JPH0642281B2 - Perpendicular magnetic recording / reproducing method - Google Patents

Perpendicular magnetic recording / reproducing method

Info

Publication number
JPH0642281B2
JPH0642281B2 JP60291561A JP29156185A JPH0642281B2 JP H0642281 B2 JPH0642281 B2 JP H0642281B2 JP 60291561 A JP60291561 A JP 60291561A JP 29156185 A JP29156185 A JP 29156185A JP H0642281 B2 JPH0642281 B2 JP H0642281B2
Authority
JP
Japan
Prior art keywords
layer
magnetic
thin film
magnetic recording
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60291561A
Other languages
Japanese (ja)
Other versions
JPS61224104A (en
Inventor
安雄 石坂
昇 渡辺
一雄 木村
英一郎 今岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP60291561A priority Critical patent/JPH0642281B2/en
Publication of JPS61224104A publication Critical patent/JPS61224104A/en
Publication of JPH0642281B2 publication Critical patent/JPH0642281B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/656Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing Co
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor

Landscapes

  • Magnetic Record Carriers (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は垂直磁気記録再生方法に係り、特に記録再生出
力を増大し得る垂直磁気記録再生方法に関する。
TECHNICAL FIELD The present invention relates to a perpendicular magnetic recording / reproducing method, and more particularly to a perpendicular magnetic recording / reproducing method capable of increasing a recording / reproducing output.

従来の技術 一般に、磁気ヘッドにより磁気記録媒体に記録,再生を
行なうには、磁気ヘッドにより磁気記録媒体の磁性層に
その媒体長手方向(面内方向)の磁化を行なわせて記録
し、これを再生するものが汎用されている。しかるに、
これによりば記録が高密度になるに従って減磁界が大き
くなり減磁作用が高密度記録に悪影響を及ぼすことが知
られている。そこで近年上記悪影響を解消するものとし
て、磁気記録媒体の磁性層に垂直方向に磁化を行なう垂
直磁気記録再生方式が提案されている。これによれば記
録密度を向上させるに従い減磁界が小さくなり理論的に
は残留磁化の減少がない良好な高密度記録を行なうこと
ができる。
2. Description of the Related Art Generally, in order to record / reproduce on / from a magnetic recording medium with a magnetic head, the magnetic layer of the magnetic recording medium is magnetized in the longitudinal direction (in-plane direction) of the magnetic recording medium and recorded. The thing to reproduce is general-purpose. However,
It is known that as a result, the demagnetizing field increases as the recording density increases, and the demagnetizing effect adversely affects the high density recording. Therefore, in recent years, as a means for eliminating the above adverse effect, a perpendicular magnetic recording / reproducing system has been proposed in which the magnetic layer of the magnetic recording medium is magnetized in the perpendicular direction. According to this, as the recording density is improved, the demagnetizing field becomes smaller, and theoretically good high density recording in which the residual magnetization does not decrease can be performed.

従来この垂直磁気記録再生方法は、垂直磁気記録媒体を
挟んで主磁極及び補助磁極よりなる磁気ヘッドを設け、
主磁極先端付近に強い垂直磁界を発生させこれにより垂
直磁気記録媒体を垂直磁化する構成とされていた。また
垂直磁気記録媒体としては、ベースフィルム上にCo−
Cr膜をスパッタリングにより被膜形成したものがあっ
た。周知の如く、Co−Cr膜は比較的高い飽和磁化
(Ms)を有し、かつ膜面に対し垂直な磁化容易軸を持
つ(すなわち膜面に対し垂直方向の抗磁力Hc⊥が大で
ある)ため垂直磁気記録媒体としては極めて有望な材質
であることが知られている。しかるにCo−Cr膜はそ
の磁化容易軸がCrの添加によりCo−Cr膜はその磁
化容易軸がCrの添加によりCoの磁化容易軸(最密六
方晶のC軸)が垂直に近い配向を有しているものの十分
には垂直方向に配向しておらず強い垂直磁気異方性を得
ることができなかった。このため従来、Co−Crにニ
オブ(Nb)及びタンタル(Ta)等の第三元素を添加
することによりCoの磁化容易軸を垂直方向に強く配向
させた構成の垂直磁気記録媒体があった。またCo−C
r膜とベースフィルムとの間に、いわゆる裏打ち層であ
る高透磁率層(すなわち抗磁力Hcが小なる層。例えば
Ni−Fe)を別個形成して二層構造とし高透磁率層内
で拡がっている磁束を所定磁気記録位置にて磁気ヘッド
の磁極に向け集中させて吸い込ませることにより分布が
鋭くかつ強い垂直磁化を行ない得る構成の垂直磁気記録
媒体があった。
Conventionally, in this perpendicular magnetic recording / reproducing method, a magnetic head composed of a main magnetic pole and an auxiliary magnetic pole is provided with a perpendicular magnetic recording medium interposed therebetween.
It is configured to generate a strong vertical magnetic field near the tip of the main pole to thereby vertically magnetize the perpendicular magnetic recording medium. Moreover, as a perpendicular magnetic recording medium, Co--
In some cases, a Cr film was formed by sputtering. As is well known, the Co-Cr film has a relatively high saturation magnetization (Ms) and has an easy axis of magnetization perpendicular to the film surface (that is, the coercive force Hc⊥ in the direction perpendicular to the film surface is large. Therefore, it is known that it is an extremely promising material for a perpendicular magnetic recording medium. However, in the Co-Cr film, the easy axis of magnetization of the Co-Cr film has an easy axis of magnetization of the Co-Cr film due to the addition of Cr, and the easy axis of Co (C axis of the close-packed hexagonal crystal) has a nearly vertical orientation. However, it was not sufficiently oriented in the perpendicular direction and a strong perpendicular magnetic anisotropy could not be obtained. Therefore, conventionally, there has been a perpendicular magnetic recording medium having a structure in which the easy axis of Co is strongly oriented in the perpendicular direction by adding a third element such as niobium (Nb) and tantalum (Ta) to Co—Cr. Also Co-C
A high magnetic permeability layer (that is, a layer having a small coercive force Hc, for example, Ni—Fe), which is a so-called backing layer, is separately formed between the r film and the base film to form a two-layer structure and spread in the high magnetic permeability layer. There has been a perpendicular magnetic recording medium having a structure in which the generated magnetic flux is concentrated and sucked toward the magnetic pole of the magnetic head at a predetermined magnetic recording position to achieve a sharp distribution and strong perpendicular magnetization.

発明が解決しようとする問題点 上記従来の垂直磁気記録再生方法では、垂直磁気記録媒
体のCoの磁化容易軸を強く垂直方向へ配向させるため
に、CoにCr及びNb,Ta等を添加していた。しか
るにCr及びNb,Taの添加によりCoの磁化容易軸
は強く垂直方向へ配向するものの、強磁性体であるCo
に非磁性体であるCr及びNb,Taを添加することに
より垂直磁気記録記録媒体としての飽和磁化Msが低下
してしまい高い再生出力を得ることができないという問
題点があった。また磁気ヘッドとしてリングコアヘッド
を用いようとした場合、リングコアヘッドは発生する磁
界に面内方向成分を多く含むため、上記のように垂直方
向に強い異方性のみを有する垂直磁気記録媒体では効率
良く垂直磁気記録を行なうことができないという問題点
があった。またCo−Cr膜に加え高透磁率層を裏打ち
層として形成された二層構造の垂直磁気記録媒体の場
合、Co−Cr膜の抗磁力Hc(700Oe以上)に対して
高透磁率層の抗磁力Hcは極めて小(10Oe以下)となっ
ていたため、衝撃性のバルクハウゼンノイズが発生する
という問題点があった。これに加えて、このバルクハウ
ゼンノイズを紡糸するには少なくとも10Oe以上の抗磁力
を有することが必要となるが、この条件を満たしかつ裏
打ち層としての機能を有する適当な素材が無いという問
題点もあった。
Problems to be Solved by the Invention In the above-described conventional perpendicular magnetic recording / reproducing method, in order to strongly orient the easy magnetization axis of Co of the perpendicular magnetic recording medium in the perpendicular direction, Co, Cr, Nb, Ta and the like are added. It was However, although the easy axis of magnetization of Co is strongly oriented in the perpendicular direction by the addition of Cr, Nb, and Ta, it is a ferromagnetic material of Co.
However, the addition of non-magnetic materials such as Cr, Nb, and Ta reduces the saturation magnetization Ms of the perpendicular magnetic recording medium, which makes it impossible to obtain a high reproduction output. Further, when a ring core head is used as the magnetic head, the ring core head contains many in-plane components in the generated magnetic field. Therefore, as described above, the perpendicular magnetic recording medium having only strong anisotropy in the vertical direction is efficient. There is a problem that perpendicular magnetic recording cannot be performed. Further, in the case of a double-layered perpendicular magnetic recording medium formed by using a high-permeability layer as a backing layer in addition to the Co-Cr film, the resistance of the high-permeability layer against the coercive force Hc (700 Oe or more) of the Co-Cr film. Since the magnetic force Hc was extremely small (10 Oe or less), there was a problem that impulsive Barkhausen noise was generated. In addition to this, in order to spin this Barkhausen noise, it is necessary to have a coercive force of at least 10 Oe or more, but there is also a problem that there is no suitable material that satisfies this condition and has a function as a backing layer. there were.

