JPS61204822A - Vertical magnetic recording medium - Google Patents

Vertical magnetic recording medium

Info

Publication number
JPS61204822A
JPS61204822A JP13218585A JP13218585A JPS61204822A JP S61204822 A JPS61204822 A JP S61204822A JP 13218585 A JP13218585 A JP 13218585A JP 13218585 A JP13218585 A JP 13218585A JP S61204822 A JPS61204822 A JP S61204822A
Authority
JP
Japan
Prior art keywords
layer
coercive force
magnetic
crystal layer
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13218585A
Other languages
Japanese (ja)
Inventor
Noboru Watanabe
昇 渡辺
Yasuo Ishizaka
石坂 安雄
Kazuo Kimura
一雄 木村
Eiichiro Imaoka
今岡 英一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP13218585A priority Critical patent/JPS61204822A/en
Priority to US06/834,236 priority patent/US4731300A/en
Priority to DE19863607500 priority patent/DE3607500A1/en
Publication of JPS61204822A publication Critical patent/JPS61204822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To perform good vertical magnetic recording and reproducing by specifying the squareness ratio in the plane direction of a hysteresis loop in the plane of a magnetic layer of a vertical magnetic recording medium where a layer of low coercive force and a layer of high coercive force on said layer are formed. CONSTITUTION:The magnetic layer of the vertical magnetic recording medium which consists of a magnetic material and is formed with a layer 2 having an especially low coercive force and a layer 3 having a high coercive force on the layer 2 is so constituted that the magnetic layer has the plane hysteresis characteristic where the squareness ratio in the plane direction of the plane hysteresis loop is >=0.2. The magnetic material where Nb or/and Ta are added to Co and Cr is sputtered as a target on a polyimide substrate of a base to obtain the vertical magnetic recording medium.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は垂直磁気記録媒体に係り、特に垂面磁気記録再
生特性を向上し得る垂直磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a perpendicular magnetic recording medium, and more particularly to a perpendicular magnetic recording medium that can improve perpendicular magnetic recording and reproducing characteristics.

従来の技術 一般に、磁気ヘッドにより磁気記録媒体に記録。Conventional technology Generally, recording is performed on a magnetic recording medium using a magnetic head.

再生を行なうには、磁気ヘッドにより磁気記録媒体の磁
性層にその媒体長手方向(面内方向)の磁化を行なわせ
て記録し、これを再生するものが汎用されている。しか
るに、これによれば記録が高密度になるに従って減磁界
が大きくなり減(6作用が高密度記録に悪影響を及ぼす
ことが知られている。そこで近年上記悪影響を解消する
ものとして、磁気記録媒体の磁性層に垂直方向に磁化を
行なう垂直磁気記録方式が提案されている。これによれ
ば記録密度を向上させるに従い減磁界が小さくなり理論
的には残留磁化の減少がない良好な高密度記録を行なう
ことができる。
In order to perform reproduction, a commonly used system is to magnetize the magnetic layer of a magnetic recording medium in the longitudinal direction (in-plane direction) of the medium using a magnetic head, record the information, and then reproduce the recorded information. However, according to this, as recording density increases, the demagnetizing field increases and decreases (6), which is known to have an adverse effect on high-density recording.In recent years, magnetic recording media have been developed to eliminate the above-mentioned adverse effects. A perpendicular magnetic recording method has been proposed in which the magnetic layer is magnetized in the perpendicular direction. According to this method, as the recording density increases, the demagnetizing field becomes smaller, and theoretically, good high-density recording is possible with no decrease in residual magnetization. can be done.

従来この垂直磁気記録方式に用いる垂直磁気記録媒体と
しては、ベースフィルム上にco −cr膜をスパッタ
リングにより被膜形成したしのがあつた。周知の如く、
C0−Cr膜は比較的高い飽和磁化(Ms )を有し、
かつ膜面に対し垂直な磁化容易軸を持つ(すなわち膜面
に対し垂直方向の抗磁力HC工が大である)ため垂直磁
気記録媒体どしては極めて有望な材質であることが知ら
れている。ただし上記の如くスパッタリングによりCo
−Cr膜を単層形成した構造の垂直磁気記録媒体の場合
、垂直磁気記録媒体上の所定磁気記録位置に磁束を集中
させることができず(特にリングコアヘッドを用いた場
合顕著である)、垂直磁気記録媒体に分布が鋭くかつ強
い垂直磁化ができないという問題点があった。
Conventionally, as a perpendicular magnetic recording medium used in this perpendicular magnetic recording system, a co-cr film was formed on a base film by sputtering. As is well known,
The C0-Cr film has a relatively high saturation magnetization (Ms),
It is known that it is an extremely promising material for perpendicular magnetic recording media because it has an axis of easy magnetization perpendicular to the film surface (that is, the coercive force HC in the direction perpendicular to the film surface is large). There is. However, as mentioned above, Co
- In the case of a perpendicular magnetic recording medium with a structure in which a single layer of Cr film is formed, magnetic flux cannot be concentrated at a predetermined magnetic recording position on the perpendicular magnetic recording medium (this is especially noticeable when a ring core head is used). There was a problem in that the magnetic recording medium had a sharp distribution and could not have strong perpendicular magnetization.

また上記問題点を解決するため、GO−Cr膜とベース
フィルムとの間に、いわゆる裏打ち層である高透磁率層
(すなわち抗磁力)1cが小なる層。
Moreover, in order to solve the above-mentioned problem, a layer with a small high magnetic permeability layer (i.e., coercive force) 1c, which is a so-called underlayer, is provided between the GO-Cr film and the base film.

例えばNi −Fe )を別個形成して二層構造とし高
透磁率層内で広がっている磁束を所定磁気記録位置にて
磁気ヘッドの磁極に向は集中させて吸い込まれることに
より分布が鋭くかつ強い垂直磁化を行ない得る構成の垂
直磁気記録媒体があった。
For example, Ni-Fe) is separately formed to have a two-layer structure, and the magnetic flux spreading in the high magnetic permeability layer is concentrated and attracted to the magnetic pole of the magnetic head at a predetermined magnetic recording position, resulting in a sharp and strong distribution. There was a perpendicular magnetic recording medium with a configuration capable of perpendicular magnetization.

発明が解決しようとする問題点 しかるに上記従来の垂直磁気記録媒体9例えばCo−C
r単層媒体にリングコアヘッドで記録する場合、その磁
界介在は面内方向成分をかなり有しているので記録時に
磁化が傾きや寸い。磁化を垂直に維持するために、垂直
磁気記録媒体は高い垂直異方性磁界(Hk )を有し、
飽和磁化(MS )はある程度小さい値に抑える必要が
あった。また高い再生出力を実現しようとすると垂直方
向の抗磁力(1」C土)を大きくし垂直磁気記録媒体の
厚さ寸法を人とする必要があった。また厚さ寸法を大と
した場合には垂直磁気記録媒体と磁気ヘッドのいわゆる
当たり(垂直磁気記録媒体ど磁気ヘッドの摺接部におけ
る摺接条件)が悪(なり、垂直磁気記録媒体を損傷した
り磁気ヘッドに悪影響が生じ良好な垂直磁気記録再生が
できないという問題点があった。
Problems to be Solved by the Invention However, the above-mentioned conventional perpendicular magnetic recording medium 9, for example, Co-C
When recording on a single-layer medium with a ring core head, the magnetic field has a considerable component in the in-plane direction, so the magnetization changes in slope and size during recording. In order to maintain the magnetization perpendicularly, perpendicular magnetic recording media have a high perpendicular anisotropy field (Hk),
It was necessary to suppress the saturation magnetization (MS) to a certain small value. In addition, in order to achieve high reproduction output, it was necessary to increase the perpendicular coercive force (1'' C) and to increase the thickness of the perpendicular magnetic recording medium. In addition, if the thickness is increased, the so-called contact between the perpendicular magnetic recording medium and the magnetic head (sliding contact conditions at the sliding contact part of the magnetic head of the perpendicular magnetic recording medium) will become poor, which may damage the perpendicular magnetic recording medium. There was a problem in that good perpendicular magnetic recording and reproduction could not be achieved due to adverse effects on the magnetic head.

