JPS61294838A - Electrode and wiring of semiconductor device - Google Patents

Electrode and wiring of semiconductor device

Info

Publication number
JPS61294838A
JPS61294838A JP60136027A JP13602785A JPS61294838A JP S61294838 A JPS61294838 A JP S61294838A JP 60136027 A JP60136027 A JP 60136027A JP 13602785 A JP13602785 A JP 13602785A JP S61294838 A JPS61294838 A JP S61294838A
Authority
JP
Japan
Prior art keywords
wiring
wire
semiconductor
electrode
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60136027A
Other languages
Japanese (ja)
Other versions
JPH0624205B2 (en
Inventor
Yasushi Kawabuchi
靖 河渕
Hitoshi Onuki
仁 大貫
Masahiro Koizumi
小泉 正博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60136027A priority Critical patent/JPH0624205B2/en
Publication of JPS61294838A publication Critical patent/JPS61294838A/en
Publication of JPH0624205B2 publication Critical patent/JPH0624205B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond

Abstract

PURPOSE:To obtain a highly reliable semiconductor element, by using Cu, whose electrtomigration is excellent, instead of a conventional Al wiring film. CONSTITUTION:Pure Al or Al including Si is used for a part of an electrode 4, which is contacted with a semiconductor. Cu is used for a wiring part 6, through which a current flows. By using these parts, the highly stable electrode and wiring of a semiconductor device, for which high integration density and high accuracy are required, are formed. As a bonding wire 9, which contacts a lead frame and elements, Cu wire is used. Thus the bonding part of the Cu wiring film on the semiconductor substrate and the Cu wire are directly connected with each other.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体装置の高安定電極、配線に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to highly stable electrodes and wiring for semiconductor devices.

〔発明の背景〕[Background of the invention]

従来、半導体装置の電極・配線でCu添加のAlが、例
えば米国特許第3743894号公報に記載のよウニ、
エレクトロマイグレーション即ち電気移動の問題を回避
するために用いられてきた。
Conventionally, Cu-doped Al was used in electrodes and wiring of semiconductor devices, for example, as described in U.S. Pat. No. 3,743,894,
It has been used to avoid electromigration problems.

半導体装置の配線V′iAlが一般に用いられるこの装
置を高電流と高温状態の下で作動させるとき、Al配線
膜げそれを流れる電流により移動せしめられてこの金属
をある区域では盛上けらせ他の区域では空所を形成きせ
る。この空所は十分大きくなるとこの空所が生じた区域
での金属接触の抵抗を十分増大させて抵抗加熱を起こし
接触金属を溶融はせ、それによりこの装置の早期の事故
を起させる可能性がある。
When the device is operated under high current and high temperature conditions in which semiconductor device wiring V'iAl is commonly used, the Al wiring film is moved by the current flowing through it, causing the metal to bulge in certain areas. A void is formed in the area. When this void is large enough, it can increase the resistance of the metal contact in the area where it occurs sufficiently to cause resistive heating and melting of the contact metal, thereby potentially causing premature failure of the device. be.

上記米国特許によれば、このエレクトロマイグレーショ
ンの問題を回避するためにAlに1〜】0重量幅のCu
を混入する。そのためCu A l 2粒子の細粒構造
を形成してこれがAl粒界と粒界三重点に介在し、Al
の原子移動を防げエレクトロマイグレーションに対する
装置の寿命を長くすることができる。
According to the above US patent, in order to avoid this electromigration problem, Cu with a weight range of 1 to ]0 is added to Al.
Mix in. Therefore, a fine grain structure of Cu Al 2 particles is formed, which is interposed at Al grain boundaries and grain boundary triple points, and Al
This can prolong the life of the device against electromigration.