そこで本発明では、コバルト,クロムにニオブ及びタン
タルのうち少なくとも一方を加えてなる磁性材をコーテ
ィングした際、磁性層が抗磁力の異なる二層に分かれて
形成されることに注目し、この二層の内抗磁力の小なる
下層を垂直磁気記録に積極的に利用すると共にリングコ
アヘッドにより垂直磁気記録再生を行なうことにより上
記問題点を解決した垂直磁気記録再生方法を提供するこ
とを目的とする。
Therefore, in the present invention, attention is paid to the fact that when a magnetic material formed by adding at least one of niobium and tantalum to cobalt and chromium is coated, the magnetic layer is divided into two layers having different coercive forces. It is an object of the present invention to provide a perpendicular magnetic recording / reproducing method which solves the above problems by positively utilizing the lower layer having a lower coercive force in perpendicular magnetic recording and performing perpendicular magnetic recording / reproduction by a ring core head.

問題点を解決するための手段 上記問題点を解決するために本発明では、コバルト及び
クロムに、ニオブ及びタンタルのうち少なくとも一方を
添加してなる磁性材によりベース上に抵抗磁力の、原点
近傍で急激に立ち上がる曲線で表わされる面内M−Hヒ
ステリシス特性を有する層を形成すると共に、該層上に
コバルト及びクロムよりなる磁性材により垂直磁化層を
形成してなる垂直磁気記録媒体に、リングコアヘッドを
用いて記録/再生する構成とした。
Means for Solving the Problems In order to solve the above-mentioned problems, in the present invention, the magnetic force obtained by adding at least one of niobium and tantalum to cobalt and chromium causes resistance magnetic force on the base in the vicinity of the origin. A ring core head is used for a perpendicular magnetic recording medium in which a layer having an in-plane MH hysteresis characteristic represented by a sharply rising curve is formed and a perpendicular magnetization layer is formed on the layer by a magnetic material made of cobalt and chromium. Is used to record / reproduce.

実施例 本発明になる垂直磁気記録再生方法に用いる垂直磁気記
録媒体(以下単に記録媒体という)は、まずベースとな
るポリイミド基板上にコバルト(Co),クロム(C
r)にニオブ(Nb)及びタンタル(Ta)のうち少な
くとも一方を加えた磁性材をターゲットとしてスパッタ
リングし、続いてその上にCo,Crよりなる磁性材を
ターゲットとしてスパッタリングすることにより得られ
る。
EXAMPLE A perpendicular magnetic recording medium (hereinafter simply referred to as a recording medium) used in a perpendicular magnetic recording / reproducing method according to the present invention is prepared by firstly depositing cobalt (Co), chromium (C) on a base polyimide substrate.
It can be obtained by sputtering a magnetic material obtained by adding at least one of niobium (Nb) and tantalum (Ta) to r) as a target, and then sputtering a magnetic material composed of Co and Cr thereon.

従来より金属等(例えばCo−Cr合金)をベース上に
スパッタリングした際、被膜形成された薄膜はその膜面
に垂直方向に対して同一結晶構造を形成するのではな
く、ベース近傍の極めて薄い部分にまず小粒径の第一の
結晶層を形成し、その上部に続いて大粒径の第二の結晶
層が形成されることが各種の実験(例えば走査型電子顕
微鏡による写真撮影)により明らかになってきている
(Edward R.Wuori and Professor J.H.Judy:“INI
TIAL LAYER EFFECT IN CO−C
R FILMS”,IEEE Trans.,VOL.MA
G−20,No.5,SEPTEMBER 1984,P774〜
P775またはWilliam G.Haines:“VSMPROFIL
ING OF Co Cr FILMS:A NEW
ANALYTICAL TECHNIQUE“IEEE
Trans.,VOL,MAG−20,No.5,SEPT
EMBER 1984,P812〜P814)。
Conventionally, when a metal or the like (eg, Co—Cr alloy) is sputtered on a base, the thin film formed does not form the same crystal structure in the vertical direction on the film surface, but an extremely thin portion near the base. First, a small crystal grain first crystal layer was formed, and then a large crystal grain second crystal layer was formed on top of it, by various experiments (eg, scanning electron microscope photography). (Edward R. Wuori and Professor JHJudy: “INI
TIAL LAYER EFFECT IN CO-C
R FILMS ", IEEE Trans., VOL.MA
G-20, No.5, SEPTEMBER 1984, P774〜
P775 or William G. Haines: “VSMPROFIL
ING OF Co Cr FILMS: A NEW
ANALYTICAL TECHNIQUE "IEEE"
Trans. , VOL, MAG-20, No. 5, SEPT
EMBER 1984, P812-P814).

本発明者は上記観点に注目しCo−Cr合金を基とし、
またこれに第三元素を添加した金属を各種スパッタリン
グし、形成される小粒径の結晶層とその上部に形成され
た大粒径の結晶層との物理的性質を測定した結果、第三
元素としてNbまたはTaを添加した場合、小粒径結晶
層の抗磁力が大粒径結晶層よりも非常に小でありかつ垂
直方向と面内方向の抗磁力には極端な差が生じてないこ
とがわかった。本発明ではこの抵抗磁力を有する小粒径
結晶層を等方性層として用い、この等方性層上に飽和磁
化Msの大なるCo−Cr膜を形成し、これを垂直磁化
層として用いると共にリングコアヘッドを用いて垂直磁
気記録再生を行なうことを特徴とする。
The present inventor pays attention to the above viewpoint, based on a Co—Cr alloy,
In addition, various metals to which a third element was added were sputtered, and the physical properties of the small-sized crystal layer formed and the large-sized crystal layer formed above were measured. When Nb or Ta is added as the alloy, the coercive force of the small grain size crystal layer is much smaller than that of the large grain size crystal layer, and there is no extreme difference between the coercive force in the vertical direction and in the in-plane direction. I understood. In the present invention, the small grain size crystal layer having the resistance magnetic force is used as an isotropic layer, a Co—Cr film having a large saturation magnetization Ms is formed on the isotropic layer, and this is used as a perpendicular magnetization layer. It is characterized by performing perpendicular magnetic recording and reproduction using a ring core head.

以下本発明者が行なったスパッタリングにより形成され
たCo,Cr,Nb及びTaのうち少なくとも一方を添
加してなる磁性材の小粒径結晶層と、大粒径結晶層の抗
磁力を測定した実験結果を詳述する。Co−Cr薄膜,
Co−Cr−Nb薄膜及びCo−Cr−Ta薄膜をスパ
ッタリングするに際し、スパッタリング条件は下記の如
く設定した(NbまたはTaを添加した各場合において
スパッタリング条件は共に等しく設定した)。
An experiment in which the coercive force of a small grain crystal layer of a magnetic material formed by adding at least one of Co, Cr, Nb and Ta formed by sputtering and a coercive force of a large grain crystal layer were measured by the present inventors The results will be detailed. Co-Cr thin film,
When sputtering the Co-Cr-Nb thin film and the Co-Cr-Ta thin film, the sputtering conditions were set as follows (the sputtering conditions were set equal in each case where Nb or Ta was added).