またCo−Cr膜に加え高透磁率層を裏打ち層として形
成された二層構造の垂直磁気記録媒体の場合、Co−C
r膜の抗磁力Hc(700Oe以上)に対して高透磁率
層の抗磁力Hcは極めて小(10Q8以下)となってい
たため、衝撃性のバルクハウゼンノイズが発生するとい
う問題点があった。
In addition, in the case of a perpendicular magnetic recording medium with a two-layer structure in which a high magnetic permeability layer is formed as a backing layer in addition to a Co-Cr film, a Co-C
Since the coercive force Hc of the high magnetic permeability layer was extremely small (10Q8 or less) compared to the coercive force Hc of the r film (700 Oe or more), there was a problem in that impulsive Barkhausen noise was generated.

そこで本発明では、磁性材をコーティングした際、磁性
層が抗磁力の異なる二層に分かれて形成されることに注
目し、この抗磁力の異なる各層を垂直磁気記録に積極的
に利用することにより上記問題点を解決した垂直磁気記
録媒体を提供することを目的とする。
Therefore, in the present invention, we focused on the fact that when coated with a magnetic material, the magnetic layer is formed into two layers with different coercive forces, and by actively utilizing each layer with different coercive forces for perpendicular magnetic recording. It is an object of the present invention to provide a perpendicular magnetic recording medium that solves the above problems.

問題点を解決するための手段 上記問題点を解決するために本発明では、一の磁性材よ
りなる磁性層が特に低い抗磁力を有する層とその上に高
抗磁力を有する層を形成してなる垂直磁気記録媒体の上
記磁性層が、その面内ヒステリシスループにおける面内
方向の角型比が0.2以上である面内ヒステリシス特性
を有するよう構成した。
Means for Solving the Problems In order to solve the above problems, in the present invention, the magnetic layer made of one magnetic material has a layer having a particularly low coercive force and a layer having a high coercive force formed thereon. The magnetic layer of the perpendicular magnetic recording medium is configured to have an in-plane hysteresis characteristic in which the squareness ratio in the in-plane direction in the in-plane hysteresis loop is 0.2 or more.

実施例 本発明になる垂直磁気記録媒体(以下単に記録媒体とい
う)は、ベースとなるポリイミド基板十に例えばコバル
ト(Go)、クロム(Or )にニオブ(Nb )及び
タンタル(Ta )のうち少なくとも一方を加えてなる
磁性材をターゲラ1−としてスパッタリングすることに
よって得られる。
Embodiment A perpendicular magnetic recording medium according to the present invention (hereinafter simply referred to as a recording medium) is made of a polyimide substrate which serves as a base, and at least one of cobalt (Go), chromium (Or), niobium (Nb), and tantalum (Ta). It can be obtained by sputtering a magnetic material obtained by adding the above as target layer 1-.

従来より金属等(例えばCo−Or合金)をベース十に
スパッタリングした際、被膜形成された薄膜はその膜面
に垂直方向に対して同一結晶構造を形成するのではなく
、ベース近傍の極めて薄く部分にまず小粒径の第一の結
晶層を形成し、その上部に続いて大粒径の第二の結晶層
が形成されることが各種の実験(例えば走査型電子顕微
鏡による写真撮影)により明らかになってきている( 
E dward  R、Wuori  and  p 
rofessor  J 。
Conventionally, when sputtering metal etc. (e.g. Co-Or alloy) onto a base layer, the formed thin film does not form the same crystal structure in the direction perpendicular to the film surface, but instead forms a very thin part near the base layer. Various experiments (e.g., scanning electron microscopy photography) have shown that a first crystal layer with small grain size is formed first, followed by a second crystal layer with large grain size. It is becoming (
E dward R, Wuori and p.
rofessor J.

ト1.   Judy   :   ”INITIAL
    1−AYFRFFFECT  IN  Co−
CRFILMS”。
G1. Judy: ”INITIAL
1-AYFRFFECT IN Co-
CRFILMS”.

IEEE  Trans、、VOL、MAG−20゜N
O,5,SEPTEMBER1984,P 774〜P
175またはWilliam  G、 l−1aine
s : ”VSMPROFILING  OF  Co
CrF■LMs:A   NEW  ANALYTIC
A+、−TFCHNIQUF”IEEE   Tran
sl、VOL、MAG−20,No、5.SEPTEM
BER1984、P 812〜p 814)。本発明者
は上記観点に注目しGo−Or金合金基とし、またこれ
に第三元素を添加した金属を各種スパッタリングし、形
成される小粒径の結晶層とその土部に形成された大粒径
の結晶層との物理的性質を測定した結果、特に第三元素
としてNbまたはTaを添加した場合、小粒径結晶層の
抗磁力が大粒径結晶層よりも非常に小であることがわか
った。本発明ではこの低抗磁力を有する小粒径結晶層を
高透磁率層として用い高抗磁力を有する大粒径結晶層を
垂直磁化層として用いることを特徴とする。
IEEE Trans, , VOL, MAG-20°N
O, 5, SEPTEMBER1984, P 774~P
175 or William G, l-1aine
s: ”VSMPROFILING OF Co
CrFLMs: A NEW ANALYTIC
A+, -TFCHNIQUF”IEEE Tran
sl, VOL, MAG-20, No, 5. SEPTEM
BER1984, p 812-p 814). The present inventor focused on the above-mentioned point of view and sputtered various metals based on Go-Or gold alloy and added a third element to it, and created a crystal layer with a small grain size and a large crystal layer formed on the soil. As a result of measuring the physical properties of the grain-sized crystal layer, we found that the coercive force of the small-grain crystal layer is much smaller than that of the large-grain crystal layer, especially when Nb or Ta is added as a third element. I understand. The present invention is characterized in that the small-grain crystal layer having a low coercive force is used as a high permeability layer, and the large-grain crystal layer having a high coercive force is used as a perpendicular magnetization layer.

以下本発明者が行なったスパッタリングにより形成され
た小粒径結晶層と、大粒径結晶層の抗磁力を測定した実
験結果を詳述する。Co−CrR9膜、 co −0r
−Nb l膜及びCo −Cr −Ta薄膜をスパッタ
リングするに際し、スパッタリング条件は下記の如く設
定した(NbまたはTaを添加した各場合においてスパ
ッタリング条件は共に等しく設定した)。
Below, the results of an experiment conducted by the present inventor in which the coercive force of a small grain crystal layer formed by sputtering and a large grain crystal layer were measured will be described in detail. Co-CrR9 film, co-0r
When sputtering the -Nb I film and the Co-Cr-Ta thin film, the sputtering conditions were set as follows (the sputtering conditions were set equally in each case where Nb or Ta was added).

*スパッタ装置 RFマグネ1〜ロンスパッタ装冒 *スパッタリング方法 連続スパッタリング。予め予備11気圧1×1O−6T
orrまで排気した後Arガスを導入しI X 10’
Torrとした *ベース ポリイミド(厚さ20μl11) *ターゲット C0−0r合金上にN +1あるいはTaの小片を載置
した複合ターゲラ1へ *ターゲット基板間距離 10mm なお薄膜の磁気特性は振動試料型磁力計(理研電子製、
以下VSMと略称する)にて、薄膜の組成はエネルギー
分散型マイクロアナライザ(KEVEXa製、以下ED
Xと略称する)にて、また結晶配向性はX線回折装置(
理学電機製)にて夫々測定した。
* Sputtering equipment RF Magne 1 ~ Ron sputtering * Sputtering method Continuous sputtering. Preliminary 11 atm 1×1O-6T
After exhausting to orr, Ar gas was introduced and I
Torr *Base polyimide (thickness 20μl11) *To composite targetera 1 with a small piece of N+1 or Ta placed on target C0-0r alloy *Distance between target substrates 10mm The magnetic properties of the thin film were measured using a vibrating sample magnetometer. (manufactured by Riken Denshi,
The composition of the thin film was measured using an energy dispersive microanalyzer (manufactured by KEVEXa, hereinafter ED).
The crystal orientation was determined using an X-ray diffraction device (abbreviated as X).
(manufactured by Rigaku Denki).

Co  Crに第三元素としてNbを添加(2〜10a
t%添加範囲において同一現象が生ずる)し、ポリイミ
ドベースに0.2μmの膜厚でスパッタリングした記録
媒体に15KOeの磁界を印加した場合の面内方向のヒ
ステリシス曲線を第1図に示す。同図より面内方向の抗
磁力(記号HC/で示す)がゼロ近傍部分でヒステリシ
ス曲線は急激に変則的に立ち上がり(図中矢印Aで示す
)、いわゆる磁化ジャンプが生じていることがわかる。
Adding Nb as a third element to CoCr (2 to 10a
The same phenomenon occurs in the t% addition range), and FIG. 1 shows a hysteresis curve in the in-plane direction when a magnetic field of 15 KOe is applied to a recording medium sputtered to a film thickness of 0.2 μm on a polyimide base. From the figure, it can be seen that the hysteresis curve suddenly rises irregularly (indicated by arrow A in the figure) at a portion where the in-plane coercive force (indicated by the symbol HC/) is near zero, and a so-called magnetization jump occurs.

