JPS61292220A - Vertical magnetic recording medium - Google Patents

Vertical magnetic recording medium

Info

Publication number
JPS61292220A
JPS61292220A JP13219285A JP13219285A JPS61292220A JP S61292220 A JPS61292220 A JP S61292220A JP 13219285 A JP13219285 A JP 13219285A JP 13219285 A JP13219285 A JP 13219285A JP S61292220 A JPS61292220 A JP S61292220A
Authority
JP
Japan
Prior art keywords
magnetic
coercive force
layer
magnetization
crystal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13219285A
Other languages
Japanese (ja)
Other versions
JPH0628091B2 (en
Inventor
Yasuo Ishizaka
石坂 安雄
Noboru Watanabe
昇 渡辺
Kazuo Kimura
一雄 木村
Eiichiro Imaoka
今岡 英一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP13219285A priority Critical patent/JPH0628091B2/en
Priority to US06/834,236 priority patent/US4731300A/en
Priority to DE19863607500 priority patent/DE3607500A1/en
Publication of JPS61292220A publication Critical patent/JPS61292220A/en
Publication of JPH0628091B2 publication Critical patent/JPH0628091B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain good reproduction output by selecting the ratio of the coercive forces which the respective layers of magnetic layers formed of upper and lower layers possess within a prescribed range. CONSTITUTION:The ratio between the coercive force in the vertical direction of the upper layer 3 of a vertical magnetic recording medium having the magnetic layers 3, 2 formed of the upper layer and lower layer and the coercive force in the intra-surface direction of the lower layer 2 is selected to the ratio expressed by the equation. The magnetic layers which the vertical magnetic recording medium has are thereby constructed as the magnetic layers having a magnetization jump so that the magnetic flux released from a magnetic head 4 advances into the lower layer 2 having low coercive force and progresses in a horizontal direction. This magnetic flux is quickly and sharply penetrated through the upper layer 3 having the high coercive force by the magnetic pole of the magnetic head and is attracted to the magnetic pole of the magnetic head and therefore the strong residual magnetization is generated and the high reproduction output is realized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は垂直磁気記録媒体に係り、特に垂直磁気特性を
向上し得る垂直磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a perpendicular magnetic recording medium, and more particularly to a perpendicular magnetic recording medium capable of improving perpendicular magnetic properties.

従来の技術 一般に、磁気ヘッドにより磁気記録媒体に記録。Conventional technology Generally, recording is performed on a magnetic recording medium using a magnetic head.

再生を行なうには、磁気ヘッドにより磁気記録媒体の磁
性層にその媒体長手方向(面内方向)の磁化を行なわせ
て記録し、これを再生するものが汎用されている。しか
るに、これによれば記録が高密度になるに従って減磁界
が大きくなり減磁作用が高密度記録に悪WeWを及ぼす
ことが知られている。そこで近年上記悪影響を解消する
ものとして、磁気記録媒体の磁性層に垂直方向に磁化を
行なう垂直磁気記録方式が提案されている。これによれ
ば記録密度を向上させるに従い減磁界が小さくなり理論
的には残留磁化の減少がない良好な高密度記録を行なう
ことができる。
In order to perform reproduction, a commonly used system is to magnetize the magnetic layer of a magnetic recording medium in the longitudinal direction (in-plane direction) of the medium using a magnetic head, record the information, and then reproduce the recorded information. However, according to this method, it is known that as the recording density increases, the demagnetizing field increases, and the demagnetizing effect exerts an adverse WeW effect on high-density recording. Therefore, in recent years, a perpendicular magnetic recording method has been proposed in which the magnetic layer of a magnetic recording medium is magnetized in the perpendicular direction to eliminate the above-mentioned adverse effects. According to this, as the recording density is improved, the demagnetizing field becomes smaller, and theoretically, it is possible to perform good high-density recording without reducing residual magnetization.

従来この垂直磁気記録方式に用いる垂直磁気記録媒体と
しては、ベースフィルム上にCo −Cr膜をスパッタ
リングにより被膜形成したものがあった。周知の如く、
Go−Cr膜は比較的高い飽和磁化(Ms )を有し、
かつ膜面に対し垂直な磁化容易軸を持つ(すなわち膜面
に対し垂直方向の抗磁力HC上が大である)ため垂直磁
気記録媒体としては極めて有望な材質であることが知ら
れている。ただし上記の如くスパッタリングによりco
−Cr膜を単層形成した構造の垂直磁気記録媒体の場合
、垂直磁気記録媒体上の所定磁気記録位置に磁束を集中
させることができず(特にリングコアヘッドを用いた場
合顕著である)、垂直磁気記録媒体に分布が鋭くかつ強
い垂直磁化ができないという問題点があった。
Conventionally, perpendicular magnetic recording media used in this perpendicular magnetic recording system include those in which a Co--Cr film is formed on a base film by sputtering. As is well known,
The Go-Cr film has a relatively high saturation magnetization (Ms),
It is known that it is an extremely promising material as a perpendicular magnetic recording medium because it has an axis of easy magnetization perpendicular to the film surface (that is, the coercive force HC in the direction perpendicular to the film surface is large). However, as mentioned above, sputtering
- In the case of a perpendicular magnetic recording medium with a structure in which a single layer of Cr film is formed, magnetic flux cannot be concentrated at a predetermined magnetic recording position on the perpendicular magnetic recording medium (this is especially noticeable when a ring core head is used). There was a problem in that the magnetic recording medium had a sharp distribution and could not have strong perpendicular magnetization.

また上記問題点を解決するため、Co −Cr 11と
ベースフィルムとの間に、いわゆる裏打ち層である高透
磁率m<すなわち抗磁力HCが小なる層。
In order to solve the above-mentioned problem, a so-called backing layer is provided between the Co-Cr 11 and the base film, and the layer has a high magnetic permeability m<, that is, a small coercive force HC.

例えばNi −)”e )を別個形成して二層構造とし
高透磁率層内で広がっている磁束を所定磁気記録位置に
て磁気ヘッドの磁極に向は集中させて吸い込まれること
により分布が鋭くかつ強い垂直磁化を行ない得る構成の
垂直磁気記録媒体があった。
For example, Ni -)"e) is separately formed to have a two-layer structure, and the magnetic flux spreading in the high magnetic permeability layer is concentrated and attracted to the magnetic pole of the magnetic head at a predetermined magnetic recording position, resulting in a sharp distribution. There was also a perpendicular magnetic recording medium with a configuration capable of strong perpendicular magnetization.

発明が解決しようとする問題点 しかるに上記従来の垂直磁気記録媒体1例えばCo−C
r単層媒体にリングコアヘッドで記録する場合、その磁
界分布は面内方向成分をかなり有しているので記録時に
磁化が傾きやすい。磁化を垂直に維持するために、垂直
磁気記録媒体は高い垂直異方性磁界(Hk)を有し、飽
和磁化(Ms )はある程度小さい値に抑える必要があ
った。また高い再生出力を実現しようとすると垂直方向
の抗磁力(Hc上)を大きくし垂直磁気記録媒体の厚さ
寸法を大とする必要があった。また厚さ寸法を大とした
場合には垂直磁気記録媒体と磁気ヘッドのいわゆる当た
り(垂直磁気記録媒体と磁気ヘッドの摺接部における摺
接条件)が悪くなり、垂直磁気記録媒体を損傷したり磁
気ヘッドに悪影響が生じ良好な垂直磁気記録再生ができ
ないという問題点があった。
Problems to be Solved by the Invention However, the above-mentioned conventional perpendicular magnetic recording medium 1, for example, Co-C
When recording on an r single-layer medium with a ring core head, the magnetic field distribution has a considerable in-plane component, so the magnetization tends to tilt during recording. In order to maintain perpendicular magnetization, perpendicular magnetic recording media have a high perpendicular anisotropy magnetic field (Hk), and the saturation magnetization (Ms) must be suppressed to a somewhat small value. Furthermore, in order to achieve a high reproduction output, it is necessary to increase the perpendicular coercive force (on Hc) and increase the thickness of the perpendicular magnetic recording medium. In addition, if the thickness dimension is increased, the so-called contact between the perpendicular magnetic recording medium and the magnetic head (sliding contact conditions at the sliding contact part of the perpendicular magnetic recording medium and the magnetic head) will deteriorate, and the perpendicular magnetic recording medium may be damaged. There was a problem in that the magnetic head was adversely affected and good perpendicular magnetic recording and reproduction could not be performed.