*スパッタ装置 RFマグネトロンスパッタ装置 *スパッタリング方法 連続スパッタリング。予め予備排気圧1×10-6Torrまで
排気した後Arガスを導入し1×10-3Torrとした *ベース ポリイミド(厚さ20μm) *ターゲット Co−Cr合金を使用し、Nb及びTaの添加は正方形
状のNb板及びTa板を所要枚数Co−Cr合金上に配
置することにより行なった。
* Sputtering equipment RF magnetron sputtering equipment * Sputtering method Continuous sputtering. Pre-exhaust pressure was evacuated to 1 × 10 -6 Torr and then Ar gas was introduced to 1 × 10 -3 Torr * Base polyimide (thickness 20 μm) * Target Co-Cr alloy is used, Nb and Ta are added Was performed by arranging square Nb plates and Ta plates on the required number of Co—Cr alloys.

*ターゲット基板間距離 110mm なお薄膜の磁気特性は振動試料型磁力計(理研電子製,
以下VSMと略称する)にて、薄膜の組成はエネルギー
分散型マイクロアナライザ(KEVEX社製,以下ED
Xと略称する)にて、また結晶配向製はX線回折装置
(理学電機製)にて夫々測定した。
* The distance between the target and substrate is 110mm. The magnetic characteristics of the thin film are the vibration sample magnetometer (manufactured by Riken Denshi,
The composition of the thin film is an energy dispersive microanalyzer (KEVEX, hereinafter ED).
(Abbreviated as X) and the crystal orientation was measured by an X-ray diffractometer (manufactured by Rigaku Denki).

Co−Crに第三元素としてNbを添加(2〜10at%
添加範囲において同一現象が生ずる)し、ポリイミドベ
ースに0.2μmの膜厚でスパッタリングした記録媒体に
15KOeの磁界を印加した場合の面内方向のヒステリシ
ス曲線を第1図に示す。同図より面内方向の磁界がゼロ
近傍部分でヒステリシス曲線は急激に変則的に立ち上が
り(図中矢印Aで示す)、いわゆる磁化ジャンプが生じ
ていることがわかる。スパッタリングされたCo−Cr
−Nb薄膜がスパッタリング時に常に均一の結晶成長を
行なったと仮定した場合、第1図に示された磁化ジャン
プは生ずるはずはなく、これよりCo−Cr−Nb薄膜
内に磁気的性質の異なる複数の結晶層が存在することが
推測される。
Addition of Nb as a third element to Co-Cr (2-10 at%
The same phenomenon occurs in the range of addition), and a hysteresis curve in the in-plane direction when a magnetic field of 15 KOe is applied to a recording medium sputtered with a film thickness of 0.2 μm on a polyimide base is shown in FIG. From the figure, it can be seen that the hysteresis curve abruptly and irregularly rises (indicated by the arrow A in the figure) near the zero magnetic field in the in-plane direction, and so-called magnetization jump occurs. Sputtered Co-Cr
Assuming that the -Nb thin film always performs uniform crystal growth during sputtering, the magnetization jump shown in FIG. 1 should not occur, which results in a plurality of Co-Cr-Nb thin films having different magnetic properties. It is assumed that a crystal layer exists.

続いて第1図で示した実験条件と同一条件にてCo−C
r−Nbをポリイミドベースに0.05μmの膜厚でスパッ
タリングした記録媒体に15KOeの磁界を印加した場合
の面内方向のヒステリシス曲線を第2図に示す。同図に
おいては第1図に見られたようなヒステリシス曲線の磁
化ジャンプは生じておらず0.05μm程度の膜厚における
Co−Cr−Nb薄膜は略均一な結晶となっていること
が理解される。これに加えて同図より0.05μm程度の膜
厚における抗磁力Hcに注目するに、抗磁力Hcは
極めて小なる値となっており面内方向に対する透磁率が
大であることが理解される。上記結果よりスパッタリン
グによりベース近傍位置にはじめに成長する初期槽は抗
磁力Hcが小であり、この初期槽は走査型電子顕微鏡
写真で確かめられている(前記試料参照)ベース近傍位
置に成長する小粒径の結晶層であると考えられる。また
初期層の上方に成長する層は、初期層の抗磁力Hcよ
り大なる抗磁力Hcを有し、この層は同じく走査型電
子顕微鏡写真で確かめられている大粒径の結晶層である
と考えられる。
Then, under the same experimental conditions as shown in FIG.
FIG. 2 shows a hysteresis curve in the in-plane direction when a magnetic field of 15 KOe was applied to a recording medium obtained by sputtering r-Nb on a polyimide base to a film thickness of 0.05 μm. In the figure, it is understood that the magnetization jump of the hysteresis curve as seen in FIG. 1 does not occur and the Co-Cr-Nb thin film with a film thickness of about 0.05 μm is a substantially uniform crystal. . In addition to this, paying attention to the coercive force Hc at a film thickness of about 0.05 μm from the figure, it is understood that the coercive force Hc has a very small value and the magnetic permeability in the in-plane direction is large. From the above results, the coercive force Hc was small in the initial tank that first grew near the base by sputtering, and this initial tank was confirmed by scanning electron microscope photographs (see the above sample). It is considered to be a crystal layer having a diameter. Further, the layer grown above the initial layer has a coercive force Hc larger than the coercive force Hc of the initial layer, and this layer is also a large grain crystal layer confirmed by a scanning electron microscope photograph. Conceivable.

小粒径結晶層と大粒径結晶層が併存するCo−Cr−N
b薄膜において磁化ジャンプが生ずる理由を第3図から
第5図を用いて以下述べる。なお後述する如く、磁化ジ
ャンプは組成比率及びスパッタリング条件に関し全ての
Co−Cr−Nb薄膜に対して発生するものではない。
所定の条件下においてCo−Cr−Nb薄膜をスパッタ
リングにより形成しこの薄膜のシステリシス曲線を測定
により描くと第3図に示す如く磁化ジャンプが現われた
ヒステリシス曲線となる。まり小粒径結晶層のみからな
るヒステリシス曲線は膜厚寸法を小としたスパッタリン
グ(約0.075μm以下、これについては後述する)を行
ない、これを測定することにより得ることができる(第
4図に示す)。また大粒径結晶層は均一結晶構造を有し
ていると考えられ、かつ第3図に示すヒステリシス曲線
は小粒径結晶層のヒステリシス曲線と大粒径結晶層のヒ
ステリシス曲線を合成したものと考えられるため第5図
に示す如く抗磁力Hcが小粒径結晶層よりも大であ
り、磁化ジャンプのない滑らかなヒステリシス曲線を形
成すると考えられる。すなわち第3図におて示されてい
る磁化ジャンプの存在は、磁気特性の異なる二層が同一
の薄膜内に形成されていることを示しており、従って第
1図に示されたCo−Cr−Nb薄膜にも磁気特性の異
なる二層が形成されていることが理解できる。なお大粒
径結晶層の抗磁力は、小粒径結晶層と大粒径結晶層が併
存するCo−Cr−Nb薄膜のヒステリシス曲線から小
粒径結晶層のみのCo−Cr−Nb薄膜のヒステリシス
曲線を差引いて得られるヒステリシス曲線より求めるこ
とができる。上記各実験結果によりCo−Cr−Nb薄
膜のヒステリシス曲線に磁化ジャンプが生じている時、
磁気特性の異なる二層が形成されていることが証明され
たことになる。
Co-Cr-N in which a small grain size crystal layer and a large grain size crystal layer coexist
The reason why the magnetization jump occurs in the thin film b will be described below with reference to FIGS. 3 to 5. As will be described later, the magnetization jump does not occur in all Co—Cr—Nb thin films with respect to composition ratio and sputtering conditions.
When a Co-Cr-Nb thin film is formed by sputtering under predetermined conditions and a systemistic curve of this thin film is drawn by measurement, a hysteresis curve in which a magnetization jump appears appears as shown in FIG. A hysteresis curve consisting of a very small grain size crystal layer can be obtained by performing sputtering with a small film thickness dimension (about 0.075 μm or less, which will be described later) and measuring it (see FIG. 4). Shown). The large crystal grain layer is considered to have a uniform crystal structure, and the hysteresis curve shown in FIG. 3 is a combination of the hysteresis curve of the small crystal grain layer and the hysteresis curve of the large crystal grain layer. It is considered that the coercive force Hc is larger than that of the small grain size crystal layer, as shown in FIG. 5, and forms a smooth hysteresis curve without magnetization jump. That is, the presence of the magnetization jump shown in FIG. 3 indicates that two layers having different magnetic properties are formed in the same thin film, and thus the Co--Cr shown in FIG. It can be understood that the -Nb thin film also has two layers having different magnetic properties. The coercive force of the large grain crystal layer is determined from the hysteresis curve of the Co—Cr—Nb thin film in which the small grain crystal layer and the large grain crystal layer coexist. It can be obtained from the hysteresis curve obtained by subtracting the curve. According to the above experimental results, when a magnetization jump occurs in the hysteresis curve of the Co-Cr-Nb thin film,
It was proved that two layers having different magnetic properties were formed.