本発明げAlよりも抵抗率の低いCuを用いて配線膜を
形成するもので、AlVC比べ電流密度を大きくとるこ
とができる。更vcCuの融点UAlよシも400C以
上高いため、エレクトロマイグレーションによる装置の
早期の事故を防ぐことができる。このように配線をCL
Iで形成することによって配線膜の幅を小きくすること
ができ半導体基板の実装密度を上げることができる。同
時に工レフトロマイグレーションによる装置の早期破壊
を防止できる。
In the present invention, the wiring film is formed using Cu, which has a lower resistivity than Al, and can have a higher current density than AlVC. Furthermore, since the melting point of vcCu is higher than that of UA1 by 400C or more, it is possible to prevent an early failure of the device due to electromigration. Connect the wiring like this to CL
By forming the wiring film using I, the width of the wiring film can be reduced and the packaging density of the semiconductor substrate can be increased. At the same time, it is possible to prevent premature destruction of the device due to left-field migration.

〔発明の目的〕[Purpose of the invention]

本発明の目的は従来の半導体Al配線膜に代わす、耐エ
レクトロマイグレーション性に優れたCuを用いること
によって、信頼性の高い半導体素子を提供することにあ
る。
An object of the present invention is to provide a highly reliable semiconductor element by using Cu, which has excellent electromigration resistance, in place of the conventional semiconductor Al wiring film.

〔発明の概要〕[Summary of the invention]

従来、半導体装置の電極・配線には純Al又はSi入、
QAlが用いられていた。しかし、純Al。
Conventionally, electrodes and wiring of semiconductor devices contain pure Al or Si,
QAl was used. However, pure Al.

3i人りAlflエレクトロマイグレーション耐量が小
ざく、高電流密度の電流を流すと、電極と半導体基体と
のコンタクト抵抗が増大する。あるいぼ、原子移動によ
り配線が断線してしまう等の欠点があった。
3i Alfl electromigration resistance is small, and when a current with a high current density is passed, the contact resistance between the electrode and the semiconductor substrate increases. There were drawbacks such as warts and wire breakage due to atomic movement.

またCu人F)Al配線は耐エレクトロマイグレー7ヨ
ン性を有しているが、CLI添加によりAl配線の比抵
抗が上昇するため、電流を流した際、素子の温度が著し
く上昇し、素子の動作不良の原因となる。またCu入す
Al配線でけAl基地中にCuが分散しているため、エ
ツチングの際1’rA/l。
Furthermore, although Cu and Al interconnects have electromigration resistance, the addition of CLI increases the specific resistance of the Al interconnects, so when current is applied, the temperature of the device increases significantly, causing the device to may cause malfunction. In addition, since Cu is dispersed in the Al base in the Al wiring containing Cu, the etching rate is 1'rA/l.

原子とCu原子とが局部電池として作用し、Al配線の
パターン精度が悪くなるという欠点がある。
There is a drawback that the atoms and Cu atoms act as a local battery and the pattern accuracy of the Al wiring deteriorates.

特に集積密度を高めた素子に於ける配線幅1μm以下の
Cu入シフAl配線げパターニング精度を確保するため
、高度の加工技術を必要とする。
In particular, advanced processing technology is required to ensure patterning accuracy for Cu-containing Schiff Al wiring with a wiring width of 1 μm or less in devices with increased integration density.

本発明では、これらの欠点を除去するために、半導体と
のコンタクトをとる電極部分には純AlあるいけSi入
りAlを用い、電流が流れる配線部分子/ctlCuを
用いたもので、その目的は高集積、高精度を要求される
半導体装置の高安定電極・配線を実現することにある。
In the present invention, in order to eliminate these drawbacks, pure Al or Si-containing Al is used for the electrode part that makes contact with the semiconductor, and the wiring part through which current flows is made of /ctlCu. The aim is to realize highly stable electrodes and wiring for semiconductor devices that require high integration and high precision.

またリードフレームと素子を接続するボンディングワイ
ヤとしてCuワイヤを用いることにより、半導体基体上
のCu配線膜のポンディングパッド部分とCuワイヤと
を直接接合できる利点がある。更にその際、銅製のリー
ドフレームを用いることにより、半導体基体上の配線膜
、ポンディフグワイヤ、リードフレーム全てを銅で構成
することになり、耐湿信頼性・安定性に非常に優れた半
導体装置を提供するととができる。
Further, by using a Cu wire as a bonding wire for connecting a lead frame and an element, there is an advantage that the bonding pad portion of the Cu wiring film on the semiconductor substrate and the Cu wire can be directly bonded. Furthermore, by using a copper lead frame, the wiring film on the semiconductor substrate, the Pondy wire, and the lead frame are all made of copper, resulting in a semiconductor device with excellent moisture resistance and stability. You can do this by providing .