スパッタリングされたCo −Cr −Nb ’114
膜がスパッタリング時に常に均一の結晶成長を行なった
と仮定した場合、第1図に示された磁化ジャンプは生ず
るはずはなく、これよりGO−0r−Nb薄膜内に磁気
的性質の異なる複数の結晶層が存在することが推測され
る。
Sputtered Co-Cr-Nb'114
If we assume that the film always undergoes uniform crystal growth during sputtering, the magnetization jump shown in Figure 1 should not occur, and this suggests that there are multiple crystal layers with different magnetic properties in the GO-0r-Nb thin film. It is assumed that there is.

続いて第1図で示した実験条件と同一条件にてCo −
〇r−Nbをポリイミドベースニ0.05μmの膜厚で
スパッタリングした記録媒体に15KOeの磁界を印加
した場合の面内方向のヒステリシス曲線を第2図に示す
。同図においては第1図に見られたようなヒステリシス
曲線の磁化ジャンプは生じておらず005μm程度の膜
厚におりるGo −0r−Nb薄膜は略均−な結晶と4
1っていることが理解される。これに加えて同図より0
.05μm程度の膜厚における抗磁ノIHC/に注目す
るに、抗磁力HC/は極めて小なる値とhつ ゛ており
面内方向に対する透磁率が人であることが理解される。
Subsequently, under the same experimental conditions as shown in Fig. 1, Co −
FIG. 2 shows a hysteresis curve in the in-plane direction when a magnetic field of 15 KOe is applied to a recording medium in which r-Nb is sputtered to a film thickness of 0.05 μm on a polyimide base. In the same figure, there is no magnetization jump in the hysteresis curve as seen in Figure 1, and the Go-0r-Nb thin film with a thickness of about 0.05 μm is a substantially uniform crystal.
It is understood that there are 1. In addition to this, from the same figure 0
.. When paying attention to the coercive force IHC/ at a film thickness of about 0.05 μm, it can be seen that the coercive force HC/ is an extremely small value, indicating that the magnetic permeability in the in-plane direction is about 100%.

上記結果よりスパッタリングによりベース近傍位置には
じめに成長する初m層は抗磁力HC/が小であり、この
初期層は走査型電子顕微鏡写真で確かめられている(前
記資料参照)ベース近傍位置に成長する小粒径の結晶層
であると考えられる。また初期層の上方に成長する層は
、初期層の抗磁力HC/より大なる抗磁力]」CIを有
し、この層は同じく走査型電子顕微鏡写真で確かめられ
ている大粒径の結晶層であると考えられる。
From the above results, the coercive force HC/ of the initial m-layer that first grows in the vicinity of the base by sputtering is small, and this initial layer grows in the vicinity of the base, as confirmed by scanning electron micrographs (see the above document). This is thought to be a crystal layer with small grain size. In addition, the layer growing above the initial layer has a coercive force HC/a larger coercive force CI of the initial layer, and this layer is also a large-grain crystal layer confirmed by scanning electron micrographs. It is thought that.

小粒径結晶層と大粒径結晶層が併存するCo −Or 
−Nb H膜において磁化ジャンプが生ずる理由を第3
図から第5図を用いて以下述べる。なお後述する如く、
磁化ジャンプは組成率及びスパッタリング条件に関し全
てのCo −Cr −Nb 薄膜に対して発生するもの
ではない。所定の条件下においてGo −Cr−Nb薄
膜をスパッタリングにより形成しこの薄膜のヒステリシ
ス曲線を測定により描くと第3図に示す如く磁化ジA7
ンプが現われたヒステリシス曲線どなる。また小粒径結
晶層のみからなるヒステリシス曲線は膜厚寸法を小とし
たスパッタリング(約0.075μm以下、これについ
ては後述する)を行ない、これを測定することにより得
ることができる(第4図に示す)。また大粒径結晶層は
均−結晶描込を有していると考えられ、かつ第3図に示
すヒステリシス曲線は小粒径結晶層のヒステリシス曲線
と大粒径結晶層のヒステリシス曲線を合成したものと考
えられるため第5図に示す如く抗磁力HC/が小粒径結
晶層よりも大であり、磁化ジャンプのない滑らかなヒス
テリシス曲線を形成すると考えられる。すなわら第3図
において示されている磁化ジャンプの存在は、磁気特性
の異なる二層が同一の薄膜内に形成されていることを示
しており、従って第1図に示されたCo −Cr−Nb
薄膜にも磁気特性の異なる二層が形成されていることが
即問できる。4rお大粒径結晶層の抗磁力は、小粒径結
晶層と大粒径結晶層が併存するCo −Cr −Nb 
薄膜のヒステリシス曲線から小粒径結晶層のみのCo 
 Cr−Nb 薄膜のヒステリシス曲線を差引いて得ら
れるヒステリシス曲線より求めることができる。上記各
実験li!i果によりco −Cr −Nb 薄膜のヒ
ステリシス曲線に磁化ジャンプが生じている時、磁気特
性の異なる二層が形成されていることが証明されたこと
になる。
Co-Or in which small grain size crystal layer and large grain size crystal layer coexist
-The third reason why magnetization jump occurs in NbH film
This will be described below using FIGS. Furthermore, as described later,
Magnetization jumps do not occur for all Co-Cr-Nb thin films with respect to composition and sputtering conditions. A Go-Cr-Nb thin film was formed by sputtering under predetermined conditions, and the hysteresis curve of this thin film was drawn by measurement as shown in Figure 3.
The hysteresis curve appears. In addition, a hysteresis curve consisting only of a small-grain crystal layer can be obtained by performing sputtering with a small film thickness (approximately 0.075 μm or less, which will be described later) and measuring it (Fig. 4). ). Furthermore, the large-grain crystal layer is considered to have a uniform crystal pattern, and the hysteresis curve shown in Figure 3 is a composite of the hysteresis curve of the small-grain crystal layer and the hysteresis curve of the large-grain crystal layer. Therefore, as shown in FIG. 5, the coercive force HC/ is larger than that of the small-grain crystal layer, and it is thought that a smooth hysteresis curve with no magnetization jump is formed. In other words, the existence of the magnetization jump shown in FIG. 3 indicates that two layers with different magnetic properties are formed within the same thin film, and therefore the Co-Cr shown in FIG. -Nb
It is obvious that the thin film also has two layers with different magnetic properties. The coercive force of the 4r large-grain crystal layer is Co-Cr-Nb in which the small-grain crystal layer and the large-grain crystal layer coexist.
From the hysteresis curve of the thin film, only a small crystal layer of Co
It can be determined from the hysteresis curve obtained by subtracting the hysteresis curve of the Cr--Nb thin film. Each of the above experiments! The results prove that when a magnetization jump occurs in the hysteresis curve of a co -Cr -Nb thin film, two layers with different magnetic properties are formed.

続いてCo −Gr−Nb 薄膜のベース上へのスパッ
タリングの際形成される上記二層の夫々の磁気的性質を
Go −Or −Nll N膜の厚さ寸法に関連させつ
つ第6図を用いて以下説明する。第6図はCo −Cr
−Nb薄膜の膜厚寸法をスパッタリング時間を変えるこ
とにより制御し、各膜厚寸法における面内方向の抗磁力
1−1c /、垂直方向の抗磁力1−1c上、磁化ジャ
ンプ■σjを夫々溝いたものである。
Next, using FIG. 6, the magnetic properties of each of the above two layers formed during sputtering on the base of the Co-Gr-Nb thin film are related to the thickness dimension of the Go-Or-NllN film. This will be explained below. Figure 6 shows Co-Cr
- The film thickness of the Nb thin film is controlled by changing the sputtering time, and the in-plane coercive force 1-1c/, the perpendicular coercive force 1-1c, and the magnetization jump ■σj at each film thickness are set in the groove. It was there.