続いてCo−Cr−Nb薄膜のベース上へのスパッタリ
ングの際形成される上記二層の夫々の磁気的性質をCo
−Cr−Nb薄膜の厚さ寸法に関連させつつ第6図を用
いて以下説明する。第6図はCo−Cr−Nb薄膜の膜
厚寸法をスパッタリング時間を変えることにより制御
し、各膜厚寸法における面内方向の抗磁力Hc,垂直
方向の抗磁力Hc⊥,磁化ジャンプ量σjを夫々描いた
ものである。
Subsequently, the magnetic properties of each of the two layers formed during the sputtering of the Co-Cr-Nb thin film on the base are determined by Co
It will be described below with reference to FIG. 6 in relation to the thickness dimension of the —Cr—Nb thin film. In FIG. 6, the film thickness dimension of the Co—Cr—Nb thin film is controlled by changing the sputtering time, and the coercive force Hc in the in-plane direction, the coercive force Hc⊥ in the vertical direction, and the magnetization jump amount σj at each film thickness dimension are controlled. They are drawn respectively.

まず面内方向の抗磁力Hcに注目するに、膜厚寸法が
0.08μm以下においては極めて小なる値(150Oe以下)
となっており、面内方向に対する透磁率は高いと考えら
れる。これに加え垂直方向の抗磁力Hc⊥と面内方向の
抗磁力Hcの値を比較するに相方とも150Oe以下とな
っておりその差は小で、いわゆる等方性を有した層とな
っている。また膜厚寸法が大となっても抗磁力Hcは
大きく変化するようなことはない。また磁化ジャンプ量
σjに注目すると、磁化ジャンプ量は膜厚寸法が0.075
μmにて急激に立ち上がり0.075μm以上の膜厚におい
ては滑らかな下に凸の放物線形状を描く。更に垂直方向
の抗磁力Hc⊥に注目すると、抗磁力Hc⊥は膜厚寸法
0.05μm〜0.1μmで急激に立ち上がり0.1μm以上の膜
厚寸法では900Oe以上の高い抗磁力を示す。これらの結
果より小粒径結晶層と大粒径結晶層の境は略0.075μm
の膜厚寸法のところにあり、膜厚寸法が0.075μm以下
の小粒径結晶層は面内方向及び垂直方向に対する抗磁力
Hc,Hc⊥が低い、いわゆる低抗磁力層となってお
り、また膜厚寸法が0.075μm以上の大粒径結晶層は面
内方向の抗磁力Hcは低いものの垂直方向に対する抗
磁力Hc⊥は非常に高い値を有する、いわゆる高抗磁力
層となっており垂直磁気記録に適した層となっている。
更に磁化ジャンプが生じない膜厚寸法(0.075μm以
下)においては、面内方向及び垂直方向に対する抗磁力
Hc,Hc⊥は低く、これより大なる膜厚寸法(0.07
5μm以上)においては垂直方向に対する抗磁力Hc⊥
が急増する。これによっても磁化ジャンプが生じている
場合、Co−Cr−Nb薄膜に磁気特性の異なる二層が
形成されていることが推測される。
First, paying attention to the coercive force Hc in the in-plane direction,
Extremely small value under 0.08 μm (150 Oe or less)
It is considered that the magnetic permeability in the in-plane direction is high. In addition to this, when comparing the values of the coercive force Hc⊥ in the vertical direction and the coercive force Hc in the in-plane direction, the values are 150 Oe or less for both sides, and the difference is small, and the layer has so-called isotropic properties. . Further, the coercive force Hc does not change greatly even if the film thickness dimension becomes large. Focusing on the magnetization jump amount σj, the magnetization jump amount is 0.075
It sharply rises at μm and draws a smooth downward convex parabola at a film thickness of 0.075 μm or more. Furthermore, focusing on the coercive force Hc⊥ in the vertical direction, the coercive force Hc⊥ is the film thickness dimension.
A sharp rise from 0.05 μm to 0.1 μm shows a high coercive force of 900 Oe or more at a film thickness of 0.1 μm or more. From these results, the boundary between the small grain size crystal layer and the large grain size crystal layer is approximately 0.075 μm.
The small grain size crystal layer having a thickness of 0.075 μm or less is a so-called low coercive force layer having low coercive forces Hc and Hc⊥ in the in-plane direction and the vertical direction. A large grain crystal layer having a thickness of 0.075 μm or more has a low coercive force Hc in the in-plane direction, but has a very high coercive force Hc⊥ in the vertical direction. The layer is suitable for recording.
Further, in the film thickness dimension (0.075 μm or less) where the magnetization jump does not occur, the coercive forces Hc and Hc⊥ in the in-plane direction and the vertical direction are low, and the film thickness dimension larger than this (0.07 μm)
5 μm or more), the coercive force Hc⊥ in the vertical direction
Will increase rapidly. If the magnetization jump also occurs due to this, it is presumed that two layers having different magnetic properties are formed in the Co—Cr—Nb thin film.

次にCo−Crに第三元素としてTaを添加(1〜10
at%添加範囲において同一現象が生ずる)し、上記した
Nbを添加した場合と同一の実験を行なった結果を第7
図に示す。第7図はCo−Cr−Nb薄膜の膜厚寸法を
スパッタリング時間を変えることにより制御し、各膜厚
寸法における面内方向の抗磁力Hc,垂直方向の抗磁
力Hc⊥,磁化ジャンプ量σjを夫々描いたものであ
る。同図よりCo−CrにTaを添加した場合も、Co
−CrにNbを添加した場合と略同様な結果が得られ、
小粒径結晶層と大粒径結晶層の境は略0.075μmの膜厚
寸法のところにあり、膜厚寸法が0.075μm以下の小粒
径結晶層は面内方向及び垂直方向に対する抗磁力Hc
,Hc⊥が低い(Hc,Hc⊥共に170Oe以下)、
いわゆる低抗磁力層となっている。これに加えて垂直方
向及び面内方向抗磁力Hc⊥,Hcの値の差は小でい
わゆる等方性を有した層となっている。また膜厚寸法が
0.075μm以上の大粒径結晶層は面内方向の抗磁力Hc
は低いものの垂直方向に対する抗磁力Hc⊥は非常に
高い値(750Oe以上)となっている。
Next, Ta is added to Co—Cr as a third element (1 to 10).
The same phenomenon occurs in the addition range of at%), and the result of the same experiment as the above Nb addition is
Shown in the figure. In FIG. 7, the film thickness dimension of the Co-Cr-Nb thin film is controlled by changing the sputtering time, and the coercive force Hc in the in-plane direction, the coercive force Hc⊥ in the vertical direction, and the magnetization jump amount σj at each film thickness dimension. They are drawn respectively. From the figure, when Ta is added to Co-Cr,
A result similar to the case of adding Nb to -Cr is obtained,
The boundary between the small grain crystal layer and the large grain crystal layer is at a film thickness dimension of about 0.075 μm, and the small grain crystal layer having a film thickness dimension of 0.075 μm or less has a coercive force Hc in the in-plane direction and the vertical direction.
, Hc⊥ is low (both Hc and Hc⊥ are 170 Oe or less),
It is a so-called low coercive force layer. In addition to this, the difference between the values of the coercive forces Hc⊥ and Hc in the vertical and in-plane directions is small, and the layer is so-called isotropic. In addition, the film thickness dimension
Coercive force Hc in the in-plane direction for large grain crystal layers of 0.075 μm or more
Although it is low, the coercive force Hc⊥ in the vertical direction is extremely high (750 Oe or more).