更にCu配線膜の結晶粒を配線幅よりも小さく、結晶性
を半導体基板に対して〔111〕又は[oO)方向に優
先配向させることによシ、耐エレクトロマイグレーショ
ン性をより高めることができる。
Further, by making the crystal grains of the Cu wiring film smaller than the wiring width and preferentially oriented the crystallinity in the [111] or [oO) direction with respect to the semiconductor substrate, electromigration resistance can be further improved.

次に、その理由を述べる。3i入りktの電気比抵抗が
3.1μΩαなのに対しCuのそれが1.5μΩmと小
さく、また3i人りAlの融点が、6600以下である
のに対し、 CLIのそれが10830と高いため、同
一電流密度の通電でげCuの方が温度上昇が少なく、軟
化の度合も小さい。更に結晶の辷り面の多少を示す積層
欠陥エネルギは、(111)面内でCuでは小さく (
40erg/crr?)、A/、では大きい(200e
rgz2m”)。これはAlの辷シ面の密度がCuのそ
れの数倍ある事を意味し、AlO方が電流を流した時の
エレクトロマイグレーションを起こし易いことを意味し
ている。
Next, I will explain the reason. The electrical resistivity of KT containing 3i is 3.1 μΩα, while that of Cu is small at 1.5 μΩm, and the melting point of Al containing 3i is 6600 or less, whereas that of CLI is high at 10830, so it is the same. When the current density is applied to Cu, the temperature rise is smaller and the degree of softening is smaller. Furthermore, the stacking fault energy, which indicates the extent of the sliding plane of the crystal, is small in Cu in the (111) plane (
40erg/crr? ), A/, is large (200e
rgz2m''). This means that the density of the lattice surface of Al is several times that of Cu, and means that AlO is more likely to cause electromigration when a current is passed through it.

一方、Cu配線KCuワイヤをボンディングするばかり
でなく、従来のAuワイヤあるいはAlワイヤによるボ
ンディングを行なうため、半導体基体上のCu配線膜の
ポンディングパッド部にボンディングの安定性にすぐれ
た純Al又はNi。
On the other hand, in order to bond not only the Cu wiring KCu wire but also the conventional Au wire or Al wire, pure Al or Ni, which has excellent bonding stability, is bonded to the bonding pad part of the Cu wiring film on the semiconductor substrate. .

Pd、Ptのうち少くとも1種以上を添加したM層を堆
積させればよい。この方法を用いることにより、従来設
備を生かし、Cuワイヤでボンディングしたのと同等の
高信頼性を有する半導体装置を提供することができる。
An M layer doped with at least one of Pd and Pt may be deposited. By using this method, it is possible to make use of conventional equipment and provide a semiconductor device having the same high reliability as bonding with Cu wire.

このようにしてl’):襄した半導体装ltをセラミク
スモールドすることによシ劣悪な環境下でも製品の信頼
性を確保できる。また、セラミクスモールドの替わ、9
K、エポキシ樹脂を主とする樹脂モールドを行なうこと
によっても外部環境から内部の半導体基板を保護するこ
とができる。
In this way, the reliability of the product can be ensured even under harsh environments by ceramic molding the soldered semiconductor device lt. Also, instead of ceramic mold, 9
K. The internal semiconductor substrate can also be protected from the external environment by performing resin molding mainly using epoxy resin.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例によって詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

第1図は本発明の実施例の構造を示した断面図である。FIG. 1 is a sectional view showing the structure of an embodiment of the present invention.

図において、1は半導体基板(Si基板。In the figure, 1 is a semiconductor substrate (Si substrate).