またC0−CrHに加え高透磁率層を裏打ち層として形
成された二層構造の垂直磁気記録媒体の場合、Qo−Q
rliの抗磁力Hc(70008以上)に対して高透磁
率層の抗磁力)1cは極めて小(10Qe以下)となっ
ていたため、衝撃性のバルクハウゼンノイズが発生する
という問題点があった。これに加えて二層構造の垂直磁
気記録媒体を得るには、まず高透磁率層を形成するに適
した所定条件にてベースフィルム上に例えばFe −N
i/アモルファス等をスパッタリングにより被膜し、次
にCo−Cr膜を形成するに適した所定条件にてCo−
Crをスパッタリングにより被膜する必要があり、各層
の形成毎にスパッタリング条件及びターゲットを変える
必要があり連続スパッタリングを行なうことができず、
製造工程が複雑になると共に量産性にも劣るという問題
点があった。
In addition, in the case of a two-layer perpendicular magnetic recording medium formed with a high permeability layer as an underlayer in addition to C0-CrH, Qo-Q
Since the coercive force (coercive force) 1c of the high magnetic permeability layer was extremely small (10 Qe or less) compared to the coercive force Hc (70008 or more) of rli, there was a problem in that impulsive Barkhausen noise was generated. In addition, in order to obtain a perpendicular magnetic recording medium with a two-layer structure, firstly, Fe-N, for example, is coated on a base film under predetermined conditions suitable for forming a high magnetic permeability layer.
i/Amorphous etc. is coated by sputtering, and then Co-Cr is coated under predetermined conditions suitable for forming a Co-Cr film.
Cr must be coated by sputtering, and sputtering conditions and targets must be changed each time each layer is formed, making continuous sputtering impossible.
There were problems in that the manufacturing process was complicated and mass productivity was poor.

そこで本発明では、上層と下層とにより形成された磁性
層の各層の有する抗磁力の比を所定範囲内に選定するこ
とにより上記問題点を解決した垂直磁気記録媒体を提供
することを目的とする。
Therefore, an object of the present invention is to provide a perpendicular magnetic recording medium that solves the above problems by selecting the ratio of coercive force of each layer of the magnetic layer formed by the upper layer and the lower layer within a predetermined range. .

問題点を解決するだめの手段 上記問題点を解決するために本発明では、上層と下層と
により形成された磁性層を有する垂直磁気記録媒体の、
上層の垂直方向の抗磁力を1−1c上よう選定した。
Means for Solving the Problems In order to solve the above problems, the present invention provides a perpendicular magnetic recording medium having a magnetic layer formed of an upper layer and a lower layer.
The vertical coercive force of the upper layer was chosen to be 1-1c above.

実施例 本発明になる垂直磁気記録媒体(以下単に記録媒体とい
う)は、ベースとなるポリイミド基板上に例えばコバル
ト(Co)、クロム(Cr )にニオブ(Nb )及び
タンタル(Ta )のうち少なくとも一方を加えてなる
磁性材をターゲットとしてスパッタリングすることによ
って得られる。
Embodiment A perpendicular magnetic recording medium according to the present invention (hereinafter simply referred to as a recording medium) has a base polyimide substrate coated with at least one of cobalt (Co), chromium (Cr), niobium (Nb), and tantalum (Ta). It is obtained by sputtering using a magnetic material as a target.

従来より金属等(例えばGo−Cr合金)をベース上に
スパッタリングした際、被膜形成されたIIIはその膜
面に垂直方向に対して同一結晶構造を形成するのではな
く、ベース近傍の極めて薄い部分にまず小粒径の第一の
結晶層を形成し、その上部に続いて大粒径の第二の結晶
層が形成されることが各種の実験(例えば走査型電子顕
微鏡による写真撮影)により明らかになってきている(
 E dward  R、Wuori  and  P
 rofessor  J 。
Conventionally, when metal etc. (e.g. Go-Cr alloy) is sputtered onto a base, the formed III film does not form the same crystal structure in the direction perpendicular to the film surface, but rather forms an extremely thin part near the base. Various experiments (e.g., scanning electron microscopy photography) have shown that a first crystal layer with small grain size is formed first, followed by a second crystal layer with large grain size. It is becoming (
E dward R, Wuori and P
rofessor J.

H,Judy :“IIITIAL  LAYEREF
FECT  IN  Co−CRFILMS″。
H, Judy: “IIITIAL LAYEREF
FECT IN Co-CRFILMS''.

rEEE  Trans、、VOL、MAG−20゜N
O,5,SEPTEMBER1984,P 774〜P
775またはWilliam  G、 Haines 
: “VSMPROFILING  OF  Co C
rFIMS:A  NEW  ANALYTICALT
ECI−(N IQtJE”IEEE  Trans、
 、 VOL、MAG−20,No、5.SEPTEM
BER1984,P 812〜p 814)。本発明者
は上記観点に注目しCo−Cr合金を基とし、またこれ
に第三元素を添加した金属を各種スパッタリングし、形
成される小粒径の結晶層とその上部に形成された大粒径
の結晶層との物理的性質を測定した結果、特に第三元素
としてNbまたはTaを添加した場合、小粒径結晶層の
抗磁力が大粒径結晶層よりも非常に小であることがわか
った。本発明ではこの低抗磁力を有する小粒径結晶層を
高透磁率層として用い高抗磁力を有する大粒径結晶層を
垂直磁化層として用いることを特徴とする。
rEEE Trans, , VOL, MAG-20°N
O, 5, SEPTEMBER1984, P 774~P
775 or William G. Haines
: “VSMPROFILING OF CoC
rFIMS: A NEW ANALYTICAL
ECI-(NIQtJE”IEEE Trans,
, VOL, MAG-20, No, 5. SEPTEM
BER1984, p 812-p 814). The present inventor focused on the above viewpoint and sputtered various metals based on a Co-Cr alloy and added with a third element, thereby forming a crystal layer with a small grain size and a large grain crystal layer formed on top of the crystal layer. As a result of measuring the physical properties of the small-grain crystal layer, it was found that the coercive force of the small-grain crystal layer is much smaller than that of the large-grain crystal layer, especially when Nb or Ta is added as a third element. Understood. The present invention is characterized in that the small-grain crystal layer having a low coercive force is used as a high permeability layer, and the large-grain crystal layer having a high coercive force is used as a perpendicular magnetization layer.

以下本発明者が行なったスパッタリングにより形成され
た小粒径結晶層及び大粒径結晶層の抗磁力を測定した実
験結果を詳述する。Co−0r薄膜、 Go −Cr 
−Nb ’flJ膜及びCo −Cr −Ta薄膜をス
パッタリングするに際し、スパッタリング条件は下記の
如く設定した(NbまたはTaを添加した各場合におい
てスパッタリング条件は共に等しく設定した)。
Hereinafter, the results of an experiment conducted by the present inventor to measure the coercive force of a small grain crystal layer and a large grain crystal layer formed by sputtering will be described in detail. Co-0r thin film, Go-Cr
When sputtering the -Nb'flJ film and the Co-Cr-Ta thin film, the sputtering conditions were set as follows (the sputtering conditions were set equally in each case where Nb or Ta was added).

*スパッタ装置 RFマグネトロンスパッタ装置 *スパッタリング方法 連続スパッタリング。予め予備排気圧1×1O−6T 
orrまで排気した後Arガスを導入しI X 10’
T Orrとした *ベース ポリイミド(厚さ20μm) *ターゲット Go−Cr合金上にNbあるいはTaの小片を載置した
複合ターゲット *ターゲット基板間距離 なお薄膜の磁気特性は振動試料型磁力計(理研電子製、
以下VSMと略称する)にて、薄膜の組成はエネルギー
分散型マイクロアナライザ(KEVEX社製、以下ED
Xと略称する)にて、また結晶配向性はX線回折装置(
理学電機製)にて夫々測定した。
*Sputtering equipment RF magnetron sputtering equipment *Sputtering method Continuous sputtering. Preliminary exhaust pressure 1×1O-6T
After exhausting to orr, Ar gas was introduced and I
* Base polyimide (thickness 20 μm) with T Orr * Composite target with a small piece of Nb or Ta placed on a target Go-Cr alloy Made by
The composition of the thin film was measured using an energy dispersive micro analyzer (manufactured by KEVEX, hereinafter referred to as ED).
The crystal orientation was determined using an X-ray diffraction device (abbreviated as X).
(manufactured by Rigaku Denki).