まず面内方向の抗磁カドIC/に注目するに、膜厚寸法
が0,15μm以下においては180Oe以下と極めて
小なる値となっており、面内方向に対する透磁率は高い
と考えられる。また膜厚寸法が人となっても抗磁力HC
’/は大きく変化するようにことはない。また磁化ジャ
ンプ量σjに注目すると、磁化ジャンプ量は膜厚寸法が
0.075μmにて急激に立ち上がり0.075μm以
上の膜厚においては滑らかな下に凸の放物線形状を描く
。更に垂直方向の抗磁力Hc上に注目すると、抗磁力1
−1c土は膜厚寸法0.05μm〜01μmで急激に1
80Oeから立ち上がり0.1μm以上の膜厚寸法では
900Oe以上の高い抗磁力を示す。これらの結果より
小粒径結晶層と大粒径結晶層の境は略0075μmの膜
厚寸法のと□ころにあり、膜厚寸法が0、075μm以
下の小粒径結晶層は面内方向及び垂直方向に対する抗磁
力HC/、 1−1c上が共に略180Oe以下と低い
、いわゆる抵抗磁力層となつており、また膜厚寸法が0
.075μm以上の大粒径結晶層は面内方向の抗磁力H
c/は略180Oe以下と低いものの垂直方向に対する
抗磁力HC1は磁化ジャンプの発生膜厚寸法近傍で20
008から900Oeに急増し、その後も膜厚寸法が人
になるにつれて漸増する、いわゆる高抗磁力層となって
おり垂直磁気記録に適した層となっている1、更に磁化
ジャンプが生じない膜厚寸法(0,075μm以下)に
おいては、面内方向及び垂直方向に対する抗磁ノJHC
/、 Hc J−は共に180Oe以下ど低く、これよ
り大なる膜厚寸法(0,075μm以上)においては垂
直方向に対する抗磁力HCIが急増する。
First of all, paying attention to the antimagnetic quadratic IC/ in the in-plane direction, it is an extremely small value of 180 Oe or less when the film thickness is 0.15 μm or less, and it is considered that the magnetic permeability in the in-plane direction is high. Also, even if the film thickness is human, the coercive force HC
'/ doesn't seem to change much. Further, when paying attention to the magnetization jump amount σj, the magnetization jump amount rises rapidly when the film thickness dimension is 0.075 μm, and draws a smooth downwardly convex parabolic shape at a film thickness of 0.075 μm or more. Furthermore, if we pay attention to the coercive force Hc in the vertical direction, the coercive force 1
-1c soil suddenly becomes 1 when the film thickness is 0.05μm to 01μm.
Starting from 80 Oe, a film thickness of 0.1 μm or more exhibits a high coercive force of 900 Oe or more. From these results, the boundary between the small-grain crystal layer and the large-grain crystal layer is located at the film thickness of approximately 0.075 μm, and the small-grain crystal layer with a film thickness of 0.075 μm or less is located in the in-plane direction and The coercive force HC/ and 1-1c in the vertical direction are both low, approximately 180 Oe or less, forming a so-called resistive magnetic layer, and the film thickness is 0.
.. The large grain size crystal layer of 075 μm or more has a coercive force H in the in-plane direction.
Although c/ is low at approximately 180 Oe or less, the coercive force HC1 in the vertical direction is 20 near the film thickness dimension where the magnetization jump occurs.
The film thickness rapidly increases from 0.008 to 900 Oe, and then gradually increases as the thickness increases, becoming a so-called high coercive force layer, which is suitable for perpendicular magnetic recording. In terms of dimensions (0,075 μm or less), antimagnetic JHC in the in-plane direction and perpendicular direction
/ and Hc J- are both as low as 180 Oe or less, and when the film thickness is larger than this (0,075 μm or more), the coercive force HCI in the vertical direction rapidly increases.

これによっても磁化ジャンプが生じている場合、Go 
−Cr −Nb薄膜に磁気特性の異なる二層が形成され
ていることが推測される。
If this also causes a magnetization jump, Go
It is presumed that two layers with different magnetic properties are formed in the -Cr-Nb thin film.

次にCo−Crに第三元素どしてTaを添加(1〜10
at%添加範囲において同一現象が生ずる)し、上記し
たNb添加した場合と同一の実験を行なった結果を第7
図に示す。第7図はCo−Cr −Ta 薄膜の膜厚寸
法をスパッタリング時間を変えることにより制御し、各
膜厚寸法における面内方向の抗磁力1−IC/、垂直り
向の抗磁ノj1−ICJLo Iti化ジャンプ聞σj
を夫々描いたものである。同図よりC0−CrにTaを
添加した場合も、co−CrにNbを添加した場合と略
同様な結果が得られ、小粒径結晶層と大粒径結晶層の境
は略0.075μmの膜厚寸法のところにあり、膜厚寸
法が0075μm以下の小粒径結晶層は面内方向及び垂
直方向に対する抗磁力)1c /、 Hc土が低い(1
」c /、 HCl共に170Oe以下)、イわゆる抵
抗磁力層どなっており、また膜厚寸法が0.075μm
以上の大粒径結晶層は面内方向の抗磁力HC/は低いも
のの垂直方向に対する抗磁力1−1c上は磁化ジャンプ
の発生膜厚寸法近傍で20000から750Oe以上に
立ち上がり、その後も膜厚寸法が大となるにつれて漸増
する、いわゆる高抗磁力層となっている。
Next, Ta is added as a third element to Co-Cr (1 to 10
The same phenomenon occurs in the at% addition range), and the results of the same experiment as in the case of Nb addition described above are shown in the seventh section.
As shown in the figure. Figure 7 shows that the thickness of the Co-Cr-Ta thin film is controlled by changing the sputtering time, and the coercive force in the in-plane direction 1-IC/, and the coercive force in the perpendicular direction j1-ICJLo at each film thickness. Iti conversion jump σj
are drawn respectively. From the same figure, when Ta is added to CO-Cr, almost the same results as when Nb is added to co-Cr are obtained, and the boundary between the small-grain crystal layer and the large-grain crystal layer is approximately 0.075 μm. The small-grain crystal layer with a thickness of 0.075 μm or less has a coercive force in the in-plane direction and the perpendicular direction (1c/), and the Hc soil has a low (1c/)
"c/, HCl are both 170 Oe or less), so-called resistive magnetic layer, and the film thickness is 0.075 μm.
Although the above-mentioned large-grain crystal layer has a low coercive force HC/ in the in-plane direction, the coercive force 1-1c in the perpendicular direction rises from 20,000 to 750 Oe or more near the film thickness dimension where the magnetization jump occurs, and even after that, the film thickness dimension This is a so-called high coercive force layer that gradually increases as the value increases.

なお上記実験で注意すべきことは、スパッタリング条件
及びNb、Taの添加量を前記した値(Nb:2〜10
at%、 Ta : 1〜10at%)より変えた場合
磁化ジャンプは生じないが、しかるに磁化ジャンプが生
じ4TいCO〜Or −NtztD膜。
What should be noted in the above experiment is that the sputtering conditions and the amounts of Nb and Ta added were set to the values described above (Nb: 2 to 10
at%, Ta: 1 to 10 at%), no magnetization jump occurs, but a magnetization jump occurs in the 4T CO~Or-NtztD film.

Co −Cr −Ta ’?a膜においても小粒径結晶
層及び大粒径結晶層が形成されていることである(前記
資料参照)。磁化ジャンプが生じないco −Or −
Nb WJ膜のヒステリシス曲線の一例を第8図に示す
。第8図(A)は小粒径結晶層及び大粒径結晶層を含む
面内方向のヒステリシス曲線であり、第8図(B)は小
粒径結晶層のみの面内方向のヒステリシス曲線、第8図
(C)は大粒径結晶層のみの面内方向のヒステリシス曲
線である。各図より小粒径結晶層の面内方向の残留磁化
MrB/は大粒径結晶層の残留磁化Mr c /よりも
大であるため、両結晶層を含む残留磁化Mr A /は
大粒径結晶層の残留磁化M r (: /のみの時より
も不利どなり異方性磁界Hkが小ざ<4【る。また小粒
径結晶層は配向が悪いこと(八〇50が大)が知られて
おり、また面内方向の抗磁力HC/も大で垂直磁気記録
には適さない。
Co-Cr-Ta'? Even in the a film, a small grain size crystal layer and a large grain size crystal layer are formed (see the above document). co −Or − where no magnetization jump occurs
An example of the hysteresis curve of the Nb WJ film is shown in FIG. FIG. 8(A) is an in-plane hysteresis curve including a small-grain crystal layer and a large-grain crystal layer, and FIG. 8(B) is an in-plane hysteresis curve of only a small-grain crystal layer. FIG. 8(C) is a hysteresis curve in the in-plane direction of only the large-grain crystal layer. From each figure, the residual magnetization MrB / in the in-plane direction of the small grain crystal layer is larger than the residual magnetization Mr c / of the large grain crystal layer, so the residual magnetization Mr A / including both crystal layers is larger than the residual magnetization Mr A / of the large grain crystal layer. The residual magnetization M r (:) of the crystal layer is less favorable than that of / only, and the anisotropy magnetic field Hk is smaller than 4. It is also known that the small-grain crystal layer has poor orientation (8050 is large). Moreover, the coercive force HC/ in the in-plane direction is large, making it unsuitable for perpendicular magnetic recording.