Qa−As基板)、2#:を不純物(例えばP、As。Qa-As substrate), 2#: impurities (e.g. P, As.

B、Al等)を拡散した拡散層、3け窓明けされた絶縁
物(例えば厚き0.1〜0.5μmのsio、膜乃至P
EG膜)、4は純Al又は3i人少Al層で形成(例え
ば蒸着、スパッタ、CVD法等により厚さ0.1〜0.
5μm堆積させ、フォトエツチングによシバターニング
後350〜550Cの熱処理を5〜60分間施して安定
化する。)された電極であシ、拡散層2とコンタクト5
で接触している。6F1ktvc比べ電気比抵抗が半分
のCu層で形成(例えば蒸着、スパッタ、CVD法等に
よシ厚さ0.5〜2μm堆積させ、パターニング後25
0〜550Cの熱処理を5〜60分間施こして安定化す
る。)された配線であり、電極4と接触している。7は
素子表面を保護する保護膜(例えば厚ざ0.5〜2.0
77mの8sOt膜乃至PSG膜)でポンディングパッ
ド部分8が開口されている。9はCuボンディングワイ
ヤでパッド部8にボンディング(熱圧着又は超音波ボン
ディング等による。)される。
B, Al, etc.) diffused layer, insulator with 3-hole opening (for example, 0.1 to 0.5 μm thick SIO, film or P)
EG film), 4 is formed of pure Al or 3i thin Al layer (for example, formed by vapor deposition, sputtering, CVD, etc. to a thickness of 0.1-0.
The film is deposited to a thickness of 5 .mu.m, and after photoetching and patterning, it is stabilized by heat treatment at 350 to 550 C for 5 to 60 minutes. ) electrode, diffusion layer 2 and contact 5
I am in contact with. Formed with a Cu layer with half the electrical resistivity compared to 6F1ktvc (for example, deposited with a thickness of 0.5 to 2 μm by evaporation, sputtering, CVD, etc., and after patterning,
Heat treatment at 0-550C for 5-60 minutes is performed to stabilize. ) and is in contact with the electrode 4. 7 is a protective film that protects the element surface (for example, a thickness of 0.5 to 2.0
The bonding pad portion 8 is opened in 77 m of 8sOt film to PSG film. Reference numeral 9 is a Cu bonding wire that is bonded to the pad portion 8 (by thermocompression bonding, ultrasonic bonding, etc.).

このように構成すると、以下に述べるように配線部分を
純Al又はSi入りAlを用いた場合に比べ耐エレクト
ロマイグレーション性が高く、また従来のAl配線膜、
Auボンディングワイヤで構成された樹脂モールド半導
体製品に比べて耐湿信頼性も向上する。
With this structure, as described below, the electromigration resistance is higher than when pure Al or Si-containing Al is used for the wiring portion, and the conventional Al wiring film,
Moisture-resistance reliability is also improved compared to resin-molded semiconductor products made of Au bonding wires.

第2図は本発明の詳細な説明するためのグラフであり、
配線材料として、従来のSi入、OAlを用いた場合と
、本発明のCu配線を用いた場合の高温通電試験におけ
る抵抗値の経時変化を示す。
FIG. 2 is a graph for explaining the present invention in detail,
2 shows the change in resistance value over time in a high temperature current conduction test when conventional Si-containing OAl is used as the wiring material and when the Cu wiring of the present invention is used.

図から明らかなようKSi入りAlVc比べCu配線の
方が安定である。
As is clear from the figure, Cu wiring is more stable than AlVc containing KSi.

この理由に、Si人nhtの電気比抵抗が3.1μΩの
なのに対しCuのそれが1.5μΩ譚と小さく、またS
i入フシAl融点が660C以下であるのに対し、Cu
のそれが10830と高いため、同一電流密度の通電で
はCuの方が温度上昇が少なく、軟化の度合も小さいた
めである。
The reason for this is that the electrical resistivity of Si nht is 3.1 μΩ, while that of Cu is as small as 1.5 μΩ, and
While the melting point of aluminum containing aluminum is below 660C, Cu
This is because Cu has a higher temperature of 10830, so when the same current density is applied, the temperature rise in Cu is smaller and the degree of softening is smaller.