なお上記実験で注意すべきことは、スパッタリング条件
及びNb,Taの添加量を前記した値(Nb:2〜10
at%,Ta:1〜10at%)より変えた場合磁化ジャンプ
は生じないが、しかるに磁化ジャンプが生じないCo−
Cr−Nb薄膜、Co−Cr−Ta薄膜及びCo−Cr
膜においても小粒径結晶層及び大粒径結晶層が形成され
ていることである(前記資料参照)。磁化ジャンプが生
じないCo−Cr−Nb薄膜のヒステリシス曲線の一例
を第8図に示す。第8図(A)は小粒径結晶層及び大粒
径結晶層を含む面内方向のヒステリシス曲線であり、第
8図(B)は小粒径結晶層のみの面内方向のヒステリシ
ス曲線,第8図(C)は大粒径結晶層のみの面内方向の
ヒステリシス曲線である。各図より小粒径結晶層の面内
方向の残留磁化Mrは大粒径結晶層の残留磁化Mr
よりも大であるため、両結晶層を含む残留磁化Mr
は大粒径結晶層の残留磁化Mrのみの時よりも
不利となり異方性磁界Hkが小さくなる。また小粒径結
晶層は配向が悪いこと(Δθ50が大)が知られており、
また面内方向の抗磁力Hcも大で垂直磁気記録には適
さない。
It should be noted in the above experiment that the sputtering conditions and the amounts of Nb and Ta added are the above-mentioned values (Nb: 2 to 10).
At%, Ta: 1 to 10 at%), the magnetic jump does not occur, but the magnetic jump does not occur.
Cr-Nb thin film, Co-Cr-Ta thin film and Co-Cr
It means that a small grain size crystal layer and a large grain size crystal layer are also formed in the film (see the above-mentioned reference). An example of the hysteresis curve of the Co-Cr-Nb thin film in which the magnetization jump does not occur is shown in FIG. FIG. 8 (A) is an in-plane direction hysteresis curve including a small grain size crystal layer and a large grain size crystal layer, and FIG. 8 (B) is an in-plane direction hysteresis curve of only the small grain size crystal layer, FIG. 8C is a hysteresis curve in the in-plane direction of only the large grain crystal layer. From each figure, the remanent magnetization Mr B in the in-plane direction of the small grain crystal layer is the remanent magnetization Mr of the large grain crystal layer.
Since it is larger than C, the residual magnetization Mr including both crystal layers is Mr.
A is more disadvantageous than when only the residual magnetization Mr C of the large grain crystal layer is used, and the anisotropic magnetic field Hk becomes smaller. It is also known that the small grain size crystal layer has poor orientation (large Δθ50),
Also, the coercive force Hc in the in-plane direction is large and is not suitable for perpendicular magnetic recording.

ここで上記の如く小粒径結晶層と大粒径結晶層を有する
Co−Cr−Nb薄膜及びCo−Cr−Ta薄膜を垂直
磁気記録媒体として考えた場合、Co−Cr−Nb薄膜
及びCo−Cr−Ta薄膜にその膜面に対し垂直方向に
膜厚の全てに亘って垂直磁化を行なおうとした場合、小
粒径結晶層の存在は垂直磁化に対し極めて不利な要因と
なると従来考えられていた(磁化ジャンプが生じている
場合及び磁化ジャンプが生じていない場合の相方におい
て不利な要因となる)。すなわち磁化ジャンプが生じて
いる場合の小粒径結晶層は、面内方向及び垂直方向に対
する抗磁力Hc,Hc⊥が共に極めて低く(170Oe以
下)、この層においては垂直磁化はほとんどされないと
考えられる。また磁化ジャンプが生じていない場合の小
粒径結晶層においても、面内方向の抗磁力Hcは磁化
ジャンプの生じている場合の抗磁力Hcよりは大であ
るが垂直方向の抗磁力Hc⊥は垂直磁気記録を実現し得
る程の抗磁力はなくやはり良好な垂直磁化は行なわれな
いと考えられる。従って膜面に対して垂直方向に磁化を
行なっても小粒径結晶層における垂直磁化はほとんど行
なわれず、磁性膜全体としての垂直磁化効率が低下して
しまう。この影響はリングコアヘッドのように磁束の面
内成分を多く含む磁気ヘッドにおいては顕著である。
When the Co--Cr--Nb thin film and the Co--Cr--Ta thin film having the small grain size crystal layer and the large grain size crystal layer as described above are considered as the perpendicular magnetic recording medium, the Co--Cr--Nb thin film and the Co--Cr--Nb thin film are used. When it is attempted to perform perpendicular magnetization on a Cr-Ta thin film in the direction perpendicular to the film surface over the entire film thickness, the existence of a small grain size crystal layer is conventionally considered to be an extremely disadvantageous factor for the perpendicular magnetization. (It is a disadvantageous factor in the case where the magnetization jump is generated and the case where the magnetization jump is not generated). That is, the coercive force Hc and Hc⊥ in the in-plane direction and the perpendicular direction are both extremely low (170 Oe or less) in the small grain crystal layer in the case where the magnetization jump occurs, and it is considered that the perpendicular magnetization is hardly generated in this layer. . Further, even in the small grain size crystal layer when the magnetization jump does not occur, the coercive force Hc in the in-plane direction is larger than the coercive force Hc when the magnetization jump occurs, but the coercive force Hc⊥ in the vertical direction is It is considered that there is not enough coercive force to realize perpendicular magnetic recording, and good perpendicular magnetization cannot be achieved. Therefore, even if the magnetization is performed in the direction perpendicular to the film surface, the perpendicular magnetization in the small grain crystal layer is hardly performed, and the perpendicular magnetization efficiency of the entire magnetic film is reduced. This effect is remarkable in a magnetic head such as a ring core head that contains a large amount of in-plane components of magnetic flux.

しかるに本発明における小粒径結晶層の磁気特性は、面
内方向に対する抗磁力Hcが小であり比較的高い透磁
率及び磁気的な等方性を有しており、これは従来Co−
Cr膜とベース間に配設した裏打ち層と似た特性を有し
ている。つまりCo−Cr−Nb薄膜及びCo−Cr−
Ta薄膜において、低抗磁力Hcを有する小粒径結晶
層をいわゆる裏打ち層である高透磁率層として用いるこ
とが可能であると考えられる。
However, the magnetic characteristics of the small grain size crystal layer in the present invention have a small coercive force Hc in the in-plane direction, a relatively high magnetic permeability and magnetic isotropy.
It has characteristics similar to the backing layer disposed between the Cr film and the base. That is, Co-Cr-Nb thin film and Co-Cr-
In a Ta thin film, it is considered possible to use a small grain size crystal layer having a low coercive force Hc as a so-called backing layer having a high magnetic permeability.