ここで上記の如く小粒径結晶層と大粒径結晶層を有する
Co −Cr−Nb薄膜及びCo −Cr −Ta薄膜
を垂直磁気記録媒体として考えた場合、CO−0r−N
b薄膜及びGo −Cr −Ta ’4膜にその膜面に
対し垂直方向に膜厚の全てに亘って垂直磁化を行なおう
とすると、小粒径結晶層の存在は垂直磁化に対し極めて
不利な要因となる(磁化ジャンプが生じている場合及び
磁化ジャンプが生じていない場合の相方において不利な
要因となる)。すなわち磁化ジャンプが生じている場合
の小粒径結晶層は、面内方向及び垂直方向に対する抗磁
力HC/、HC上が共に極めて低く、この層においては
垂直磁化はほとんどされないと考えられる。また磁化ジ
ャンプが生じていない場合の小粒径結晶層においても、
面内方向の抗磁ノIHC/は磁化ジャンプの生じている
場合の抗磁力HC/よりは大であるが垂直方向の抗磁力
1」C上は垂直磁気記録を実現し得る程の抗磁力はなく
やはり良好な垂直磁化は行なわれないと考えられる。従
って膜面に対して垂直方向に磁化を行なっても小粒径結
晶層における垂直磁化はほとんど行なわれず、磁性膜全
体としての垂直磁化効率が低下してしまう。この影響は
リング」アヘッドのように磁束の面内成分を多く含む磁
気ヘッドにおいては顕著である。また膜厚寸法に注目す
るに上記Go−Cr−Nb薄膜及びC0−0r−Ta薄
膜を垂直磁気記録媒体として実用にTる膜厚寸法(約0
.3μm以下)にすると、小粒径結晶層の厚さ寸法は0
.15μm以下で略一定であるため(実験においては小
粒径及び大粒径結晶層を含む膜厚寸法を小とすると小粒
径結晶層の厚さ寸法は若干大となる傾向を示す)、薄膜
の膜厚寸法に対する小粒径結晶層の相対的厚さ寸法が大
となり更に垂直磁化特性が劣化してしまう。
Here, when considering the Co-Cr-Nb thin film and Co-Cr-Ta thin film having the small-grain crystal layer and the large-grain crystal layer as a perpendicular magnetic recording medium as described above, CO-0r-N
When attempting to create perpendicular magnetization in the b thin film and the Go-Cr-Ta '4 film over the entire film thickness in the direction perpendicular to the film surface, the existence of a small-grain crystal layer is extremely disadvantageous for perpendicular magnetization. (It becomes a disadvantageous factor when a magnetization jump occurs and when a magnetization jump does not occur). That is, in a small-grain crystal layer where a magnetization jump occurs, both the coercive force HC/ and HC in the in-plane direction and the perpendicular direction are extremely low, and it is considered that there is almost no perpendicular magnetization in this layer. In addition, even in a small-grain crystal layer when no magnetization jump occurs,
The coercive force IHC/ in the in-plane direction is larger than the coercive force HC/ when a magnetization jump occurs, but the coercive force in the perpendicular direction is not large enough to realize perpendicular magnetic recording. It is considered that good perpendicular magnetization cannot be achieved without this. Therefore, even if magnetization is performed perpendicularly to the film surface, perpendicular magnetization in the small-grain crystal layer is hardly achieved, and the perpendicular magnetization efficiency of the magnetic film as a whole is reduced. This effect is remarkable in a magnetic head such as a ring-ahead type that includes a large in-plane component of magnetic flux. Also, paying attention to the film thickness dimension, the film thickness dimension T (approximately 0
.. 3 μm or less), the thickness dimension of the small grain crystal layer is 0.
.. Since it is approximately constant at 15 μm or less (in experiments, the thickness of the small-grain crystal layer tends to become slightly larger when the film thickness including the small-grain crystal layer and the large-grain crystal layer is made small), The relative thickness dimension of the small grain size crystal layer with respect to the film thickness dimension becomes large, further deteriorating the perpendicular magnetization characteristics.

しかるに小粒径結晶層の磁気特性は、面内方向に対する
抗磁力HC/が小であり比較的高い透磁率を有しており
、これは従来CO−Cr 薄膜とベース間に配設した裏
打ち層(例えばFe −1id膜)と似た特性を有して
いる。つまりCo −Cr−Nb薄膜及びGo −0r
−Ta薄膜の単一膜において、低抗磁力HC/を有する
小粒径結晶層をいわゆる裏打ち層である高透磁率層とし
て用い、垂直方向に高抗磁力HC上を有する大粒径結晶
層を垂直磁化層として用いることにより単一膜構造にお
いて二層膜構造の垂直磁気記録媒体と等しい機能を実現
することが可能であると考えられる。
However, the magnetic properties of the small-grain crystal layer include a small coercive force HC/ in the in-plane direction and a relatively high magnetic permeability. (For example, Fe-1id film). That is, Co-Cr-Nb thin film and Go-0r
- In a single Ta thin film, a small-grain crystal layer with low coercive force HC/ is used as a high permeability layer, which is a so-called backing layer, and a large-grain crystal layer with high coercive force HC on vertical direction is used. It is thought that by using it as a perpendicular magnetic layer, it is possible to realize the same function as a perpendicular magnetic recording medium with a double-layer structure in a single-layer structure.

この点に鑑み、Co −cr −Nb 薄膜及びG。In view of this point, Co-cr-Nb thin film and G.

−0r−Ta薄膜の組成率を変化させた場合、各薄膜の
厚さ寸法を変化させた場合における磁気特性の変化及び
再生出力の相異を第9図から第16図を用いて以下説明
する。第9図はCo −Cr −Nb薄膜の組成率及び
膜厚寸法を変化させた場合における各種磁気特性を示す
図で、第10図(A)〜(E)は第9図に示した各薄膜
の面内ヒステリシス曲線を描いたものである。両図より
CO−Crに第三元素としてNbを添加した場合でも、
磁化ジャンプ(第10図(A)、(D)に矢印B。
The changes in magnetic properties and differences in reproduction output when the composition ratio of the -0r-Ta thin film is changed and the thickness dimension of each thin film is changed will be explained below using FIGS. 9 to 16. . Figure 9 is a diagram showing various magnetic properties when the composition ratio and film thickness dimensions of the Co-Cr-Nb thin film are changed, and Figures 10 (A) to (E) are diagrams for each thin film shown in Figure 9. This is a drawing of the in-plane hysteresis curve. From both figures, even when Nb is added as a third element to CO-Cr,
Magnetization jump (arrow B in Fig. 10 (A) and (D)).