第3図は樹脂モールドした場合のCu配線、Cuボンデ
ィングワイヤの組合せと、従来のSi入クシAl配線A
uボンデイングワイーヤを組合せた場合の加速寿命試験
(2気圧飽和水蒸気中放置試験)の結果を示す。図から
明らかなように従来の方法に比べCu配線Cuワイヤの
組合せの方が耐湿信頼性に優れ、寿命が2〜2.5倍に
なる。
Figure 3 shows the combination of Cu wiring and Cu bonding wire when molded with resin, and the conventional Si-filled comb Al wiring A.
The results of an accelerated life test (standing test in 2-atmosphere saturated steam) when U-bonding wires are combined are shown. As is clear from the figure, compared to the conventional method, the combination of Cu wiring and Cu wire has superior moisture resistance and reliability, and has a service life 2 to 2.5 times longer.

この理由に、従来の方法ではAlとAuを接合させてお
り、その接合部に水分が侵入してくると局部電池を形成
し電気的に卑なAlが浴けてしまうのに対し、本発明で
11cu配線Cuワイヤの組合せのため局部電池が形成
されず耐食性が向上するものと考えられる。
The reason for this is that in the conventional method, Al and Au are bonded, and if moisture enters the bond, a local battery is formed and the electrically base Al is exposed, whereas the present invention It is thought that because of the combination of 11 cu wiring Cu wire, no local battery is formed and corrosion resistance is improved.

以上をまとめると、本発明によれば、エレクトロマイグ
レーションに対する信頼性と耐湿信頼性の2つを同時に
満足できると考えられる。
To summarize the above, it is considered that according to the present invention, both reliability against electromigration and reliability against moisture can be simultaneously satisfied.

第4図は本発明のもう一つの実施例の構造を示した断面
図である。図において、前出の図1に於ける同一符号の
ものは同−又は均等部分を示すものとする。この実施例
は、第1図の実施例におけるCO配−のポンディングパ
ッド部分8とAu又はA/=又nCuワイヤ11の中間
K N i 、 Pd、 Ptのうち少くとも1種以上
の元素を0.01〜3係含むAl層10(例えば厚go
、1〜1.0μm)を堆積したものである。このAl層
10は耐食性を有していることが知、られており、ボン
ディングワイヤとCu配線膜間のボンディングの安定性
を損なうのを防止するとともに耐湿信頼性を持たせる役
割をはたす。
FIG. 4 is a sectional view showing the structure of another embodiment of the present invention. In the figures, the same reference numerals as in FIG. 1 above indicate the same or equivalent parts. In this embodiment, at least one element among KNi, Pd, and Pt is added between the bonding pad portion 8 of the CO arrangement and the Au or A/=nCu wire 11 in the embodiment of FIG. Al layer 10 (for example, thickness go
, 1 to 1.0 μm). This Al layer 10 is known to have corrosion resistance, and plays the role of preventing deterioration of the stability of the bonding between the bonding wire and the Cu wiring film and providing moisture resistance reliability.

以上説明したように、本発明によれば、エレクトロマイ
グレーション耐性が高く、かつ耐湿信頼性にすぐれた配
線が得られる。
As described above, according to the present invention, wiring having high electromigration resistance and excellent moisture resistance reliability can be obtained.

また、耐食性を有するAl−をポンディングパッド上に
設けることによシ、Au、A/=、CO何れのワイヤも
容易にボンディングでき、かつ電極・配線形成後に熱処
理が加わる場合でも、ボンディングの安定性は維持され
、セラミクスモールド又は樹脂モールドを行った際に高
信頼性の半導体素子を作製できる。
In addition, by providing corrosion-resistant Al- on the bonding pad, it is possible to easily bond Au, A/=, and CO wires, and the bonding is stable even when heat treatment is applied after electrode/wiring formation. properties are maintained, and a highly reliable semiconductor element can be produced when ceramic molding or resin molding is performed.