Go−Crに第三元素としてNbを添加(2〜10at
%添加範囲において同一現象が生ずる)し、ポリイミド
ベースに0.2μ讃の膜厚でスパッタリングした記録媒
体に15KOeの磁界を印加した場合の面内方向のヒス
テリシス曲線を第1図に示す。同図より面内方向の抗磁
力(記号HC/で示す)がゼロ近傍部分でヒステリシス
曲線は急激に変則的に立ち上がり(図中矢印Aで示す)
、いわゆる磁化ジャンプが生じていることがわかる。ス
パッタリングされたCo −Or −Nb Wl膜がス
パッタリング時に常に均一の結晶成長を行なったと仮定
した場合、第1図に示された磁化ジャンプは生ずるはず
はなく、これよりGo −Cr −Nb ’flJ膜内
に磁気的性質の異なる複数の結晶層が存在することが推
測される。
Adding Nb as a third element to Go-Cr (2 to 10 at
% addition range), and FIG. 1 shows a hysteresis curve in the in-plane direction when a magnetic field of 15 KOe is applied to a recording medium sputtered to a film thickness of 0.2 μm on a polyimide base. From the same figure, the hysteresis curve suddenly rises irregularly (indicated by arrow A in the figure) in the area where the in-plane coercive force (indicated by the symbol HC/) is near zero.
, it can be seen that a so-called magnetization jump occurs. If we assume that the sputtered Co -Or -Nb Wl film always undergoes uniform crystal growth during sputtering, the magnetization jump shown in Figure 1 should not occur, and from this we can conclude that the Go -Cr -Nb 'flJ film It is speculated that there are multiple crystal layers with different magnetic properties within the structure.

続いて第1図で示した実験条件と同一条件にてGo −
Cr−Nbをポリイミドベースに0,05μmの膜厚で
スパッタリングした記録媒体に15KOeの磁界を印加
した場合の面内方向のビステリシス曲線を第2図に示す
。同図においては第1図に見られたようなヒステリシス
曲線の磁化ジャンプは生じておらず0.05μm程度の
膜厚におけるCo −Cr−Nb薄膜は略均−な結晶と
なっていることが理解される。これに加えて同図より0
.05μm程度の膜厚における抗磁力HC/に注目する
に、抗磁力HC/は極めて小なる値となっており面内方
向に対する透磁率が大であることが理解される。上記結
果よりスパッタリングによりベース近傍位置にはじめに
成長する初期層は抗磁力HC/が小であり、この初期層
は走査型電子顕微鏡写真で確かめられている(前記資料
参照)ベース近傍位置に成長する小粒径の結晶層である
と考えられる。また初期層の上方に成長する層は、初期
層の抗磁力HC/より大なる抗磁力HC/を有し、この
層は同じく走査型電子顕微鏡写真で確かめられている大
粒径の結晶層であると考えられる。
Next, under the same experimental conditions as shown in Fig. 1, Go −
FIG. 2 shows a bisteresis curve in the in-plane direction when a magnetic field of 15 KOe is applied to a recording medium in which Cr-Nb is sputtered to a film thickness of 0.05 μm on a polyimide base. In the figure, there is no magnetization jump in the hysteresis curve as seen in Figure 1, and it can be seen that the Co-Cr-Nb thin film with a film thickness of about 0.05 μm has an approximately uniform crystal structure. be done. In addition to this, from the same figure 0
.. When paying attention to the coercive force HC/ at a film thickness of about 0.05 μm, it is understood that the coercive force HC/ has an extremely small value and the magnetic permeability in the in-plane direction is large. From the above results, the initial layer that first grows near the base by sputtering has a small coercive force HC/, and this initial layer is confirmed by scanning electron micrographs (see the above material). It is considered to be a crystal layer of grain size. In addition, the layer growing above the initial layer has a coercive force HC/ larger than that of the initial layer, and this layer is also a large-grain crystal layer confirmed by scanning electron micrographs. It is believed that there is.

小粒径結晶層と大粒径結晶層が併存するco −Cr 
−Nb il膜において磁化ジャンプが生ずる理由を第
3図から第5図を用いて以下述べる。なお後述する如く
、磁化ジャンプは組成率及びスパンタリング条件に関し
全てのCo −Cr −Nb RlMに対して発生する
ものではない。所定の条件下においてCo −Cr−N
b薄膜をスパッタリングにより形成しこの薄膜のヒステ
リシス曲線を測定により描くと第3図に示す如く磁化ジ
ャンプが現われたヒステリシス曲線となる。また小粒径
結晶層のみからなるヒステリシス曲線は膜厚寸法を小と
したスパッタリング(約0.075μ−以下、これにつ
いては後述する)を行ない、これを測定することにより
得ることができる(第4図に示す)。また大粒径結晶層
は均一結晶構造を有していると考えられ、かつ第3図に
示すヒステリシス曲線は小粒径結晶層のヒステリシス曲
線と大粒径結晶層のヒステリシス曲線を合成したものと
考えられるため第5図に示す如く抗磁力HC/が小粒径
結晶層よりも大であり、磁化ジャンプのない滑らかなヒ
ステリシス曲線を形成すると考えられる。すなわち第3
図において示されている磁化ジャンプの存在は、磁気特
性の異なる二層が同一の薄膜内に形成されていることを
示しており、従って第1図に示されたGo −Cr −
Nb WJ膜にも磁気特性の異なる二層が形成されてい
ることが理解できる。なお大粒径結晶層の抗磁力は、小
粒径結晶層と大粒径結晶層が併存するCo −Cr−N
b薄膜のヒステリシス曲線から小粒径結晶層のみのGo
 −Cr−Nb薄膜のヒステリシス曲線を差引いて得ら
れるヒステリシス曲線より求めることができる。上記各
実験結果ニよすCo −Cr −Nb FIJIAのヒ
ステリシス曲線に磁化ジャンプが生じている時、磁気特
性の異なる二層が形成されていることが証明されたこと
になる。
co -Cr in which a small grain size crystal layer and a large grain size crystal layer coexist
The reason why the magnetization jump occurs in the -Nb il film will be described below with reference to FIGS. 3 to 5. As will be described later, the magnetization jump does not occur in all Co--Cr--Nb RIMs with respect to the composition ratio and sputtering conditions. Under certain conditions Co-Cr-N
When a thin film b is formed by sputtering and a hysteresis curve of this thin film is drawn by measurement, a hysteresis curve in which a magnetization jump appears as shown in FIG. 3 is obtained. In addition, a hysteresis curve consisting only of a small-grain crystal layer can be obtained by performing sputtering with a small film thickness (approximately 0.075μ or less, which will be described later) and measuring it (see Section 4). (shown in figure). Furthermore, the large-grain crystal layer is considered to have a uniform crystal structure, and the hysteresis curve shown in Figure 3 is a composite of the hysteresis curve of the small-grain crystal layer and the hysteresis curve of the large-grain crystal layer. Therefore, as shown in FIG. 5, the coercive force HC/ is larger than that of the small-grain crystal layer, and it is thought that a smooth hysteresis curve with no magnetization jump is formed. That is, the third
The presence of magnetization jumps shown in the figure indicates that two layers with different magnetic properties are formed within the same thin film, and therefore the Go -Cr -
It can be seen that two layers with different magnetic properties are formed in the Nb WJ film as well. The coercive force of the large-grain crystal layer is the same as that of Co-Cr-N in which a small-grain crystal layer and a large-grain crystal layer coexist.
b From the hysteresis curve of the thin film, Go with only a small grain size crystal layer
It can be determined from the hysteresis curve obtained by subtracting the hysteresis curve of the -Cr-Nb thin film. The above experimental results prove that when a magnetization jump occurs in the hysteresis curve of Co-Cr-Nb FIJIA, two layers with different magnetic properties are formed.