Cで示す)が生じている時は垂直磁化に寄りする垂直方
向の抗磁力HC1は高い値となるが磁化ジャンプが生じ
ていない時は抗磁力HC−tは低い値となっている。ま
たGo −Cr −Nb Wl膜の膜厚寸法が小(デー
タでは約1/2〉のhが抗磁力t−lc土は高い値とな
っている。これに加えて磁化ジャンプが生じている時は
小粒径結晶層の面内方向の抗磁力HC/は略180Oe
以下で、かつ大粒径結晶層の垂直方向の抗磁力11C上
は略200Oe以上であると共に垂直異方性磁界Hkが
小さく、また面内方向の角型比Mr //MSは略同−
膜厚寸法におけるCo−Cr薄膜に比べて大でありかつ
膜厚寸法δが薄くなるに従って下限を02として次第に
大なる値となる。すなわち磁化ジャンプが発生するのは
磁性膜の面内方向の角型比Mr//Msを0.2以上の
構成どした揚台である。、これは面内方向に磁束分布が
大であるリングコアヘッドを用いる際不利な条件と考え
られていた。しかるに上記各Go −Cr−Nb薄膜を
垂直磁気記録媒体として用いた際の記録波長−再生出力
特性(第11図に示す)を見ると、14を化ジャンプが
生じているGo −Cr −Nb RRの再生出力の方
が磁化ジャンプの生じていないCo  Cr  N b
 H膜及びGo−Cr薄膜の再生出力よりも良好とな 
20 一 つており、特に記録波長が短波長領域において顕著であ
る。短波長領域(記録波長が0.2μm〜1.0μm程
度の領域)においてはco−Cr薄膜及び磁化ジャンプ
の生じていないco−Or−Nb薄膜においても再生出
力は増加している。し゛かるに磁化ジャンプの生じてい
るco −Or −Nbl膜は、上記各薄膜の再生出力
増加率に対して、それよりも高い再生出力増加率を示し
ており、磁化ジャンプの生じているCo −0r−Nb
薄膜は特に短い記録波長の垂直磁化に適しているという
ことができる。上記短波長領域においては再生出力曲線
は上に凸の放物線形状をとるが、その全域において磁化
ジャンプの生じているCo −Cr−Nb薄膜はGo−
Cr薄膜及び磁化ジャンプの生じていないGo −Cr
−Nb薄膜より大なる再生出力を得ることができた。な
お(:、o −Cr −Ta薄膜においてもCo −C
r−Nb薄膜と略同様な結果を得られた。第12図に膜
厚寸法の異なるC0−Cr薄膜に対するC0−0r−T
a薄膜の磁気特性を示し、第13図(A)〜(C)に各
薄膜の形成する面内方向ヒステリシス曲線を、また第1
4図に記録波長−再生出力特性を示す。
When magnetization jump (indicated by C) occurs, the perpendicular coercive force HC1, which approaches perpendicular magnetization, takes a high value, but when no magnetization jump occurs, the coercive force HC-t takes a low value. In addition, the thickness of the Go-Cr-Nb Wl film is small (about 1/2 h in the data), but the coercive force T-LC soil has a high value.In addition, when a magnetization jump occurs, The coercive force HC/ in the in-plane direction of the small grain crystal layer is approximately 180 Oe
In the following, the coercive force 11C in the perpendicular direction of the large grain crystal layer is approximately 200 Oe or more, the perpendicular anisotropy magnetic field Hk is small, and the squareness ratio Mr //MS in the in-plane direction is approximately the same -
The film thickness is larger than that of a Co--Cr thin film, and as the film thickness δ becomes thinner, the lower limit becomes 02, and the value gradually increases. That is, the magnetization jump occurs in a platform in which the in-plane squareness ratio Mr//Ms of the magnetic film is 0.2 or more. This was considered to be a disadvantage when using a ring core head, which has a large magnetic flux distribution in the in-plane direction. However, when looking at the recording wavelength-reproducing output characteristics (shown in FIG. 11) when each of the above Go-Cr-Nb thin films is used as a perpendicular magnetic recording medium, the Go-Cr-Nb RR exhibits a chemical jump of 14. The reproduction output of CoCrNb has no magnetization jump.
The reproduction output is better than that of H film and Go-Cr thin film.
20, and this is particularly noticeable in the short recording wavelength region. In the short wavelength region (region where the recording wavelength is about 0.2 μm to 1.0 μm), the reproduction output increases even in the co-Cr thin film and the co-Or-Nb thin film in which no magnetization jump occurs. However, the co -Or -Nbl film in which a magnetization jump has occurred shows a higher rate of increase in reproduction output than that of each of the above-mentioned thin films. 0r-Nb
It can be said that thin films are particularly suitable for perpendicular magnetization at short recording wavelengths. In the above-mentioned short wavelength region, the reproduction output curve takes an upwardly convex parabolic shape, but the Co-Cr-Nb thin film in which the magnetization jump occurs in the entire region is Go-
Cr thin film and Go-Cr without magnetization jump
- It was possible to obtain a larger reproduction output than the Nb thin film. Note that (:, o -Cr -Ta thin film also has Co -C
Almost the same results as the r-Nb thin film were obtained. Figure 12 shows C0-0r-T for C0-Cr thin films with different film thickness dimensions.
13(A) to 13(C) show the in-plane direction hysteresis curves formed by each thin film, and
Figure 4 shows the recording wavelength vs. reproduction output characteristics.

上記視像は以下に示す理由に起因して生ずると考えられ
る。Co −Cr−Nb薄膜及びCo−Cr−Ta薄膜
(以下Co −Cr −Nb 薄膜ど(:、o −0r
−Ta薄膜を総称してCo −Cr −Nb(Ta)t
tI膜という)はスパッタリングによる31!形成時に
第15図に示す如くベース1近傍に抵抗磁力を有する小
粒径結晶層2とその上方に特に垂直方向に高い抗磁力を
有する大粒径結晶層3と二層構造を形成する。磁気ヘッ
ド4から放たれた磁束線は大粒径結晶層3を貫通して小
粒径結晶層2に到り、抵抗磁力でかつ高透磁率を有する
小粒径結晶層2内で磁束は面内方向に進行し、磁気ヘッ
ド4の磁極部分で急激に磁束が吸い込まれることにより
大粒径結晶M3に垂直磁化がされると考えられる。よっ
て磁束が形成する磁気ループは第15図に矢印で示す如
く、馬蹄形状となり所定垂直磁気記録位置において大粒
径結晶層3に磁束が鋭く貫通するため、大粒径結晶層3
には残留磁化の大なる垂直磁化が行なわれる。ここで磁
化ジャンプが生じている場合と生じていない場合におけ
る小粒径結晶層2の面内方向の抗磁力1」c/に注目す
ると、第9図及び第12図に示される如く面内ヒステリ
シスループの面内方向角型比が02以、トである面内ヒ
ステリシス特性を示す場合の、すなわち磁化ジャンプが
生じている場合の面内方向の抗磁力HC/は磁化ジャン
プが生じていない揚台の抗磁力HC/より小なる値とな
っている。周知の如く小粒径結晶層2がいわゆる裏打ち
層として機能するためには低抗磁力、高透磁率を有する
ことが望ましく、よって磁化ジャンプの生じているCo
 −Cr −Nb  (Ta )薄膜の方が再生出力が
良好であると推測される。本発明者の実験においては測
定誤差等の影響を考慮した上で小粒径結晶層2の面内方
向の抗磁力1−1c/が180Oe以下であり、かつ大
粒径結晶B3の垂直方向の抗磁力HCfが200Oe以
十である時、再生出力は良好な値となった。またGo 
−Cr −Nb(Ta)薄膜の膜厚寸法に注目すると、
膜厚寸法を大とすることは大粒径結晶層3の厚さ寸法を
人とすることであり(小粒径結晶層2の厚ざ寸法は略一
定である)、これを大とすることにより磁気ヘッド4と
小粒径結晶層2の距離が大となり、小粒径結晶層2によ
る磁束の吸込み効果はわずかで第16図に矢印で示す如
く磁気ヘッド4から放たれた磁力線は小粒径結晶層2に
到ることなく大粒径結晶層3を横切って磁気ヘッド4の
磁極に吸い込まれる。従って垂直方向に対する磁化は分
散された弱いものとなり良好11垂直磁化は行なわれな
い。しかるにCO−Cr −Nb  (Ta )薄膜の
膜厚寸法を小とすると、磁気ヘッド4と小粒径結晶層2
の距離が小となり、小粒径結晶層2による磁束の吸込み
効果が人どなり磁気ヘッド4から放たれた磁束は小粒径
結晶層2に確実に進行し上記馬蹄形の磁気ループを形成
する。即ち、垂直磁化に寄与する磁束は馬蹄形の極めて
鋭い磁界であるので残留磁化は大となり良好な垂直磁化
が行イ1われると考えられる。すなわちGO−Cr−N
b(Ta )薄膜の膜厚寸法を小とした方が(記録媒 
24一 体の厚さを薄くした方が)良好な垂直磁化を行なうこと
ができ、これにより磁気ヘッド4とのいわゆる当たりの
良好な薄い記録媒体を実現することができる(本発明者
の実験によると膜厚寸法が0.1μm〜03μm程度の
寸法まで高出力を保持゛できた)。更に小粒径結晶層2
の面内方向の抗磁力HC/は略180Oe以下であり大
粒径結晶層3の抗磁力)−1c上(略200Oe以上)
に対して極端に小なる値ではないため衝撃性のバルクハ
ウゼンノイズが発生することもなく良好な垂直磁気記録
再生を行ない得る。
It is thought that the above-mentioned visual image occurs due to the following reasons. Co-Cr-Nb thin film and Co-Cr-Ta thin film (hereinafter referred to as Co-Cr-Nb thin film) (:, o -0r
-Ta thin film is collectively called Co -Cr -Nb(Ta)t
(referred to as tI film) is made by sputtering. At the time of formation, as shown in FIG. 15, a two-layer structure is formed, including a small-grain crystal layer 2 having a resistive magnetic force near the base 1 and a large-grain crystal layer 3 having a high coercive force especially in the vertical direction above it. The magnetic flux lines emitted from the magnetic head 4 penetrate the large-grain crystal layer 3 and reach the small-grain crystal layer 2, and the magnetic flux is distributed in a plane within the small-grain crystal layer 2, which has a resistive magnetic force and high magnetic permeability. It is considered that the large-grain crystal M3 is perpendicularly magnetized as the magnetic flux is rapidly absorbed by the magnetic pole portion of the magnetic head 4 as it progresses inward. Therefore, the magnetic loop formed by the magnetic flux becomes a horseshoe shape as shown by the arrow in FIG.
Perpendicular magnetization with large residual magnetization occurs. If we pay attention to the coercive force 1''c/ in the in-plane direction of the small-grain crystal layer 2 when a magnetization jump occurs and when it does not occur, we can see that the in-plane hysteresis occurs as shown in FIGS. 9 and 12. When the in-plane squareness ratio of the loop is 02 or more, the coercive force HC/ in the in-plane direction when the in-plane hysteresis characteristic is shown, that is, when a magnetization jump occurs, is the same as the lifting platform where no magnetization jump occurs. The value is smaller than the coercive force HC/. As is well known, in order for the small-grain crystal layer 2 to function as a so-called underlayer, it is desirable to have low coercive force and high magnetic permeability.
It is presumed that the -Cr-Nb (Ta) thin film has better reproduction output. In the experiments conducted by the present inventor, the coercive force 1-1c/ in the in-plane direction of the small-grain crystal layer 2 is 180 Oe or less, and the coercive force 1-1c/ in the vertical direction of the large-grain crystal layer B3 is taken into account, considering the influence of measurement errors, etc. When the coercive force HCf was 200 Oe or more, the reproduction output had a good value. Go again
Focusing on the thickness of the -Cr-Nb(Ta) thin film,
Increasing the film thickness means increasing the thickness of the large-grain crystal layer 3 (the thickness of the small-grain crystal layer 2 is approximately constant), and increasing this. As a result, the distance between the magnetic head 4 and the small-grain crystal layer 2 becomes large, and the magnetic flux absorption effect by the small-grain crystal layer 2 is slight, and the lines of magnetic force emitted from the magnetic head 4 are small particles, as shown by the arrows in FIG. It crosses the large-grain crystal layer 3 without reaching the large-grain crystal layer 2 and is sucked into the magnetic pole of the magnetic head 4. Therefore, the magnetization in the perpendicular direction is dispersed and weak, and good 11 perpendicular magnetization is not performed. However, if the thickness of the CO-Cr-Nb (Ta) thin film is made small, the magnetic head 4 and the small-grain crystal layer 2
The distance becomes small, and the effect of sucking the magnetic flux by the small-grain crystal layer 2 is strong, so that the magnetic flux emitted from the magnetic head 4 reliably advances to the small-grain crystal layer 2, forming the above-mentioned horseshoe-shaped magnetic loop. That is, since the magnetic flux that contributes to perpendicular magnetization is an extremely sharp horseshoe-shaped magnetic field, it is thought that residual magnetization is large and good perpendicular magnetization is achieved. That is, GO-Cr-N
It is better to reduce the film thickness of the b(Ta) thin film (recording medium
24) can achieve better perpendicular magnetization, which makes it possible to realize a thin recording medium that has good contact with the magnetic head 4 (according to experiments conducted by the present inventor). High output could be maintained up to a film thickness of about 0.1 μm to 0.3 μm). Furthermore, a small grain size crystal layer 2
The coercive force HC/ in the in-plane direction is approximately 180 Oe or less, and the coercive force of the large grain crystal layer 3 is above -1c (approximately 200 Oe or more)
Since the value is not extremely small, good perpendicular magnetic recording and reproduction can be performed without generating impulsive Barkhausen noise.