次に、CLI配線膜の構造について本発明の詳細な説明
する。第5図ばCu配線膜を形成する際に基板温度を変
身、て結晶粒の大きさを配線幅(1μm)よりも小さく
していった場合の高温通電試1険における抵抗値の経時
変化を示す。図から明らかなように結晶粒が小さなもの
程安定度が高く、結晶粒が配線幅よりも大きなものでは
寿命が短かい。
Next, the structure of the CLI wiring film will be described in detail. Figure 5 shows the change in resistance value over time during a high-temperature current test when the substrate temperature was changed to make the crystal grain size smaller than the wiring width (1 μm) when forming a Cu wiring film. show. As is clear from the figure, the smaller the crystal grain is, the higher the stability is, and the shorter the life is if the crystal grain is larger than the wiring width.

この理由は結晶粒が小さなもの程、粒界拡散が均一に起
こり、配線幅と結晶粒の大きざが同程度になると粒界拡
散の影響で粒界から配線が断線するためだと考えられる
The reason for this is thought to be that the smaller the crystal grains are, the more uniform the grain boundary diffusion occurs, and when the wiring width and the size of the crystal grains are about the same, the wiring will be disconnected from the grain boundary due to the influence of grain boundary diffusion.

第6図げCu配線膜の結晶性を半導体基板に対して[1
111又1(100)方向に優先配向させた場合(例え
ば、基板glf150C以上でスパッタ法により形成す
る。)と結晶の配向性が無い場合の、高温通電試験にお
ける抵抗値の経時変化を示す。図から明らかなように〔
111〕又は(100)方向に優先配向させたものでに
安定度が高い。
Figure 6: The crystallinity of the Cu wiring film is compared to the semiconductor substrate [1].
111 or 1 (100) direction (for example, formed by sputtering on a substrate glf of 150C or higher) and when there is no crystal orientation, the change in resistance value over time in a high temperature current conduction test is shown. As is clear from the figure
111] or (100) direction has high stability.

この理由kl Cuが面心立方格子であるため、辷り変
形する際の剪断応力最大の辷り系#’!(111)面と
なる。その際、結晶が半導体基板に対して〔111〕又
fl[100]方向に優先配向していると、(111)
面上を移動してくる転位は不動転位の障壁に向かって堆
積し、転位の移動が妨げられることによりCu配線膜が
強化されることになるためと考えられる。
The reason for this is that kl Cu has a face-centered cubic lattice, so the sliding system #' has the maximum shear stress during sliding deformation! It becomes a (111) plane. At that time, if the crystal is preferentially oriented in the [111] or fl[100] direction with respect to the semiconductor substrate, (111)
This is thought to be because dislocations moving on the surface accumulate toward the barrier of immobile dislocations, and the Cu wiring film is strengthened by preventing the movement of dislocations.

以上説明したように、本発明による構造のCu配線膜を
用いれば、エレクトロマイグレーション耐性が高い高信
頼性の半導体素子を作製できる。
As explained above, by using the Cu wiring film having the structure according to the present invention, a highly reliable semiconductor element with high electromigration resistance can be manufactured.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、耐食性、耐エレクトロマイグレーショ
ン性ともに優れた半導体用配線膜が得られる。その結果
、樹脂モールドあるいけセラミクスモールドの半導体素
子の高密度、微細配線パターンに適用でき、半導体装置
の信頼性の向上を図ることができる。
According to the present invention, a semiconductor wiring film having excellent corrosion resistance and electromigration resistance can be obtained. As a result, the present invention can be applied to high-density, fine wiring patterns of resin-molded or ceramic-molded semiconductor elements, and the reliability of semiconductor devices can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第4図はそれぞれ本発明の実施例の構造を示
した断面図、第2図、第5図及び第6図ケ本発明の効果
による耐エレクトロマイグレーション性を示した線図、
第3図は本発明による耐湿性の効果を示したグラフであ
る。 1・・・半導体基板、2・・・拡散層、3・・・絶縁物
、6・・・Cue、7・・・保護膜、8・・・ポンディ
ングパッド、9・・・Cuワイヤ、11・・・ボンディ
ングワイヤ。
1 and 4 are cross-sectional views showing the structure of an embodiment of the present invention, and FIGS. 2, 5, and 6 are diagrams showing electromigration resistance due to the effects of the present invention,
FIG. 3 is a graph showing the effect of moisture resistance according to the present invention. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Diffusion layer, 3... Insulator, 6... Cue, 7... Protective film, 8... Bonding pad, 9... Cu wire, 11 ...bonding wire.