続いてGo −Or −Nb ′fiJ!IAのベース
上へのスパッタリングの際形成される上記二層の夫々の
磁気的性質をGo −Cr−Nb薄膜の厚さ寸法に関連
させつつ第6図を用いて以下説明する。第6図はGo 
−Cr−Nb薄膜の膜厚寸法をスパッタリング時間を変
えることにより制御し、各膜厚寸法における面内方向の
抗磁力HC/、垂直方向の抗磁力1(c上、磁化ジャン
プ量σjを夫々描いたものである。
Then Go -Or -Nb ′fiJ! The magnetic properties of each of the two layers formed during sputtering onto the base of the IA will now be described with reference to FIG. 6 in relation to the thickness dimensions of the Go--Cr--Nb thin film. Figure 6 is Go
-The film thickness of the Cr-Nb thin film is controlled by changing the sputtering time, and the in-plane coercive force HC/ and the perpendicular coercive force 1 (c) and magnetization jump amount σj are respectively drawn for each film thickness. It is something that

まず面内方向の抗磁力HC/に注目するに、膜厚寸法が
0.08μm以下においては極めて小なる値(1500
8以下)となっており、面内方向に対する透磁率は高い
と考えられる。また膜厚寸法が大となっても抗磁力HC
/は大きく変化するようにことはない。また磁化ジャン
プ量σjに注目すると、磁化ジャンプ量は膜厚寸法が0
.075μIにて急激に立ち上がり0.075μm以上
の膜厚においては清らかな下に凸の放物線形状を描く。
First of all, paying attention to the coercive force HC/ in the in-plane direction, when the film thickness dimension is 0.08 μm or less, the value is extremely small (1500
8 or less), and the magnetic permeability in the in-plane direction is considered to be high. In addition, even if the film thickness increases, the coercive force HC
/ does not seem to change much. Also, if we pay attention to the magnetization jump amount σj, we can see that the magnetization jump amount is 0 when the film thickness dimension is 0.
.. It rises sharply at 0.075 μm and forms a clear downward convex parabolic shape for film thicknesses of 0.075 μm or more.

更に垂直方向の抗磁力HC上に注目すると、抗磁力HC
上は膜厚寸法0,05μm〜0.1μ−で急激に立ち上
がり0.1μ鳳以上の膜厚寸法では900Qe以上の高
い抗磁力を示す。これらの結果より小粒径結晶層と大粒
径結晶層の境は略0.075μmの膜厚寸法のところに
あり、膜厚寸法が0.075μ■以下の小粒径結晶層は
面内方向及び垂直方向に対する抗磁力)1c /、 H
c上が低い、いわゆる低抗磁力層となっており、また膜
厚寸法が0.075μm以上の大粒径結晶層は面内方向
の抗磁力HC/は低いものの垂直方向に対する抗磁力H
C上は非常に高い値を有する、いわゆる高抗磁力層とな
っており垂直磁気記録に適した層となっている。更に磁
化ジャンプが生じない膜厚寸法(0,075μm以下)
においては、面内方向及び垂直方向に対する抗磁力Hc
 /、Hc上は低く、これより大なる膜厚寸法(0,0
75μm以上)においては垂直方向に対する抗磁力Hc
上が急増する。これによっても磁化ジャンプが生じてい
る場合、Go −Cr −Nb *膜に磁気特性の異な
る二層が形成されていることが推測される。
Furthermore, if we pay attention to the coercive force HC in the vertical direction, the coercive force HC
The upper one shows a sharp rise in the film thickness of 0.05 μm to 0.1 μm, and shows a high coercive force of 900 Qe or more when the film thickness is 0.1 μm or more. From these results, the boundary between the small grain size crystal layer and the large grain size crystal layer is located at a film thickness of approximately 0.075 μm, and the small grain size crystal layer with a film thickness of 0.075 μm or less is located in the in-plane direction. and coercive force in the vertical direction) 1c/, H
It is a so-called low coercive force layer with a low coercive force in the vertical direction, and a large grain crystal layer with a film thickness of 0.075 μm or more has a low coercive force H in the in-plane direction, but a low coercive force H in the perpendicular direction.
The layer on C is a so-called high coercive force layer having a very high value, and is a layer suitable for perpendicular magnetic recording. Furthermore, the film thickness dimension that does not cause magnetization jump (0,075 μm or less)
, the coercive force Hc in the in-plane direction and the perpendicular direction is
/, Hc is low, and film thickness larger than this (0,0
75 μm or more), the coercive force Hc in the vertical direction
The top increases rapidly. If a magnetization jump also occurs due to this, it is presumed that two layers with different magnetic properties are formed in the Go-Cr-Nb* film.

次にGo−Crに第三元素としてTaを添加(1〜10
at%添加範囲において同一現象が生ずる)し、上記し
たNb添加した場合と同一の実験を行なった結果を第7
図、に示す。第7図はGo −Cr−Ta薄膜の膜厚寸
法をスパッタリング時間を変えることにより制御し、各
膜厚寸法における面内方向の抗磁力Hc /、垂直方向
の抗磁力HC工、磁化ジャンプ」σjを夫々描いたもの
である。同図よりGo−CrにTaを添加した場合も、
Go−CrにNbを添加した場合と略同様な結果が得ら
れ、小粒径結晶層と大粒径結晶層の境は略0.075μ
mの膜厚寸法のところにあり、膜厚寸法が0.075μ
−以下の小粒径結晶層は面内方向及び垂直方向に対する
抗磁力HC/、HC上が低い(HC/、 )lc 上共
に1700e以下)、イわゆる低抗磁力層となっており
、また膜厚寸法が0、075μm以上の大粒径結晶層は
面内方向の抗磁力HC/は低いものの垂直方向に対する
抗磁力HC上は非常に高い値(750Qe以上)となっ
ている。
Next, Ta is added as a third element to Go-Cr (1 to 10
The same phenomenon occurs in the at% addition range), and the results of the same experiment as in the case of Nb addition described above are shown in the seventh section.
Shown in Figure. Figure 7 shows that the film thickness of the Go-Cr-Ta thin film is controlled by changing the sputtering time, and the in-plane coercive force Hc/, the vertical coercive force HC, and the magnetization jump σj at each film thickness. are drawn respectively. From the same figure, when Ta is added to Go-Cr,
Almost the same results as when Nb was added to Go-Cr were obtained, and the boundary between the small-grain crystal layer and the large-grain crystal layer was approximately 0.075μ.
It is located at the film thickness dimension of m, and the film thickness dimension is 0.075μ
- The following small-grain crystal layers have low coercive force HC/, HC in the in-plane direction and perpendicular direction (both 1700e or less on HC/, )lc), and are so-called low coercive force layers. A large-grain crystal layer with a film thickness of 0.075 μm or more has a low coercive force HC/ in the in-plane direction, but a very high value (750 Qe or more) in the perpendicular coercive force HC.

なお上記実験で注意すべきことは、スパッタリング条件
及びNb、Taの添加&を前記した値(Nb : 2〜
10at%、 Ta : 1〜10at%)より変えた
場合磁化ジャンプは生じないが、しかるに磁化ジャンプ
が生じないGo −Cr −Nb iil膜。
What should be noted in the above experiment is that the sputtering conditions and the addition of Nb and Ta are set to the above values (Nb: 2 to 2).
10 at%, Ta: 1 to 10 at%), no magnetization jump occurs;

co −Cr −Ta Fill!Aにおいても小粒径
結晶層及び大粒径結晶層が形成されていることである(
前記資料参照)。磁化ジャンプが生じないGo −0r
−Nb薄膜のヒステリシス曲線の一例を第8図に示す。
co-Cr-Ta Fill! A small grain size crystal layer and a large grain size crystal layer are also formed (
(See the above document). Go -0r where no magnetization jump occurs
An example of the hysteresis curve of the -Nb thin film is shown in FIG.

第8図(A)は小粒径結晶層及び大粒径結晶層を含む面
内方向のヒステリシス曲線であり、第8図(B)は小粒
径結晶層のみの面内方向のヒステリシス曲線、第8図(
C)は大粒径結晶層のみの面内方向のヒステリシス曲線
である。各図より小粒径結晶層の面内方向の残留磁化M
re/は大粒径結晶層の残留磁化Mrc/よりも大であ
るため、再結晶層を含む残留磁化MrA/は大粒径結晶
層の残留磁化Mr c /のみの時よりも不利となり異
方性磁界Hkが小さくなる。また小粒径結晶層は配向が
悪いこと(Δθ50が大)が知られており、また面内方
向の抗磁力HC/も大で垂直磁気記録には適さない。
FIG. 8(A) is an in-plane hysteresis curve including a small-grain crystal layer and a large-grain crystal layer, and FIG. 8(B) is an in-plane hysteresis curve of only a small-grain crystal layer. Figure 8 (
C) is a hysteresis curve in the in-plane direction of only the large-grain crystal layer. From each figure, residual magnetization M in the in-plane direction of the small-grain crystal layer
Since re/ is larger than the remanent magnetization Mrc/ of the large-grain crystal layer, the remanent magnetization MrA/ including the recrystallized layer is more disadvantageous than when only the remanent magnetization Mr c / of the large-grain crystal layer is anisotropic. The magnetic field Hk becomes smaller. Furthermore, it is known that the small-grain crystal layer has poor orientation (large Δθ50), and also has a large in-plane coercive force HC/, making it unsuitable for perpendicular magnetic recording.