発明の効果 上述の如く本発明になる垂直磁気記録媒体によれば、一
の磁性材よりなる磁性層が特に低い抗磁力を有する層と
その上に高抗磁力を有する層を形成してなる垂直磁気記
録媒体の上記磁性層が、その面内ヒステリシスループに
おける面内方向の角型比が0.2以上である面内ヒステ
リシス特性を有するよう構成することにより、磁性層は
その面内方向の角型比が02以上である磁化ジャンプが
生じている磁性層であるため、低い抗磁力を有する層は
面内方向に対する抗磁力が小で、かつ高い透磁率を有し
、いわゆる裏打ら層として確実に機能するため磁気ヘッ
ドより放たれた磁束は高抗磁力を有する層を貫通して容
易に低抗磁力を有する層に進入し水平方向へ進行した後
磁気ヘッドの磁極にて急激にかつ鋭く高抗磁力を有する
層を貫通して磁気ヘッドの磁極に吸い込まれるため、高
抗磁力を有する層には強い残留磁化が生じ高い再生出力
を実現し得る垂直磁気記録再生を行なうことができ、ま
た特に再生出力は記録波長が短い時に特    ゛にす
ぐれた特性を示し短波長領域において特に良好な再生出
力を得ることができると共に低い抗磁力を有する層の抗
磁力は高抗磁力を有する層の抗磁力に対して極端に小な
る値ではないため衝撃性のバルクハウゼンノイズが発生
することもなく良好な垂直磁気記録再生を行なうことが
できる等の特長を有する。
Effects of the Invention As described above, according to the perpendicular magnetic recording medium of the present invention, the magnetic layer made of one magnetic material is a perpendicular magnetic recording medium in which a layer having a particularly low coercive force and a layer having a high coercive force are formed thereon. By configuring the magnetic layer of the magnetic recording medium to have an in-plane hysteresis characteristic in which the squareness ratio in the in-plane direction in the in-plane hysteresis loop is 0.2 or more, the magnetic layer has an in-plane squareness ratio of 0.2 or more. Since it is a magnetic layer with a type ratio of 02 or more and a magnetization jump occurs, a layer with low coercive force has small coercive force in the in-plane direction and high magnetic permeability, and is reliable as a so-called underlayer. Therefore, the magnetic flux emitted from the magnetic head penetrates the layer with high coercive force, easily enters the layer with low coercive force, and after traveling in the horizontal direction, suddenly and sharply increases the magnetic flux at the magnetic pole of the magnetic head. Because it penetrates the layer with high coercive force and is absorbed by the magnetic pole of the magnetic head, strong residual magnetization occurs in the layer with high coercive force, making it possible to perform perpendicular magnetic recording and reproduction that can achieve high reproduction output. The reproduction output has particularly excellent characteristics when the recording wavelength is short, and particularly good reproduction output can be obtained in the short wavelength region, and the coercive force of the layer with low coercive force is equal to the coercive force of the layer with high coercive force. Since the value is not extremely small, it has the advantage that good perpendicular magnetic recording and reproduction can be performed without generating impulsive Barkhausen noise.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる垂直磁気記録媒体の一実節制のI
il +1膜であるGo −Cr −Nb 薄膜ノt=
、i。 テリシス曲線を示ず図、第2図は小粒径結晶層のヒステ
リシス曲線を示す図、第3図から第5図は磁化ジャンプ
が生ずる理由を説明するための図、第6図はCo −C
r−Nb薄膜が二層構造となっていること及び各層の磁
気特性を示す図、第7図はCo−、Cr−Ta薄膜が二
層構造どなっていること及び各層の磁気特性を示す図、
第8図は様目ヒジA7ンプが生じていないCo  Cr
−Nb 薄膜のヒステリシス曲線の一例を示す図、第9
図はC0−Cr薄膜及びCO−Cr−Nb薄膜の組成率
及び膜厚寸法を変化させた場合における各種磁気性″性
を示す図、第10図は第9図に示した各薄膜のヒステリ
シス曲線を示す図、第11図はCo −Or −Ntl
lJ膜及びC0−Cr薄膜に垂直磁気記録再生を行なっ
た時の記録波長と再生出力の関係を示す図、第12図は
co−Cr薄膜及びCo −Cr−Taill/膜の所
定膜厚寸法における磁気特性を示す図、第13図は第1
2図に示した各薄膜のヒステリシス曲線を示す図、第1
4図は第12図= 27− におりるCo84.8 Cr13.4 Ta1.8i1
1膜及びC081Cr19it!膜(δ−0,10ft
m )に垂直磁気記録再生を行イ’hつだ時の記録波長
と再生出力の関係を示M−図、第15図は本発明記録媒
体の厚さ寸法を小とした場合に磁束が形成する(6気ル
ープを示づ一図、第16図は本発明記録媒体の厚さ寸法
を大どした場合に磁束が形成する111!気ループを示
す−図である。 1・・・ベース、2・・・小粒径結晶層、3・・・大粒
径結晶層、1・・・磁気ヘッド。
Figure 1 shows I of the perpendicular magnetic recording medium according to the present invention.
il +1 film Go -Cr -Nb thin film not=
,i. Figure 2 is a diagram showing the hysteresis curve of a small-grain crystal layer, Figures 3 to 5 are diagrams for explaining the reason why magnetization jumps occur, and Figure 6 is a diagram showing the hysteresis curve of a small-grain crystal layer.
Figure 7 shows the two-layer structure of the r-Nb thin film and the magnetic properties of each layer. Figure 7 is a diagram showing the two-layer structure of the Co-, Cr-Ta thin film and the magnetic properties of each layer. ,
Figure 8 shows Co Cr with no elbow A7 bump.
- Diagram showing an example of a hysteresis curve of a Nb thin film, No. 9
The figure shows various magnetic properties when the composition ratio and film thickness of the CO-Cr thin film and CO-Cr-Nb thin film are changed. Figure 10 shows the hysteresis curve of each thin film shown in Figure 9. Figure 11 shows Co -Or -Ntl
Figure 12 shows the relationship between recording wavelength and reproduction output when perpendicular magnetic recording and reproduction is performed on a lJ film and a CO-Cr thin film. A diagram showing the magnetic characteristics, Figure 13 is the first
Figure 1 shows the hysteresis curves of each thin film shown in Figure 2.
Figure 4 shows Co84.8 Cr13.4 Ta1.8i1 in Figure 12 = 27-
1 film and C081Cr19it! Membrane (δ-0, 10ft
Fig. 15 shows the relationship between the recording wavelength and the reproduction output when perpendicular magnetic recording and reproduction is performed. (Figure 16 shows a 111! loop formed by the magnetic flux when the thickness of the recording medium of the present invention is increased. 1...Base, 2...Small grain size crystal layer, 3...Large grain size crystal layer, 1...Magnetic head.