従ってはCo−Cr−Nb薄膜及びCo−Cr−Ta薄
膜の単一膜がスパッタリングされる際形成される小粒径
結晶層を裏打ち層として機能させ、また大粒径結晶層を
垂直磁化層として機能させることが考えられる。しかる
にCo−Cr−Nb薄膜及びCo−Cr−Ta薄膜の単
一膜では、Co−Crに添加されるNb,Taの添加量
は磁化ジャンプが発生する所定量に規制されてしまう。
また強磁性材であるCoに非磁性材であるNb,Taを
添加することによりCo−Cr膜に比較して飽和磁化M
sが低下してしまい高出力の垂直磁気記録が行なえな
い。
Therefore, the small grain crystal layer formed when a single film of Co—Cr—Nb thin film and Co—Cr—Ta thin film is sputtered functions as a backing layer, and the large grain crystal layer serves as a perpendicular magnetization layer. It is possible to make it function. However, in the single film of Co-Cr-Nb thin film and Co-Cr-Ta thin film, the addition amount of Nb and Ta added to Co-Cr is restricted to a predetermined amount at which a magnetization jump occurs.
Further, by adding Nb and Ta which are non-magnetic materials to Co which is a ferromagnetic material, the saturation magnetization M is higher than that of a Co-Cr film.
Since s decreases, high output perpendicular magnetic recording cannot be performed.

この点に鑑み本発明では上記磁化ジャンプが生ずる条件
下で、まずベース上にCo−Cr−Nb薄膜またはCo
−Cr−Ta薄膜の小粒径結晶層を形成させ(約0.1μ
m以下)、その上に高い飽和磁化Msを有するCo−C
r膜をスパッタリングし垂直磁気記録に直接寄与する大
粒径結晶層を形成した。なおCo−Cr膜においてCr
の添加量は約5〜20at%とした。上記構成の垂直磁気
記録媒体において小粒径結晶層としてCo−Cr−Nb
薄膜を用いた場合の各種磁気特性をCo−Cr単層薄膜
及び磁気ジャンプの生じているCo−Cr−Nb単層薄
膜と比較して第9図に、この垂直磁気記録媒体にセンダ
スト(登録商標)よりなるリングコアヘッドで垂直磁気
記録再生した時の第9図に示す夫々の薄膜の記録波長と
再生出力の関係を第10図に、また小粒径結晶層として
Co−Cr−Ta薄膜を用いた場合の各種磁気特性をC
o−Cr単層薄膜及び磁化ジャンプの生じているCo−
Cr−Taの単層薄膜と比較して第11図に、更にこの
垂直磁気記録媒体にセンダストよりなるリングコアヘッ
ドで垂直磁気記録再生した時の第11図に示す各薄膜の
記録波長と再生出力の関係を第13図に夫々示す。第9
図及び第11図より磁化ジャンプの生ずる条件下で形成
したCo−Cr−Nb及びCo−Cr−Taの小粒径結
晶層上にCo−Crの大粒径結晶層を形成させた垂直磁
気記録媒体(以下単に二層媒体という)は、磁化ジャン
プの生じているCo−Cr−Nb薄膜の単層垂直磁気記
録媒体(以下Nb単層媒体と略称する)及び同じく磁化
ジャンプの生じているCo−Cr−Ta薄膜の単層垂直
磁気記録媒体(以下Ta単層媒体と略称する)よりも飽
和磁化Msが大となっている。また垂直方向の抗磁力H
c⊥は十分に高い値となっており垂直磁化に適した磁気
性質となっている。一方第10図に示される如く、再生
出力と記録波長特性は、Nb単層媒体及びCo−Cr薄
膜の単層垂直磁気記録媒体(以下Co−Cr単層媒体と
略称する)に比較して全ての記録波長領域で高い値を示
しており強い再生出力が得られる。特に短波長領域(記
録波長が1μm〜0.2μmの領域)においては、Nb単
層媒体及びCo−Cr単層媒体もその再生出力は増大し
ているものの、二層媒体は更に高い効率で再生出力が増
大している。従って二層媒体は特に短波長領域での垂直
磁気記録再生に適しているといえる。なおTaの二層媒
体でも第13図に示す如く同様の結果が得られた。
In view of this point, in the present invention, under the condition that the above-mentioned magnetization jump occurs, first, a Co-Cr-Nb thin film or Co is formed on the base.
Form a small grain size crystal layer of -Cr-Ta thin film (approx.
m or less), Co-C having a high saturation magnetization Ms thereon
The r film was sputtered to form a large grain crystal layer that directly contributes to perpendicular magnetic recording. In the Co-Cr film, Cr
Was added at about 5 to 20 at%. In the perpendicular magnetic recording medium having the above-mentioned structure, Co-Cr-Nb is used as the small grain crystal layer.
Various magnetic properties when a thin film is used are compared with a Co-Cr single layer thin film and a Co-Cr-Nb single layer thin film in which a magnetic jump occurs. Fig. 10 shows the relationship between the recording wavelength and the reproduction output of each thin film shown in Fig. 9 when perpendicular magnetic recording / reproduction is performed by a ring core head of Fig. 10), and a Co-Cr-Ta thin film is used as a small grain crystal layer. The various magnetic characteristics when
o-Cr single layer thin film and Co- where magnetization jump occurs
Compared with a single layer thin film of Cr-Ta, the recording wavelength and reproduction output of each thin film shown in FIG. 11 and shown in FIG. 11 when perpendicular magnetic recording and reproduction were performed on this perpendicular magnetic recording medium with a ring core head made of sendust The relationships are shown in FIG. 13, respectively. 9th
FIG. 11 and FIG. 11: Perpendicular magnetic recording in which a Co—Cr large grain crystal layer is formed on a Co—Cr—Nb and Co—Cr—Ta small grain crystal layer formed under the condition that a magnetic jump occurs. The medium (hereinafter, simply referred to as a two-layer medium) is a Co-Cr-Nb thin film single-layer perpendicular magnetic recording medium (hereinafter abbreviated as Nb single-layer medium) in which a magnetization jump occurs and Co-in which a magnetization jump similarly occurs. The saturation magnetization Ms is larger than that of a single-layer perpendicular magnetic recording medium of a Cr-Ta thin film (hereinafter abbreviated as Ta single-layer medium). Also, the coercive force H in the vertical direction
c⊥ has a sufficiently high value and has magnetic properties suitable for perpendicular magnetization. On the other hand, as shown in FIG. 10, the reproduction output and the recording wavelength characteristics are almost the same as those of the Nb single layer medium and the single layer perpendicular magnetic recording medium of Co—Cr thin film (hereinafter abbreviated as Co—Cr single layer medium). Shows a high value in the recording wavelength region of, and a strong reproduction output can be obtained. In particular, in the short wavelength region (the region where the recording wavelength is 1 μm to 0.2 μm), the reproducing output of the Nb single layer medium and the Co—Cr single layer medium is increasing, but the reproducing output of the double layer medium is even higher. Is increasing. Therefore, it can be said that the double-layer medium is particularly suitable for perpendicular magnetic recording / reproduction in the short wavelength region. Similar results were obtained with the Ta dual-layer medium as shown in FIG.

上記現象の生ずる理由を第12図を用いて以下推論す
る。ポリイミド等のベース1上に磁化ジャンプの生ずる
条件を満足させてCo−Cr−Nb及びCo−Cr−T
a磁性材(以下Co−Cr−NbとCo−Cr−Taを
総称する場合Co−Cr−Nb(Ta)と示す)を約0.
1μmの膜厚寸法でスパッタリングすると、前述の如く
被膜されたCo−Cr−Nb(Ta)薄膜は略その全体
において小粒径結晶層2が形成されているものと考えら
れる。この小粒径結晶層2は面内方向の抗磁力Hcが
小で、かつ垂直方向の抗磁力Hc⊥との差が少ない等方
性を有した層となっている。従って小粒径結晶層2にい
わゆる裏打ち層と略同様な機能を行なわせることができ
る。
The reason why the above phenomenon occurs will be inferred below with reference to FIG. Co-Cr-Nb and Co-Cr-T satisfying the condition that a magnetic jump occurs on the base 1 such as polyimide.
A magnetic material (hereinafter Co-Cr-Nb and Co-Cr-Ta are collectively referred to as Co-Cr-Nb (Ta)) is about 0.
It is considered that the small grain size crystal layer 2 is formed almost entirely on the Co—Cr—Nb (Ta) thin film coated as described above when sputtered with a film thickness of 1 μm. The small grain size crystal layer 2 has a small coercive force Hc in the in-plane direction and isotropic with little difference from the coercive force Hc⊥ in the vertical direction. Therefore, the small grain crystal layer 2 can be made to have a function substantially similar to that of a so-called backing layer.