Claims (1)

【特許請求の範囲】[Claims] 1、半導体基板とのコンタクトをとる電極にAl層又は
Si入りAl層を用い、配線膜はそのAl層上に堆積し
たCu層を用いることを特徴とする半導体装置の電極・
配線。
1. An electrode for a semiconductor device characterized in that an Al layer or a Si-containing Al layer is used as an electrode for making contact with a semiconductor substrate, and a Cu layer deposited on the Al layer is used as a wiring film.
wiring.
JP60136027A 1985-06-24 1985-06-24 Semiconductor device Expired - Lifetime JPH0624205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60136027A JPH0624205B2 (en) 1985-06-24 1985-06-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60136027A JPH0624205B2 (en) 1985-06-24 1985-06-24 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS61294838A true JPS61294838A (en) 1986-12-25
JPH0624205B2 JPH0624205B2 (en) 1994-03-30

Family

ID=15165470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60136027A Expired - Lifetime JPH0624205B2 (en) 1985-06-24 1985-06-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0624205B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131021A (en) * 1989-10-16 1991-06-04 Matsushita Electron Corp Manufacture of semiconductor device
JP2005217445A (en) * 1996-12-04 2005-08-11 Seiko Epson Corp Production process of semiconductor device
US7183189B2 (en) 1996-12-04 2007-02-27 Seiko Epson Corporation Semiconductor device, circuit board, and electronic instrument
US7470979B2 (en) 1996-12-04 2008-12-30 Seiko Epson Corporation Electronic component and semiconductor device, method of making the same and method of mounting the same, circuit board, and electronic instrument
US7755192B2 (en) 2008-03-25 2010-07-13 Tohoku University Copper interconnection structure, barrier layer including carbon and hydrogen
JP2013219385A (en) * 2013-06-21 2013-10-24 Renesas Electronics Corp Semiconductor device
US8912540B2 (en) 2008-03-31 2014-12-16 Renesas Electronics Corporations Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943570A (en) * 1972-08-29 1974-04-24
JPS53116089A (en) * 1977-03-22 1978-10-11 Hitachi Ltd Wiring constituent body
JPS5818345U (en) * 1981-07-28 1983-02-04 株式会社日立製作所 Migration resistant Al wiring
JPS59143320A (en) * 1983-02-04 1984-08-16 Tdk Corp Formation of patterned conductive layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943570A (en) * 1972-08-29 1974-04-24
JPS53116089A (en) * 1977-03-22 1978-10-11 Hitachi Ltd Wiring constituent body
JPS5818345U (en) * 1981-07-28 1983-02-04 株式会社日立製作所 Migration resistant Al wiring
JPS59143320A (en) * 1983-02-04 1984-08-16 Tdk Corp Formation of patterned conductive layer