ここで上記の如く小粒径結晶層と大粒径結晶層を有する
Co −Or −Nb @膜及びCo −Cr −Ta
 ’f1mを垂直磁気記録媒体として考えた場合、Go
 −Cr −Nb 1tJll及びGo −CI’ −
Ta if膜にその膜面に対し垂直方向に膜厚の全てに
亘って垂直磁化を行なおうとすると、小粒径結晶層の存
在は垂直磁化に対し極めて不利な要因となる(li化ジ
ャンプが生じている場合及び磁化ジャンプが生じていな
い場合の相方において不利な要因となる)。すなわち磁
化ジャンプが生じている場合の小粒径結晶層は、面内方
向及び垂直方向に対する抗磁力Hc /、HC上が共に
極めて低く(17000以下)、この層においては垂直
磁化はほとんどされないと考えられる。また磁化ジャン
プが生じていない場合の小粒径結晶層においても、面内
方向の抗磁力1−1c/は磁化ジャンプの生じている場
合の抗磁力HC/よりは大であるが垂直方向の抗磁力H
C上は垂直磁気記録を実現し得る程の抗磁力はなくやは
り良好な垂直磁化は行なわれないと考えられる。従って
膜面に対して垂直方向に磁化を行なっても小粒径結晶層
における垂直磁化はほとんど行なわれず、磁性膜全体と
しての垂直磁化効率が低下してしまう。この影響゛はリ
ングコアヘッドのように磁束の面内成分を多(含む磁気
ヘッドにおいては顕著である。また膜厚寸法に注目する
に上記Co −Cr −Nb N膜及びCo −Cr−
Ta薄膜を垂直磁気記録媒体として実用に足る膜厚寸法
(約0.3μm以下)にすると、小粒径結晶層の厚さ寸
法は0.1μm以下で略一定であるため(実験において
は小粒径及び大粒径結晶層を含む膜厚寸法を小とすると
小粒径結晶層の厚さ寸法は若干大となる傾向を示す)、
薄膜の膜厚寸法に対する小粒径結晶層の相対的厚さ寸法
が大となり更に垂直磁化特性が劣化してしまう。
Here, as described above, a Co-Or-Nb@ film and a Co-Cr-Ta film having a small-grain crystal layer and a large-grain crystal layer
'If we consider f1m as a perpendicular magnetic recording medium, Go
-Cr -Nb 1tJll and Go -CI' -
When attempting to perpendicularly magnetize a Ta IF film in the direction perpendicular to the film surface over the entire thickness of the film, the presence of a small-grain crystal layer becomes an extremely disadvantageous factor for perpendicular magnetization (the li-forming jump (This is a disadvantageous factor in the case where a magnetization jump occurs and in the case where a magnetization jump does not occur.) In other words, in a small-grain crystal layer where a magnetization jump occurs, the coercive force Hc / and HC in the in-plane direction and perpendicular direction are both extremely low (17,000 or less), and it is thought that there is almost no perpendicular magnetization in this layer. It will be done. Also, even in a small-grain crystal layer when no magnetization jump occurs, the coercive force 1-1c/ in the in-plane direction is larger than the coercive force HC/ when a magnetization jump occurs, but the perpendicular direction coercive force 1-1c/ Magnetic force H
On C, there is no coercive force sufficient to realize perpendicular magnetic recording, and it is considered that good perpendicular magnetization cannot be achieved. Therefore, even if magnetization is performed perpendicularly to the film surface, perpendicular magnetization in the small-grain crystal layer is hardly achieved, and the perpendicular magnetization efficiency of the magnetic film as a whole is reduced. This effect is noticeable in magnetic heads that include many in-plane components of magnetic flux, such as ring core heads.Also, paying attention to the film thickness dimensions, the above-mentioned Co-Cr-Nb N film and Co-Cr-
When a Ta thin film is made thick enough for practical use as a perpendicular magnetic recording medium (approximately 0.3 μm or less), the thickness of the small-grain crystal layer is approximately constant at 0.1 μm or less (in experiments, the small-grain When the diameter and the film thickness including the large-grain crystal layer are made small, the thickness of the small-grain crystal layer tends to become slightly larger).
The relative thickness of the small grain crystal layer with respect to the thickness of the thin film becomes large, further deteriorating the perpendicular magnetization characteristics.

しかるに小粒径結晶層の磁気特性は、面内方向に対する
抗磁力HC/が小であり比較的高い透磁率を有しており
、これは従来co −cr s膜とベース間に配設した
裏打ちWI(例えばFe−Ni薄膜)と似た特性を有し
ている。つまりco −Cr−Nbll!及びco −
Cr−Ta薄iの単−i性膜において、低抗磁力HC/
を有する小粒径結晶層をいわゆる裏打ち層である高透磁
率層として用い、垂直方向に高抗磁力HC上を有する大
粒径結晶層を垂直磁化層として用いることにより単一膜
構造において二層膜構造の垂直磁気記録媒体と等しい機
能を実現することが可能であると考えられる。
However, the magnetic properties of the small-grain crystal layer include a small coercive force HC/ in the in-plane direction and a relatively high magnetic permeability. It has characteristics similar to WI (eg, Fe-Ni thin film). In other words, co -Cr-Nbll! and co-
In the mono-i film of Cr-Ta thin i, low coercive force HC/
By using a small-grain crystal layer with a high magnetic permeability layer, which is a so-called underlayer, and using a large-grain crystal layer with a high coercive force HC in the perpendicular direction as a perpendicular magnetization layer, two layers can be formed in a single film structure. It is believed that it is possible to achieve the same functionality as a perpendicular magnetic recording medium with a film structure.

コノ点ニ鑑ミ、Go −Cr −Nb WJ膜及びC0
−Cr −Ta 8Ilの組成率を変化させた場合、各
薄膜の厚さ寸法を変化させた場合における磁気特性の変
化及び再生出力の相異を第9図から第16図を用いて以
下説明する。第9図はGO−Cr −Nb薄膜の組成率
を変化させた場合における各種磁気特性を示す図で、第
10図及び第11図は第9図に示した各薄膜に垂直磁気
記録再生を行なった時の記録波長と再生出力の関係を示
したものである。なお第9図に示した各薄膜を区別して
第10図及び第11図に示すのに、第9図の左端に記載
したNO,を第10図、第11図に付することにより区
別した。第9図よりco−Crに第三元素としてNbま
たはTaを添加した際、磁化ジャンプが生じている時は
垂直磁化に寄与する垂直方向の抗磁力HC上は高い値と
なるが磁化ジャンプが生じていない時は抗磁力Hc上は
低い値となっている。また磁化ジャンプが生じている時
は垂直異方性磁界Hkが小さく、Mr //MSはGo
 −Czl膜に比べて大である。これは面内方向に磁束
分布が大であるリングコアヘッドを用いる際不利な条件
と考えられていた。しかるに上記各C0−0r”−Nb
及びco −Or −Ta m膜(以下Co −Cr−
Nb薄膜とGo −Cr −Ta Fil膜を総称する
場合Go −Cr −Nb  (Ta )薄膜という)
を垂直磁気記録媒体として用いた際の記録波長−再生出
力特性(第10図及び第11図に示す)を見ると、磁化
ジャンプが生じているco −Qr−Nb  (Ta 
’)H膜の再生出力の方が磁化ジャンプの生シティなイ
Cg −Cr −Nb ii!膜及びC9−Czlmの
再生出力よりも良好となっており、特に記録波長の短波
長領域において顕著である。
In this point, Go-Cr-Nb WJ film and C0
Changes in magnetic properties and differences in reproduction output when changing the composition ratio of -Cr-Ta 8Il and when changing the thickness dimension of each thin film will be explained below using Figs. 9 to 16. . Figure 9 is a diagram showing various magnetic properties when the composition ratio of the GO-Cr-Nb thin film is changed, and Figures 10 and 11 are diagrams showing the results of perpendicular magnetic recording and reproduction on each thin film shown in Figure 9. This figure shows the relationship between recording wavelength and reproduction output when Note that the thin films shown in FIG. 9 are shown in FIGS. 10 and 11 in a manner that distinguishes them by adding "NO" written at the left end of FIG. 9 to FIGS. 10 and 11. Figure 9 shows that when Nb or Ta is added as a third element to co-Cr, when a magnetization jump occurs, the vertical coercive force HC that contributes to perpendicular magnetization has a high value, but a magnetization jump occurs. When not, the coercive force Hc is a low value. Also, when a magnetization jump occurs, the perpendicular anisotropy field Hk is small, and Mr //MS is Go
- Larger than Czl film. This was considered to be a disadvantageous condition when using a ring core head, which has a large magnetic flux distribution in the in-plane direction. However, each of the above C0-0r"-Nb
and co -Or -Ta m film (hereinafter referred to as Co -Cr-
When Nb thin film and Go-Cr-Ta Film are collectively referred to as Go-Cr-Nb (Ta) thin film)
Looking at the recording wavelength vs. reproduction output characteristics (shown in Figures 10 and 11) when used as a perpendicular magnetic recording medium, it is found that co -Qr-Nb (Ta
') The reproduction output of the H film has a higher magnetization jump than Cg -Cr -Nb ii! The reproduction output is better than that of the film and C9-Czlm, especially in the short wavelength region of the recording wavelength.