小粒径結晶層2の上部には、Co−Cr磁性材が約0.1
μmの膜厚寸法でスパッタリングされる。Co−Cr磁
性材がCo−Cr−Nb(Ta)薄膜上にスパッタリン
グされる際、Co−Cr磁性材及びCo−Cr−Nb
(Ta)薄膜は結晶構造及び組成において似た性質を有
しているため、両磁性材の境界部分においてCo−Cr
磁性材の小粒径結晶層はほとんど発生せず(発生したと
しても垂直磁気記録特性に影響を与える厚さまで到らな
いと考えられる)、高い飽和磁化Msを有すると共に垂
直方向に強い抗磁力を有し、垂直磁化に寄与する大粒径
結晶層3が直ちに成長すると考えられる。よって二層媒
体4に摺接してリングコアヘッド5から放たれた磁束線
は大粒径結晶層3を貫通して小粒径結晶層2に到り、抵
抗磁力でかつ等方性を有する小粒径結晶層2内で磁束は
面内方向に進行し、リングコアヘッド5の磁極部分で急
激に磁束が吸い込まれることにより大粒径結晶層3に垂
直磁化がされると考えられる。よって磁束が形成する磁
気ループは第12図に矢印で示す如く、馬蹄形状となり
所定垂直磁気記録位置において高い飽和磁化Msを有す
る大粒径結晶層3に磁束が集中して鋭く貫通するため、
大粒径結晶層3には残留磁化の大なる垂直磁化が行なわ
れる。すなわち面内方向成分を多く含む磁界を発生する
リングコアヘッド5においても、残留磁化の大なる強い
垂直磁気記録を行なうことが可能となり、磁気記録再生
効率を向上させることができる。また小粒径結晶層2の
面内方向の抗磁力Hcは第6図,第7図より10Oe〜50
Oe程度であり大粒径結晶層3の抗磁力Hc⊥に対して極
端に小なる値ではないため衝撃性のバルクハウゼンノイ
ズが発生することもなく良好な垂直磁気記録再生を行な
い得る。
On the upper part of the small grain crystal layer 2, a Co—Cr magnetic material of about 0.1 is formed.
Sputtered with a film thickness of μm. When the Co-Cr magnetic material is sputtered on the Co-Cr-Nb (Ta) thin film, the Co-Cr magnetic material and the Co-Cr-Nb are used.
Since the (Ta) thin film has similar properties in crystal structure and composition, Co-Cr is formed at the boundary between both magnetic materials.
The small grain crystal layer of the magnetic material is hardly generated (even if it is generated, it is considered that the thickness does not reach the thickness that affects the perpendicular magnetic recording characteristics), has a high saturation magnetization Ms, and has a strong coercive force in the vertical direction. It is considered that the large grain crystal layer 3 which has the perpendicular magnetization and grows immediately. Therefore, the magnetic flux lines slidably contacting the two-layer medium 4 and emitted from the ring core head 5 pass through the large grain crystal layer 3 to reach the small grain crystal layer 2, and the small grains having the resistance magnetic force and the isotropic property. It is considered that the magnetic flux advances in the in-plane direction in the radial crystal layer 2 and is abruptly absorbed by the magnetic pole portion of the ring core head 5, whereby the large grain crystal layer 3 is perpendicularly magnetized. Therefore, the magnetic loop formed by the magnetic flux has a horseshoe shape as shown by an arrow in FIG. 12, and the magnetic flux concentrates and sharply penetrates the large grain crystal layer 3 having a high saturation magnetization Ms at a predetermined perpendicular magnetic recording position.
Perpendicular magnetization having a large residual magnetization is performed on the large grain crystal layer 3. That is, even in the ring core head 5 that generates a magnetic field containing a large amount of in-plane components, it is possible to perform strong perpendicular magnetic recording with a large residual magnetization, and improve the magnetic recording / reproducing efficiency. The coercive force Hc in the in-plane direction of the small grain size crystal layer 2 is 10 Oe to 50 from FIG. 6 and FIG.
Since it is about Oe and is not a value extremely small with respect to the coercive force Hc⊥ of the large grain crystal layer 3, good perpendicular magnetic recording / reproduction can be performed without generating impact Barkhausen noise.