Claims (3)

【特許請求の範囲】[Claims] (1)一の磁性材よりなる磁性層が特に低い抗磁力を有
する層とその上に高抗磁力を有する層を形成してなる垂
直磁気記録媒体であつて、該磁性層はその面内ヒステリ
シスループにおける面内方向の角型比が0.2以上であ
る面内ヒステリシス特性を有することを特徴とする垂直
磁気記録媒体。
(1) A perpendicular magnetic recording medium in which a magnetic layer made of a magnetic material has a layer having a particularly low coercive force and a layer having a high coercive force formed thereon, the magnetic layer having an in-plane hysteresis. A perpendicular magnetic recording medium characterized by having an in-plane hysteresis characteristic in which a squareness ratio in an in-plane direction in a loop is 0.2 or more.
(2)該特に低い抗磁力を有する層の面内方向の抗磁力
が180Oe以下であることを特徴とする特許請求の範
囲第1項記載の垂直磁気記録媒体。
(2) The perpendicular magnetic recording medium according to claim 1, wherein the layer having particularly low coercive force has an in-plane coercive force of 180 Oe or less.
(3)該高抗磁力を有する層の垂直方向の抗磁力が20
0Oe以上であることを特徴とする特許請求の範囲第1
項または第2項記載の垂直磁気記録媒体。
(3) The perpendicular coercive force of the layer having high coercive force is 20
Claim 1 characterized in that it is 0 Oe or more.
The perpendicular magnetic recording medium according to item 1 or 2.
JP13218585A 1985-03-07 1985-06-18 Vertical magnetic recording medium Pending JPS61204822A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP13218585A JPS61204822A (en) 1985-06-18 1985-06-18 Vertical magnetic recording medium
US06/834,236 US4731300A (en) 1985-03-07 1986-02-26 Perpendicular magnetic recording medium and manufacturing method thereof
DE19863607500 DE3607500A1 (en) 1985-03-07 1986-03-07 CROSS-MAGNETIZING RECORDING MEDIUM AND METHOD FOR PRODUCING A CROSS-MAGNETIZING RECORDING MEDIUM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13218585A JPS61204822A (en) 1985-06-18 1985-06-18 Vertical magnetic recording medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60045326A Division JPH0670852B2 (en) 1985-03-07 1985-03-07 Perpendicular magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS61204822A true JPS61204822A (en) 1986-09-10

Family

ID=15075375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13218585A Pending JPS61204822A (en) 1985-03-07 1985-06-18 Vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61204822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02192010A (en) * 1988-10-21 1990-07-27 Kubota Ltd Thin metallic film type magnetic recording medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965416A (en) * 1982-10-05 1984-04-13 Seiko Epson Corp Perpendicular magnetic recording medium
JPS6045326A (en) * 1983-08-22 1985-03-11 松下電器産業株式会社 Electric cooker
JPS60132184A (en) * 1983-12-21 1985-07-15 Nippon Denso Co Ltd Solenoid valve for anti-skid control
JPS60132186A (en) * 1983-12-21 1985-07-15 Ckd Controls Ltd Diaphragm valve having pilot valve
JPS60132188A (en) * 1983-12-21 1985-07-15 Tokyo Tatsuno Co Ltd Valve for liquid supply device
JPS60132189A (en) * 1983-07-05 1985-07-15 ホワイティ コムパニー Valve spindle packing assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965416A (en) * 1982-10-05 1984-04-13 Seiko Epson Corp Perpendicular magnetic recording medium
JPS60132189A (en) * 1983-07-05 1985-07-15 ホワイティ コムパニー Valve spindle packing assembly
JPS6045326A (en) * 1983-08-22 1985-03-11 松下電器産業株式会社 Electric cooker
JPS60132184A (en) * 1983-12-21 1985-07-15 Nippon Denso Co Ltd Solenoid valve for anti-skid control
JPS60132186A (en) * 1983-12-21 1985-07-15 Ckd Controls Ltd Diaphragm valve having pilot valve
JPS60132188A (en) * 1983-12-21 1985-07-15 Tokyo Tatsuno Co Ltd Valve for liquid supply device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02192010A (en) * 1988-10-21 1990-07-27 Kubota Ltd Thin metallic film type magnetic recording medium

Similar Documents

Publication Publication Date Title
US5815342A (en) Perpendicular magnetic recording/reproducing apparatus
US20060153976A1 (en) Magnetic recording medium and hard disk drive using the same, and manufacturing method thereof
JP5242109B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording apparatus
JPH0640361B2 (en) Perpendicular magnetic recording / reproducing method
JPS61204822A (en) Vertical magnetic recording medium
KR20040033492A (en) High density magnetic recording media having uniform local coercivity distribution and grain size distribution and manufacturing method thereof
JPH0532809B2 (en)
JP2810457B2 (en) Perpendicular magnetic recording medium and its recording device
JPH0532808B2 (en)
JPS61224105A (en) Vertical magnetic recording and reproducing system
JPS61204821A (en) Vertical magnetic recording medium
JP2521532B2 (en) Perpendicular magnetic recording medium, manufacturing method of the medium, and recording / reproducing method
JPS61204823A (en) Vertical magnetic recording medium
JPS61224131A (en) Vertical magnetic recording medium
JPH0670852B2 (en) Perpendicular magnetic recording medium
JP3491778B2 (en) Magnetic recording media
JPS61204820A (en) Vertical magnetic recording medium
JPS61292220A (en) Vertical magnetic recording medium
JPS61224129A (en) Vertical magnetic recording medium
JPH08273140A (en) Perpendicular magnetic recording medium and its production
JP3880000B2 (en) High saturation magnetic flux density soft magnetic material
JPS61224132A (en) Vertical magnetic recording medium
JPS61224130A (en) Vertical magnetic recording medium
JPS61224104A (en) Vertical magnetic recording and reproducing system
JPS61224133A (en) Vertical magnetic recording medium