短波長領域(記録波長が0.2μm〜1.0μm程度の
領域)においてはGo −Or Fl−MA及び磁化ジ
ャンプの生じていなイGo −Cr −Nb i?If
!においても再生出力は増加している。しかるに磁化ジ
ャンプの生じているGo −Cr −Nb  (Ta 
)簿膜は、上記各薄膜の再生出力増加率に対して、それ
よりも高い再生出力増加率を示しており、磁化ジャンプ
の生じているGo −Cr −Nb  (Ta )Fl
膜は特に短い記録波長の垂直磁化に適しているというこ
とができる。特にNo、I[1,IVに示すco −C
r −Nb FilHにおいては第9図に示す如く、磁
化ジャンプが生じていないNO,V、VIに示す薄膜に
対して飽和磁化MSが10100e/ cc以上も小さ
いにもかかわらず、短波長領域における出力特性が良好
である。上記短波長領域においては再生出力曲線は上に
凸の放物線形状をとるが、その全域において磁化ジャン
プの生じているGo −Cr −Nb薄膜はGO−Cr
 薄膜及び磁化ジャンプの生じていないCo −Cr 
−Nb Nl膜より大なる再生出力を得ることができた
In the short wavelength region (region where the recording wavelength is about 0.2 μm to 1.0 μm), Go-Or Fl-MA and Go-Cr-Nb i? with no magnetization jump occur. If
! The playback output is also increasing. However, Go -Cr -Nb (Ta
) film shows a higher reproduction output increase rate than the reproduction output increase rate of each of the above-mentioned thin films, and the Go-Cr-Nb(Ta)Fl film has a magnetization jump.
It can be said that the film is particularly suitable for perpendicular magnetization at short recording wavelengths. In particular, co -C shown in No, I[1, IV
In r-Nb FilH, as shown in Figure 9, although the saturation magnetization MS is more than 10100e/cc smaller than the thin films shown in NO, V, and VI where no magnetization jump occurs, the output in the short wavelength region is low. Good characteristics. In the above-mentioned short wavelength region, the reproduction output curve takes an upwardly convex parabolic shape, but the Go-Cr-Nb thin film in which a magnetization jump occurs in the entire region is GO-Cr.
Co-Cr with thin film and no magnetization jump
-Nb It was possible to obtain a larger reproduction output than the Nl film.

上述の如く、短波長領域における出力特性の向上は磁化
ジャンプの発生に起因していると考えられる。磁化ジャ
ンプが生じている磁性層に形成される小粒径結晶層の面
内方向の抗磁力HC/は、磁化ジャンプの生じていない
磁性層に形成された小粒径結晶層の抗磁力HC/より小
である。
As mentioned above, the improvement in the output characteristics in the short wavelength region is considered to be due to the occurrence of magnetization jump. The in-plane coercive force HC/ of a small-grain crystal layer formed in a magnetic layer where a magnetization jump occurs is equal to the coercive force HC/ of a small-grain crystal layer formed in a magnetic layer where a magnetization jump does not occur. It is smaller.

ここで大粒径結晶層の垂直方向の抗磁力)lc工に注目
する。第9図に示す如(磁化ジャンプの生限値は115
近傍の値であると思われる。また一般に垂直磁気記録再
生を行なうに適当な垂直磁化層の垂直方向の抗磁力HC
1上は約1500Qe程度までであり、また磁化ジャン
プの発生している小粒径結晶層がいわゆる裏打ち層とし
て適宜に機能する面内方向の抗磁力HC/は平均して3
0Qeの下限値は1150近傍の値であると思われる。
Here, we will focus on the perpendicular coercive force (LC) of the large-grain crystal layer. As shown in Figure 9 (the raw limit value of magnetization jump is 115
It seems to be a nearby value. In general, the perpendicular coercive force HC of a perpendicular magnetic layer suitable for perpendicular magnetic recording and reproduction is
1 is up to about 1500 Qe, and the in-plane coercive force HC/, in which the small-grain crystal layer in which the magnetization jump occurs appropriately functions as a so-called underlayer, is on average 3.
The lower limit value of 0Qe is thought to be around 1150.

ことにより、磁化ジャンプが生じる、従って短波長領域
において特に再生出力の良好な垂直磁気記録媒体を実現
することができる。なお抗磁力比ことにより、またスパ
ッタリング条件を適宜選定することにより調整すること
が可能である。
As a result, it is possible to realize a perpendicular magnetic recording medium in which a magnetization jump occurs and, therefore, the reproduction output is particularly good in the short wavelength region. Note that it is possible to adjust the coercive force ratio by appropriately selecting the sputtering conditions.

次に磁化ジャンプが発生している磁性層において、再生
出力が向上する理由を以下説明する。
Next, the reason why the reproduction output is improved in the magnetic layer where the magnetization jump occurs will be explained below.