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131021A (en) * 1989-10-16 1991-06-04 Matsushita Electron Corp Manufacture of semiconductor device
US8115284B2 (en) 1996-12-04 2012-02-14 Seiko Epson Corporation Electronic component and semiconductor device, method of making the same and method of mounting the same, circuit board and electronic instrument
JP2005217445A (en) * 1996-12-04 2005-08-11 Seiko Epson Corp Production process of semiconductor device
US7888260B2 (en) 1996-12-04 2011-02-15 Seiko Epson Corporation Method of making electronic device
US7511362B2 (en) 1996-12-04 2009-03-31 Seiko Epson Corporation Electronic component and semiconductor device, method of making the same and method of mounting the same, circuit board, and electronic instrument
US7521796B2 (en) 1996-12-04 2009-04-21 Seiko Epson Corporation Method of making the semiconductor device, circuit board, and electronic instrument
JP4513973B2 (en) * 1996-12-04 2010-07-28 セイコーエプソン株式会社 Manufacturing method of semiconductor device
US7842598B2 (en) 1996-12-04 2010-11-30 Seiko Epson Corporation Electronic component and semiconductor device, method of making the same and method of mounting the same, circuit board, and electronic instrument
US7470979B2 (en) 1996-12-04 2008-12-30 Seiko Epson Corporation Electronic component and semiconductor device, method of making the same and method of mounting the same, circuit board, and electronic instrument
US7183189B2 (en) 1996-12-04 2007-02-27 Seiko Epson Corporation Semiconductor device, circuit board, and electronic instrument
US8384213B2 (en) 1996-12-04 2013-02-26 Seiko Epson Corporation Semiconductor device, circuit board, and electronic instrument
US7755192B2 (en) 2008-03-25 2010-07-13 Tohoku University Copper interconnection structure, barrier layer including carbon and hydrogen
US8163649B2 (en) 2008-03-25 2012-04-24 Advanced Interconnect Materials, Llc Copper interconnection structure, semiconductor device, and method for forming copper interconnection structure
US10566255B2 (en) 2008-03-31 2020-02-18 Renesas Electronics Corporation Method of manufacturing semiconductor device
US8912540B2 (en) 2008-03-31 2014-12-16 Renesas Electronics Corporations Semiconductor device
US9165845B2 (en) 2008-03-31 2015-10-20 Renesas Electronics Corporation Semiconductor device
US9646901B2 (en) 2008-03-31 2017-05-09 Renesas Electronics Corporation Semiconductor device with bond pad wiring lead-out arrangement avoiding bond pad probe mark area
US9911673B2 (en) 2008-03-31 2018-03-06 Renesas Electronics Corporation Semiconductor device with bond pad wiring lead-out arrangement avoiding bond pad probe mark area
US10134648B2 (en) 2008-03-31 2018-11-20 Renesas Electronics Corporation Manufacturing method of semiconductor device
JP2013219385A (en) * 2013-06-21 2013-10-24 Renesas Electronics Corp Semiconductor device

Also Published As

Publication number Publication date
JPH0624205B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
US4908685A (en) Magnetoelectric transducer
US4700273A (en) Circuit assembly with semiconductor expansion matched thermal path
US4620215A (en) Integrated circuit packaging systems with double surface heat dissipation
US4060828A (en) Semiconductor device having multi-layer wiring structure with additional through-hole interconnection
US5150193A (en) Resin-encapsulated semiconductor device having a particular mounting structure
KR100241476B1 (en) Insulated lead frame for integrated circuits and method of manufacture thereof
US4924291A (en) Flagless semiconductor package
JPH0897217A (en) Semiconductor device and its manufacture
US7030496B2 (en) Semiconductor device having aluminum and metal electrodes and method for manufacturing the same
US4467345A (en) Semiconductor integrated circuit device
KR890012377A (en) Semiconductor device and manufacturing method
US3566214A (en) Integrated circuit having a plurality of circuit element regions and conducting layers extending on both of the opposed common major surfaces of said circuit element regions
EP0460785B1 (en) Semiconductor device having a heat sink
JPS61294838A (en) Electrode and wiring of semiconductor device
US4734754A (en) Semiconductor device having improved structure of multi-wiring layers
US5898128A (en) Electronic component
DE102008039939B4 (en) Integrated circuit device with a vapor-deposited insulating layer and method for its production
JPS59229850A (en) Semiconductor device
JPH0645504A (en) Semiconductor device
US3859180A (en) Method for encapsulating discrete semiconductor chips
JPS5925238A (en) Semiconductor device
JPS615562A (en) Semiconductor device
JPS6046824B2 (en) Method for forming electrode wiring in semiconductor devices
JPH0555221A (en) Semiconductor device
JP2536626Y2 (en) Hybrid integrated circuit