発明の効果 上述の如く本発明になる垂直磁気記録再生方法によれ
ば、コバルト及びクロムに、ニオブ及びタンタルのうち
少なくとも一方を添加してなる磁性材によりベース上に
抵抗磁力の、原点近傍で急激に立ち上がる曲線で表わさ
れる面内M−Hヒステリシス特性を有する層を形成する
と共に、該層上にコバルト及びクロムよりなる磁性材に
より垂直磁化層を形成してなる垂直磁気記録媒体に、リ
ングコアヘッドを用いて記録/再生を行なう構成とする
ことにより、垂直磁気記録媒体はベース上に面内方向の
抗磁力が小さくかつ等方性を有する少なくともコバル
ト,クロムう含有して形成される下層と高い飽和磁化を
有しかつ垂直方向の抗磁力が大であるコバルト,クロム
よりなる上層との二層を形成された構成となるため、リ
ングコアヘッドより放たれた磁束は容易に低抗磁力を有
すると共に等方性を有する下層に進入し水平方向へ進行
した後、高い飽和磁化を有すると共に高抗磁力を有する
上層を貫通してリングコアヘッドの磁極に急激にかつ鋭
く吸い込まれるため、上層には強い残留磁化が生じ面内
成分を多く含む磁界を発生するリングコアヘッドにおい
ても高い再生出力を実現し得る垂直磁気記録再生を行な
うことができ、これに加え特に短い記録波長に対しすぐ
れた垂直磁化が行なわれ良好な再生出力を得ることがで
き、また下層は磁化ジャンプが生じる、すなわち面内方
向に対する抗磁力が小で、かつ等方性を有する層である
ため、いわゆる裏打ち層として確実に機能すると共にそ
の抗磁力は上層の抗磁力に対して不要に小なる値ではな
いため衝撃性のバルクハウゼンノイズが発生することも
なく良好な垂直磁気記録再生が行なうことができる等の
特長を有する。
As described above, according to the perpendicular magnetic recording / reproducing method of the present invention, the magnetic material formed by adding at least one of niobium and tantalum to cobalt and chromium causes the resistance magnetic force to rapidly increase on the base near the origin. A ring core head is mounted on a perpendicular magnetic recording medium in which a layer having an in-plane M-H hysteresis characteristic represented by a curve that rises at the same time is formed and a perpendicular magnetic layer is formed on the layer by a magnetic material made of cobalt and chromium. By adopting a recording / reproducing structure, the perpendicular magnetic recording medium has high coercive force with the lower layer formed on the base which has a small coercive force in the in-plane direction and isotropic and contains at least cobalt and chromium. Since it has a structure in which two layers, that is, an upper layer made of cobalt and chromium having magnetization and a large coercive force in the vertical direction, are formed, The magnetic flux emitted from the pad easily enters the lower layer having a low coercive force and isotropic property and proceeds in the horizontal direction, and then penetrates the upper layer having a high saturation magnetization and a high coercive force to form a ring core head. Since it is abruptly and sharply absorbed by the magnetic pole of, perpendicular magnetic recording / reproduction that can realize high reproduction output can be performed even in a ring core head that generates a strong residual magnetization in the upper layer and generates a magnetic field containing many in-plane components. In addition to this, excellent perpendicular magnetization can be performed especially for a short recording wavelength and a good reproduction output can be obtained, and a magnetization jump occurs in the lower layer, that is, the coercive force in the in-plane direction is small and isotropic. Since it is a layer that has, it surely functions as a so-called backing layer, and its coercive force is not a value that is unnecessarily small compared to the coercive force of the upper layer. Noise has a feature such as can be performed even without good vertical magnetic recording reproducing occur.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明になる垂直磁気記録再生方法に用いられ
る垂直磁気記録媒体の一実施例の磁性膜であるCo−C
r−Nb薄膜のヒステリシス曲線を示す図、第2図は小
粒径結晶層のヒステリシス曲線を示す図、第3図から第
5図は磁化ジャンプが生ずる理由を説明するための図、
第6図はCo−Cr−Nb薄膜が二層構造となっている
こと及び各層の磁気特性を示す図、第7図はCo−Cr
−Ta薄膜が二層構造となっていること及び各層の磁気
特性を示す図、第8図は磁化ジャンプが生じていないC
o−Cr−Nb薄膜のヒステリシス曲線の一例を示す
図、第9図は小粒径結晶層としてCo−Cr−Nb薄膜
を用いた場合の各種磁気特性をCo−Cr単層薄膜及び
磁化ジャンプの生じているCo−Cr−Nb単層薄膜と
比較して示した図、第10図は第9図で示した各薄膜の
記録波長と再生出力の関係を示す図、第11図は小粒径
結晶層としてCo−Cr−Ta薄膜を用いた場合の各種
磁気特性をCo−Cr単層薄膜及び磁化ジャンプの生じ
ているCo−Cr−Ta単層薄膜と比較して示した図、
第12図は本発明になる垂直磁気記録再生方法に用いら
れる垂直磁気記録媒体の結晶成長状態を概略的に示すと
共に磁束が形成する磁気ループを示す図、第13図は第
11図で示した各薄膜の記録波長と再生出力の関係を示
す図である。 1……ベース、2……小粒径結晶層、3……大粒径結晶
層、4……二層媒体、5……リングコアヘッド。
FIG. 1 is a magnetic film Co-C of one embodiment of a perpendicular magnetic recording medium used in the perpendicular magnetic recording / reproducing method according to the present invention.
FIG. 2 is a diagram showing a hysteresis curve of an r-Nb thin film, FIG. 2 is a diagram showing a hysteresis curve of a small grain crystal layer, and FIGS. 3 to 5 are diagrams for explaining the reason why a magnetization jump occurs.
FIG. 6 is a diagram showing that the Co—Cr—Nb thin film has a two-layer structure and the magnetic characteristics of each layer, and FIG. 7 is a diagram showing Co—Cr.
-A diagram showing that the Ta thin film has a two-layer structure and the magnetic characteristics of each layer. Fig. 8 shows C in which no magnetization jump occurs.
FIG. 9 is a diagram showing an example of a hysteresis curve of an o-Cr-Nb thin film, and FIG. 9 shows various magnetic characteristics when a Co-Cr-Nb thin film is used as a small grain crystal layer of Co-Cr single layer thin film and magnetization jump. The figure shown in comparison with the produced Co-Cr-Nb single layer thin film, FIG. 10 shows the relationship between the recording wavelength and the reproduction output of each thin film shown in FIG. 9, and FIG. 11 shows the small grain size. The figure which showed various magnetic characteristics when using a Co-Cr-Ta thin film as a crystal layer compared with a Co-Cr single-layer thin film and a Co-Cr-Ta single-layer thin film in which a magnetization jump has occurred,
FIG. 12 is a diagram schematically showing a crystal growth state of a perpendicular magnetic recording medium used in the perpendicular magnetic recording / reproducing method according to the present invention and showing a magnetic loop formed by magnetic flux, and FIG. 13 is shown in FIG. It is a figure which shows the recording wavelength of each thin film, and the relationship of reproduction | regeneration output. 1 ... Base, 2 ... Small grain crystal layer, 3 ... Large grain crystal layer, 4 ... Double layer medium, 5 ... Ring core head.

フロントページの続き (72)発明者 今岡 英一郎 神奈川県横浜市神奈川区守屋町3丁目12番 地 日本ビクター株式会社内Front Page Continuation (72) Inventor Eiichiro Imaoka 3-12 Moriyamachi, Kanagawa-ku, Yokohama, Kanagawa Japan Victor Company of Japan, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】コバルト及びクロムに、ニオブ及びタンタ
ルのうち少なくとも一方を添加してなる磁性材によりベ
ース上に低抗磁力の、原点近傍で急激に立ち上がる曲線
で表わされる面内M−Hヒステリシス特性を有する層を
形成すると共に、該層上にコバルト及びクロムよりなる
磁性材により垂直磁化層を形成してなる垂直磁気記録媒
体に、リングコアヘッドを用いて信号を記録/再生する
ことを特徴とする垂直磁気記録再生方法。
1. An in-plane M-H hysteresis characteristic represented by a curve which has a low coercive force and rapidly rises near the origin on a base by a magnetic material obtained by adding at least one of niobium and tantalum to cobalt and chromium. And a signal is recorded / reproduced by using a ring core head on a perpendicular magnetic recording medium in which a perpendicularly magnetized layer is formed on the layer with a magnetic material made of cobalt and chromium. Perpendicular magnetic recording / reproducing method.
【請求項2】該リングコアヘッドは、センダスト(登録
商標)よりなることを特徴とする特許請求の範囲第1項
記載の垂直磁気記録再生方法。
2. The perpendicular magnetic recording / reproducing method according to claim 1, wherein the ring core head is made of Sendust (registered trademark).
JP60291561A 1985-12-24 1985-12-24 Perpendicular magnetic recording / reproducing method Expired - Lifetime JPH0642281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60291561A JPH0642281B2 (en) 1985-12-24 1985-12-24 Perpendicular magnetic recording / reproducing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60291561A JPH0642281B2 (en) 1985-12-24 1985-12-24 Perpendicular magnetic recording / reproducing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6462985A Division JPS61222022A (en) 1985-03-28 1985-03-28 Vertical magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS61224104A JPS61224104A (en) 1986-10-04
JPH0642281B2 true JPH0642281B2 (en) 1994-06-01

Family

ID=17770511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60291561A Expired - Lifetime JPH0642281B2 (en) 1985-12-24 1985-12-24 Perpendicular magnetic recording / reproducing method

Country Status (1)

Country Link
JP (1) JPH0642281B2 (en)

Also Published As

Publication number Publication date
JPS61224104A (en) 1986-10-04

Similar Documents

Publication Publication Date Title
JPH0640361B2 (en) Perpendicular magnetic recording / reproducing method
JP3612087B2 (en) Magnetic recording medium
JP2002309353A (en) Soft-magnetic membrane and magnetic head for recording using the membrane
US4603091A (en) Recording medium for perpendicular magnetization
US4798765A (en) Perpendicular magnetic recording medium
US4792486A (en) Perpendicular magnetic recording medium
JPH08147665A (en) Magnetic recording medium and magnetic memory device using the medium
US4622273A (en) Recording medium for perpendicular magnetization
JPH0642281B2 (en) Perpendicular magnetic recording / reproducing method
JP3308239B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing device
JPH0532809B2 (en)
JPH0642282B2 (en) Perpendicular magnetic recording / reproducing method
JPH0670852B2 (en) Perpendicular magnetic recording medium
JPH0532808B2 (en)
JP2810457B2 (en) Perpendicular magnetic recording medium and its recording device
JPH0628091B2 (en) Perpendicular magnetic recording medium
JP2521532B2 (en) Perpendicular magnetic recording medium, manufacturing method of the medium, and recording / reproducing method
JPS61204823A (en) Vertical magnetic recording medium
JPH0630136B2 (en) Perpendicular magnetic recording medium
JP3653039B2 (en) Magnetic recording / reproducing device
JPS61224129A (en) Vertical magnetic recording medium
JPS61224132A (en) Vertical magnetic recording medium
JPS61224130A (en) Vertical magnetic recording medium
JPS61204822A (en) Vertical magnetic recording medium
JPS61224131A (en) Vertical magnetic recording medium