 | 北京理工大学 | Pore gradient silicon carbide porous ceramic and preparation method thereof |
CN102417366B (en) * | 2011-08-30 | 2013-08-07 | 北京理工大学 | Pore gradient silicon carbide porous ceramic and preparation method thereof |
CN102515800A (en) * | 2011-12-20 | 2012-06-27 | 叶乐 | Microporous graphite silicon carbide brick |
CN103939509A (en) * | 2014-04-22 | 2014-07-23 | 浙江天乐新材料科技有限公司 | Al/Sic and Cu/Sic composite material friction pair used for railway vehicle and manufacturing method thereof |
CN107427753A (en) * | 2015-03-16 | 2017-12-01 | 三井金属矿业株式会社 | Porous plastid, Porous conjugant, molten metal filter, burn till manufacture method with assembly fixture and porous plastid |
CN105272264A (en) * | 2015-11-04 | 2016-01-27 | 陕西科技大学 | Method for preparing compound co-continuous phase SiC/Si composite material |
CN105254322A (en) * | 2015-11-04 | 2016-01-20 | 陕西科技大学 | Preparation method of oriented porous SiC ceramic with crystal boundary containing metal phases |
CN105272264B (en) * | 2015-11-04 | 2018-04-20 | 陕西科技大学 | A kind of preparation method of double interpenetrating phase SiC/Si composite materials |
CN106007720B (en) * | 2016-05-11 | 2018-08-31 | 陕西固勤材料技术有限公司 | A kind of sewage disposal silicon carbide compound Zero-valent Iron porous ceramics and preparation method |
CN107311671A (en) * | 2017-06-30 | 2017-11-03 | 长兴泓矿炉料有限公司 | A kind of oxidation resistant carbon SiClx series refractory material and preparation method thereof |
CN107382364A (en) * | 2017-06-30 | 2017-11-24 | 长兴泓矿炉料有限公司 | A kind of light weight low-loss carborundum series refractory material and preparation method thereof |
CN108624963A (en) * | 2018-05-16 | 2018-10-09 | 福建北电新材料科技有限公司 | A kind of raw material sintering process of carborundum crystals for the growth of PVT methods |
CN110981495A (en) * | 2019-12-31 | 2020-04-10 | 江西中材新材料有限公司 | Porous sound-absorbing material and preparation method thereof |
CN110981495B (en) * | 2019-12-31 | 2022-04-29 | 江西中材新材料有限公司 | Porous sound-absorbing material and preparation method thereof |
CN115956064A (en) * | 2020-09-07 | 2023-04-11 | 日本碍子株式会社 | Refractory material |
CN112851394A (en) * | 2021-02-03 | 2021-05-28 | 潍坊工商职业学院 | Preparation method of porous silicon carbide ceramic |
CN112851394B (en) * | 2021-02-03 | 2022-04-12 | 潍坊工商职业学院 | Preparation method of porous silicon carbide ceramic |
CN117222609A (en) * | 2021-04-21 | 2023-12-12 | 住友化学株式会社 | Method for producing porous ceramic sintered body and porous ceramic sintered body |
CN115340385A (en) * | 2022-08-30 | 2022-11-15 | 武汉工程大学 | A kind of silicon carbide porous ceramic with controllable pore size and its preparation method |
CN117285375A (en) * | 2023-09-22 | 2023-12-26 | 合肥陶陶新材料科技有限公司 | Porous ceramic and production process thereof |
Also Published As
Publication number | Publication date |
---|---|
CN101323524B (en) | 2011-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101323524B (en) | Preparation of oriented hole silicon carbide porous ceramic | |
CN102010222B (en) | Silicon carbide porous ceramic and preparation method thereof | |
Liu et al. | Fabrication and characterization of cordierite-bonded porous SiC ceramics | |
US7648932B2 (en) | Molded porous ceramic article containing beta-SiC and process for the production thereof | |
US6746748B2 (en) | Honeycomb structure and process for production thereof | |
CN104387073B (en) | The method of ultra-fine high tenacity thyrite is manufactured based on reaction sintering | |
CN102557722A (en) | Method for preparing porous silicon carbide ceramic by using pore-forming agent | |
Li et al. | A novel sintering additive system for porous mullite-bonded SiC ceramics: high mechanical performance with controllable pore structure | |
CN103467072A (en) | Preparation method for light microporous corundum ceramic | |
Li et al. | Microstructures and properties of solid-state-sintered silicon carbide membrane supports | |
CN107337453A (en) | A kind of method that combination gas-solid reaction method prepares recrystallized silicon carbide porous ceramics | |
CN104086183B (en) | The controlled porous Si of a kind of porosity3N4Preparation method | |
Song et al. | Effects of silicon particle size on microstructure and permeability of silicon-bonded SiC ceramics | |
CN104072190B (en) | A kind of preparation method of SiC porous ceramics | |
CN104418608B (en) | Low temperature firing method of silicon carbide porous ceramics | |
CN116023148A (en) | A preparation method of silicon carbide ceramics and silicon carbide ceramic materials prepared by the preparation method | |
JP2000016872A (en) | Porous silicon carbide sintered body and its production | |
Anwar et al. | Mullite-bonded porous SiC-based Mn3O4–Ni system: control of electrical resistivity, flexural strength, and extrusion | |
JPS6191076A (en) | Porous silicon carbide sintered body and manufacture | |
KR20170109515A (en) | Porous silicon nitride sintered body and method for manufacturing the same | |
Bukhari et al. | Effect of graphite and Mn3O4 on clay-bonded SiC ceramics for the production of electrically conductive heatable filter | |
JPH0379310B2 (en) | ||
Wilson et al. | Nanowire‐decorated SiC foam from tissue paper and silicon powder by filter‐pressing | |
CN1323051C (en) | A kind of aluminum borate composite porous ceramic and preparation method thereof | |
JPH09268085A (en) | Method for producing porous silicon carbide body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110406 Termination date: 20170415 |
|
CF01 | Termination of patent right due to non-payment of annual fee |