Co −Cr −Nb  (Ta )l膜はスパッタリ
ングによる磁性層の薄膜形成時に第12図に示す如くベ
ース1近傍に低抗磁力を有する小粒径結晶層2とその上
方に特に垂直方向に高い抗磁力を有するり形成される磁
性層は磁化ジャンプの生じた磁性層となる。よって、磁
気ヘッド4から放たれた磁束線は大粒径結晶層3を貫通
して小粒径結晶層2に到り、低抗磁力でかつ高透磁率を
有する小粒径結晶層2内で磁束は面内方向に進行し、磁
気ヘッド4の磁極部分で急激に磁束が吸い込まれること
により大粒径結晶層3に垂直磁化がされると考えられる
。よって磁束が形成する磁気ループは第12図に矢印で
示す如く、馬蹄形状となり所定垂直磁気記録位置におい
て大粒径結晶層3に磁束が鋭く貫通するため、大粒径結
晶層3には残留磁化の大なる垂直磁化が行なわれる。こ
こで磁化ジャンプが生じている場合と生じていない場合
における小粒径結晶H2の面内方向の抗磁力HC/に注
目すると、第9図に示される如く磁化ジャンプが生じて
いる場合の面内方向の抗磁力HC/は磁化ジャンプが生
じていない場合の抗磁力HC/より小なる値となってい
る。周知の如く小粒径結晶層2がいわゆる裏打ち層とし
て機能するためには低抗磁力、高透磁率を有することが
望ましく、よって磁化ジャンプの生じているCo −C
r −Nb(Ta)IlMの方が再生出力が良好である
と推測される。また小粒径結晶層2は、その有する抗磁
力HC/が完全にゼロではなく所定の抗磁力は有してい
るため、この抗磁力に対応する磁化を行なうことができ
る。垂直磁気記録が行なわれると大粒径結晶層3には第
14図に示す如く所定ビット間隔に対応し磁化方向を逆
にした複数の磁石が交互に形成される。そして、この形
成された複数の磁石下端部の小粒径結晶層2には、相隣
接して形成された磁石の上記下端部を連通ずる磁束(第
14図中矢印で示す)が形成されこれが磁化される。こ
れにより各隣接する磁石の減磁作用はなくなり、特にこ
の現象は各隣接する磁石の密度の高い、すなわち記録波
長の小なる垂直磁気記録において顕著であるため短波長
領域における再生出力を増加させることができる。更に
Go −Cr −Nb(Ta)l膜の膜厚寸法に注目す
ると、膜厚寸法を大とすることは大粒径結晶層3の厚さ
寸法を大とすることであり(小粒径結晶層2の厚さ寸法
は略一定である)、これを大とすることにより磁気ヘッ
ド4と小粒径結晶Ii2の距離が大となり、小粒径結晶
112による磁束の吸込み効果はわずかで第13図に矢
印で示す如く磁気ヘッド4から放たれた磁力線は小粒径
結晶層2゛に到ることなく大粒径結晶層3を横切って磁
気ヘッド4の磁極(吸い込まれる。従って垂直方向に対
する磁化は分散された弱いものとなり良好な垂直磁化は
行なわれない。しかるにCo −Cr −Nb  (T
a )薄膜の膜厚寸法を小とすると、磁気ヘッド4と小
粒径結晶層2の距離が小となり、小粒径結晶1t2によ
る磁束の吸込み効果が大となり磁気ヘッド4から放たれ
た磁束は小粒径結晶層2に確実に進行し上記馬蹄形の磁
気ループを形成する。即ち、垂直磁化に寄与する磁束は
馬蹄形の極めて鋭い磁界であるので残留磁化は大となり
良好な垂直磁化が行なわれると考えられる。すなわちG
o −Cr −Nb(Ta)I膜の膜厚寸法を小とした
方が(記録媒体の厚さを薄くした方が)良好な垂直磁化
を行なうことができ、これにより磁気ヘッド4とのいわ
ゆる当たりの良好な薄い記録媒体を実現することができ
る(本発明者の実験によると膜厚寸法が0.1μ−〜0
63μm程度の寸法まで高出力を保持できた)。これに
加えて上記の如く高抗磁力を有する層と抵抗磁力を有す
る層を形成するGo −Cr −Nb  (Ta )薄
膜は連続スパッタリングにより形成されるため、二層構
造を形成させるためにわざわざスパッタリング条件を変
えたりターゲットを取換える作業等は不用でCo −C
r −Nb(Ta )薄膜の形成工程を容易にし得ると
共にスパッタリング時間を短くし得、低コストでかつ量
産性をもって垂直磁気記録媒体を製造することが面内方
向の抗磁力HC/は大粒径結晶層3の抗磁力Hc上に対
して極端に小なる値ではないため衝撃性のバルクハウゼ
ンノイズが発生することもなく良好な垂直磁気記録再生
を行ない得る。
When the Co-Cr-Nb(Ta)l film is formed as a thin magnetic layer by sputtering, as shown in FIG. A magnetic layer that has magnetic force or is formed becomes a magnetic layer in which a magnetization jump occurs. Therefore, the magnetic flux lines emitted from the magnetic head 4 penetrate the large-grain crystal layer 3 and reach the small-grain crystal layer 2, and within the small-grain crystal layer 2 having low coercive force and high magnetic permeability It is thought that the magnetic flux travels in the in-plane direction and is suddenly absorbed by the magnetic pole portion of the magnetic head 4, causing the large-grain crystal layer 3 to be perpendicularly magnetized. Therefore, the magnetic loop formed by the magnetic flux becomes a horseshoe shape as shown by the arrow in FIG. 12, and the magnetic flux sharply penetrates the large-grain crystal layer 3 at a predetermined perpendicular magnetic recording position, so that the large-grain crystal layer 3 has residual magnetization. A large perpendicular magnetization occurs. If we pay attention to the coercive force HC/ in the in-plane direction of the small grain crystal H2 when a magnetization jump occurs and when no magnetization jump occurs, we can see that the in-plane coercive force HC/ when a magnetization jump occurs as shown in The coercive force HC/ in the direction is smaller than the coercive force HC/ when no magnetization jump occurs. As is well known, in order for the small-grain crystal layer 2 to function as a so-called underlayer, it is desirable to have low coercive force and high magnetic permeability, and therefore Co-C with a magnetization jump has occurred.
It is presumed that r-Nb(Ta)IIM has better reproduction output. Furthermore, since the small-grain crystal layer 2 has a coercive force HC/ that is not completely zero but has a predetermined coercive force, it can be magnetized in accordance with this coercive force. When perpendicular magnetic recording is performed, a plurality of magnets with opposite magnetization directions are alternately formed in the large-grain crystal layer 3, as shown in FIG. 14, corresponding to predetermined bit intervals. Then, a magnetic flux (indicated by the arrow in FIG. 14) is formed in the small-grain crystal layer 2 at the lower ends of the plurality of magnets formed, which connects the lower ends of the magnets formed adjacent to each other. Become magnetized. This eliminates the demagnetizing effect of each adjacent magnet, and this phenomenon is particularly noticeable in perpendicular magnetic recording where the density of adjacent magnets is high, that is, the recording wavelength is small, so it increases the reproduction output in the short wavelength region. Can be done. Furthermore, paying attention to the film thickness of the Go-Cr-Nb(Ta)l film, increasing the film thickness means increasing the thickness of the large-grain crystal layer 3 (small-grain crystal layer 3). (The thickness of the layer 2 is approximately constant), by increasing the thickness, the distance between the magnetic head 4 and the small-grain crystal Ii2 becomes large, and the magnetic flux absorption effect by the small-grain crystal 112 is small, and the 13th As shown by the arrow in the figure, the lines of magnetic force emitted from the magnetic head 4 cross the large-grain crystal layer 3 without reaching the small-grain crystal layer 2, and are sucked into the magnetic pole of the magnetic head 4. Therefore, the magnetization in the perpendicular direction is dispersed and weak, and good perpendicular magnetization is not achieved.However, Co - Cr - Nb (T
a) When the thickness of the thin film is made small, the distance between the magnetic head 4 and the small-grain crystal layer 2 becomes small, and the effect of sucking the magnetic flux by the small-grain crystal 1t2 becomes large, and the magnetic flux emitted from the magnetic head 4 becomes The magnetic flux reliably advances to the small-grain crystal layer 2 and forms the above-mentioned horseshoe-shaped magnetic loop. That is, since the magnetic flux that contributes to perpendicular magnetization is an extremely sharp horseshoe-shaped magnetic field, it is thought that residual magnetization is large and good perpendicular magnetization is performed. That is, G
The smaller the thickness of the o -Cr-Nb(Ta)I film (the thinner the recording medium is), the better perpendicular magnetization can be achieved, which allows for better perpendicular magnetization between the magnetic head 4 and the magnetic head 4. It is possible to realize a thin recording medium with good contact (according to the inventor's experiments, the film thickness is 0.1 μ- to 0.
High output could be maintained up to dimensions of about 63 μm). In addition, as mentioned above, the Go-Cr-Nb (Ta) thin film that forms the layer with high coercive force and the layer with resistive magnetic force is formed by continuous sputtering. There is no need to change conditions or replace the target, and Co-C
The in-plane coercive force HC/ has a large grain size, which can facilitate the formation process of the r-Nb(Ta) thin film, shorten the sputtering time, and manufacture perpendicular magnetic recording media at low cost and with mass productivity. Since the value is not extremely small compared to the coercive force Hc of the crystal layer 3, good perpendicular magnetic recording and reproduction can be performed without generating impulsive Barkhausen noise.

発明の効果 上述の如く本発明になる垂直磁気記録媒体によれば、上
層と下層とにより形成された磁性層を有する垂直磁気記
録媒体の、上記上層の垂直方向の記録媒体の有する磁性
層は磁化ジャンプを有する磁性層となり磁気ヘッドより
放たれた磁束は容易に低抗磁力を有する下層に進入し水
平方向へ進行した後磁気ヘッドの磁極にて急激にかつ鋭
く高抗磁力を有する上層を貫通して磁気ヘッドの磁極に
吸い込まれるため、上層には強い残留磁化が生じ高い再
生出力を実現し得る垂直磁気記録再生を行なうことがで
き、これに加え記録波長が短い時に特にすぐれた垂直磁
化が行なわれ良好な再生出力を得ることができ、また下
層は磁化ジャンプが生じている、すなわち面内方向に対
する抗磁力が小で、かつ高透磁率を有する層であるため
、いわゆる裏打ち層として確実に機能すると共にその抗
磁力は上層の抗磁力に対して極端に小なる値ではないた
め衝撃性のバルクハウゼンノイズが発生することもなく
良好な垂直磁気記録再生を行うことが、できる等の特長
を有する。
Effects of the Invention As described above, according to the perpendicular magnetic recording medium of the present invention, in a perpendicular magnetic recording medium having a magnetic layer formed of an upper layer and a lower layer, the magnetic layer of the upper layer in the perpendicular direction is magnetized. This becomes a magnetic layer with jumps, and the magnetic flux emitted from the magnetic head easily enters the lower layer with low coercive force and travels horizontally, then suddenly and sharply penetrates the upper layer with high coercive force at the magnetic pole of the magnetic head. Because the magnetic head is absorbed into the magnetic pole of the magnetic head, strong residual magnetization occurs in the upper layer, making it possible to perform perpendicular magnetic recording and reproduction that can achieve high reproduction output.In addition, excellent perpendicular magnetization is achieved especially when the recording wavelength is short. It is possible to obtain good reproduction output, and the lower layer has a magnetization jump, that is, it has a small coercive force in the in-plane direction and has high magnetic permeability, so it functions reliably as a so-called underlayer. At the same time, its coercive force is not extremely small compared to the coercive force of the upper layer, so it has the advantage of being able to perform good perpendicular magnetic recording and reproducing without generating impulsive Barkhausen noise. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる垂直磁気記録媒体の一実施例の磁
性膜であるGo −Cr−Nb薄膜のヒステリシス曲線
を示す図、第2図は小粒径結晶層のヒステリシス曲線を
示す図、第3図から第5図は磁化ジャンプが生ずる理由
を説明するための図、第6図はCo −Cr −Nb 
WIWAが二層構造となっていること及び各層の磁気特
性を示す図、第7図はCo −0r−Ta薄膜が二層構
造となっていること及び各層の磁気特性を示す図、第8
図は磁化ジャンプが生じていないCo −Cr−Nb薄
膜のヒステリシス曲線の一例を示す図、第9図は磁化ジ
ャンプが生じているGo −0r−Nb薄膜及びGo 
−Cr −Ta N膜における各種磁気特性を磁化ジャ
ンプの生じていなイco −Cr −Nb Film及
びCo −Cr 31膜の磁気特性と比較して示す図、
第10図及び第11図は第9図に示した各薄膜に垂直磁
気記録再生を行なった時の記録波長と再生出力の関係を
示す図、第12図は本発明記録媒体の厚さ寸法を小とし
た場合に磁束が形成する磁気ループを示す図、第13図
は本発明記録媒体の厚さ寸法を大とした場合に磁束が形
成する磁気ループを示す図、第14図は小粒径結晶層に
形成され大粒径結晶層に磁化形成された複数の磁石の下
端部間を連通する磁束を説明するための図である。 1・・・ベース、2・・・小粒径結晶層、3・・・大粒
径結晶層、4・・・磁気ヘッド。 特許出願人 日本ビクター株式会社 第2図 第7図 ハ】−Lノシ1ノJml 再主社力(mVp−p)
FIG. 1 is a diagram showing a hysteresis curve of a Go-Cr-Nb thin film, which is a magnetic film of an embodiment of a perpendicular magnetic recording medium according to the present invention, and FIG. 2 is a diagram showing a hysteresis curve of a small-grain crystal layer. Figures 3 to 5 are diagrams for explaining the reason why magnetization jump occurs, and Figure 6 is Co-Cr-Nb.
Figure 7 shows that WIWA has a two-layer structure and the magnetic properties of each layer.
The figure shows an example of the hysteresis curve of a Co-Cr-Nb thin film with no magnetization jump, and Figure 9 shows an example of the hysteresis curve of a Co-Cr-Nb thin film with no magnetization jump.
- A diagram showing various magnetic properties of a Co -Cr -Ta N film in comparison with magnetic properties of a Co -Cr -Nb Film and a Co -Cr 31 film in which no magnetization jump occurs,
10 and 11 are diagrams showing the relationship between recording wavelength and reproduction output when performing perpendicular magnetic recording and reproduction on each of the thin films shown in FIG. Figure 13 is a diagram showing the magnetic loop formed by the magnetic flux when the thickness of the recording medium of the present invention is increased, and Figure 14 is a diagram showing the magnetic loop formed by the magnetic flux when the thickness of the recording medium of the present invention is increased. FIG. 3 is a diagram for explaining magnetic flux that communicates between lower end portions of a plurality of magnets formed in a crystal layer and magnetized in a large-grain crystal layer. DESCRIPTION OF SYMBOLS 1...Base, 2...Small grain size crystal layer, 3...Large grain size crystal layer, 4...Magnetic head. Patent Applicant: Victor Company of Japan Co., Ltd. (Figure 2, Figure 7)

Claims (1)

【特許請求の範囲】[Claims] 上層と下層とにより形成された磁性層を有する垂直磁気
記録媒体あつて、該上層の垂直方向の抗磁力をH_c_
⊥とし、該下層の面内方向の抗磁力をH_c_■とする
と、比(H_c_■)/(H_c_⊥)の値が1/50
≦(H_c_■)/(H_c_⊥)≦1/5であるよう
選定されていることを特徴とする垂直磁気記録媒体。
For a perpendicular magnetic recording medium having a magnetic layer formed by an upper layer and a lower layer, the coercive force in the perpendicular direction of the upper layer is expressed as H_c_
⊥, and the coercive force in the in-plane direction of the lower layer is H_c_■, then the value of the ratio (H_c_■)/(H_c_⊥) is 1/50.
A perpendicular magnetic recording medium, characterized in that the perpendicular magnetic recording medium is selected such that ≦(H_c_■)/(H_c_⊥)≦1/5.
JP13219285A 1985-03-07 1985-06-18 Perpendicular magnetic recording medium Expired - Lifetime JPH0628091B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP13219285A JPH0628091B2 (en) 1985-06-18 1985-06-18 Perpendicular magnetic recording medium
US06/834,236 US4731300A (en) 1985-03-07 1986-02-26 Perpendicular magnetic recording medium and manufacturing method thereof
DE19863607500 DE3607500A1 (en) 1985-03-07 1986-03-07 CROSS-MAGNETIZING RECORDING MEDIUM AND METHOD FOR PRODUCING A CROSS-MAGNETIZING RECORDING MEDIUM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13219285A JPH0628091B2 (en) 1985-06-18 1985-06-18 Perpendicular magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS61292220A true JPS61292220A (en) 1986-12-23
JPH0628091B2 JPH0628091B2 (en) 1994-04-13

Family

ID=15075544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13219285A Expired - Lifetime JPH0628091B2 (en) 1985-03-07 1985-06-18 Perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0628091B2 (en)

Also Published As

Publication number Publication date
JPH0628091B2 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
US7556871B2 (en) Magnetic recording medium containing first and second recording layers, each layer containing a columnar structure
US5462796A (en) Flash chromium interlayer for improved hard disk magnetic recording performance
JPH0640361B2 (en) Perpendicular magnetic recording / reproducing method
JPH04102223A (en) Magnetic recording medium and production thereof and magnetic recorder
JPS61292220A (en) Vertical magnetic recording medium
JPH0532809B2 (en)
JPH0670852B2 (en) Perpendicular magnetic recording medium
JPH023102A (en) Perpendicular magnetic recording medium
US5981055A (en) Tape-type magnetic recording medium and signal reproducing method using the same
JPH0532808B2 (en)
JPS61224105A (en) Vertical magnetic recording and reproducing system
JPS61224131A (en) Vertical magnetic recording medium
JPS61204822A (en) Vertical magnetic recording medium
JPS61224129A (en) Vertical magnetic recording medium
JPS61224135A (en) Vertical magnetic recording medium
JPH0642281B2 (en) Perpendicular magnetic recording / reproducing method
JPS61204823A (en) Vertical magnetic recording medium
JPS61204820A (en) Vertical magnetic recording medium
JPS61224133A (en) Vertical magnetic recording medium
JP3491778B2 (en) Magnetic recording media
JPS61204821A (en) Vertical magnetic recording medium
JPS61224132A (en) Vertical magnetic recording medium
JPS61224130A (en) Vertical magnetic recording medium
JP2558770B2 (en) Magnetic recording media
JPS61224134A (en) Vertical magnetic recording medium