JPH0642282B2 - Perpendicular magnetic recording / reproducing method - Google Patents

Perpendicular magnetic recording / reproducing method

Info

Publication number
JPH0642282B2
JPH0642282B2 JP60291563A JP29156385A JPH0642282B2 JP H0642282 B2 JPH0642282 B2 JP H0642282B2 JP 60291563 A JP60291563 A JP 60291563A JP 29156385 A JP29156385 A JP 29156385A JP H0642282 B2 JPH0642282 B2 JP H0642282B2
Authority
JP
Japan
Prior art keywords
layer
magnetization
thin film
crystal layer
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60291563A
Other languages
Japanese (ja)
Other versions
JPS61224105A (en
Inventor
安雄 石坂
昇 渡辺
一雄 木村
英一郎 今岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP60291563A priority Critical patent/JPH0642282B2/en
Publication of JPS61224105A publication Critical patent/JPS61224105A/en
Publication of JPH0642282B2 publication Critical patent/JPH0642282B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/672Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having different compositions in a plurality of magnetic layers, e.g. layer compositions having differing elemental components or differing proportions of elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor

Landscapes

  • Magnetic Record Carriers (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は垂直磁気記録再生方法に係り、特に記録再生出
力を増大し得る垂直磁気記録再生方法に関する。
TECHNICAL FIELD The present invention relates to a perpendicular magnetic recording / reproducing method, and more particularly to a perpendicular magnetic recording / reproducing method capable of increasing a recording / reproducing output.

従来の技術 一般に、磁気ヘツドにより磁気記録媒体に記録,再生を
行なうには、磁気ヘツドにより磁気記録媒体の磁性層に
その媒体長手方向(面内方向)の磁化を行なわせて記録
し、これを再生するものが汎用されている。しかるに、
これによれば記録が高密度になるに従って減磁界が大き
くなり減磁作用が高密度記録に悪影響を及ぼすことが知
られている。そこで近年上記悪影響を解消するものとし
て、磁気記録媒体の磁性層に垂直方向に磁化を行なう垂
直磁気記録再生方法が提案されている。これによれば記
録密度を向上させるに従い減磁界が小さくなり理論的に
は残留磁化の減少がない良好な高密度記録を行なうこと
ができる。
2. Description of the Related Art Generally, in order to record / reproduce on / from a magnetic recording medium by using a magnetic head, the magnetic layer of the magnetic recording medium is magnetized in the longitudinal direction (in-plane direction) of the magnetic recording medium and recorded. The thing to reproduce is general-purpose. However,
According to this, it is known that the higher the recording density, the larger the demagnetizing field and the demagnetizing effect adversely affects the high density recording. Therefore, in recent years, a perpendicular magnetic recording / reproducing method has been proposed which eliminates the above-mentioned adverse effects by magnetizing the magnetic layer of the magnetic recording medium in the perpendicular direction. According to this, as the recording density is improved, the demagnetizing field becomes smaller, and theoretically good high density recording in which the residual magnetization does not decrease can be performed.

従来この垂直磁気記録再生方法は、垂直磁気記録媒体を
挟んで主磁極及び補助磁極よりなる磁気ヘツドを設け、
主磁極先端付近に強い垂直磁界を発生させて、これによ
り垂直磁気記録媒体を垂直磁化する構成とされていた。
また垂直磁気記録媒体としては、ベースフィルム上にC
o−Cr膜をスパツタリングにより被膜形成したものが
あった。周知の如く、Co−Cr膜は比較的高い飽和磁
化(Ms)を有し、かつ膜面に対し垂直な磁化容易軸を
持つ(すなわち膜面に対し垂直方向の抗磁力Hc⊥が大
である)ため垂直磁気記録媒体としては極めて有望な材
質であることが知られている。しかるにCo−Cr膜は
その磁化容易軸がCrの添加によりCoの磁化容易軸
(最密六方晶のC軸)が垂直に近い配向を有しているも
のの十分には垂直方向に配向しておらず強い垂直磁気異
方性を得ることができなかつた。このため従来、Co−
Crにニオブ(Nb)及びタンタル(Ta)等の第三元
素を添加することによりCoの磁化容易軸を垂直方向に
強く配向させた構成の垂直磁気記録媒体があつた。また
Co−Cr膜とベースフイルムとの間に、いわゆる裏打
ち層である高透磁率層(すなわち抗磁力Hcが小なる
層。例えばNi−Fe)を別個形成して二層構造とし高
透磁率層内で拡がつている磁束を所定磁気記録位置にて
磁気ヘツドの磁極に向け集中させて吸い込ませることに
より分布が鋭くかつ強い垂直磁化を行ない得る構成の垂
直磁気記録媒体があつた。
Conventionally, in this perpendicular magnetic recording / reproducing method, a magnetic head composed of a main magnetic pole and an auxiliary magnetic pole is provided with a perpendicular magnetic recording medium interposed therebetween,
A strong perpendicular magnetic field is generated in the vicinity of the tip of the main magnetic pole, so that the perpendicular magnetic recording medium is perpendicularly magnetized.
As a perpendicular magnetic recording medium, C is formed on the base film.
In some cases, an o-Cr film was formed by sputtering. As is well known, the Co-Cr film has a relatively high saturation magnetization (Ms) and has an easy axis of magnetization perpendicular to the film surface (that is, the coercive force Hc⊥ in the direction perpendicular to the film surface is large. Therefore, it is known that it is an extremely promising material for a perpendicular magnetic recording medium. However, although the Co-Cr film has an easy axis of magnetization whose orientation (the C axis of the close-packed hexagonal crystal) is close to perpendicular due to the addition of Cr, it must be sufficiently oriented in the perpendicular direction. It was impossible to obtain a strong perpendicular magnetic anisotropy. Therefore, conventionally, Co-
There is a perpendicular magnetic recording medium having a structure in which the easy axis of magnetization of Co is strongly oriented in the perpendicular direction by adding a third element such as niobium (Nb) and tantalum (Ta) to Cr. In addition, a high permeability layer (that is, a layer having a small coercive force Hc, for example, Ni—Fe) which is a so-called backing layer is separately formed between the Co—Cr film and the base film to form a two-layer structure. There is a perpendicular magnetic recording medium having a structure in which the magnetic flux expanding therein is concentrated and sucked toward a magnetic pole of a magnetic head at a predetermined magnetic recording position to have a sharp distribution and strong perpendicular magnetization.

発明が解決しようとする問題点 上記従来の垂直磁気記録再生方法では、垂直磁気記録媒
体のCoの磁化容易軸を強く垂直方向へ配向させるため
に、CoにCr及びNb,Ta等を添加していた。しか
るにCr及びNb,Taの添加によりCoの磁化容易軸
は強く垂直方向へ配向するものの、強磁性体であるCo
に非磁性体であるCr及びNb,Taを添加することに
より垂直磁気記録媒体としての飽和磁化Msが低下して
しまい高い再生出力を得ることができないという問題点
があった。また磁気ヘッドとしてリングコアヘッドを用
いようとした場合、リングコアヘッドは発生する磁界に
面内方向成分を多く含むため、上記のように垂直方向の
みに強い異方性のみを有する垂直磁気記録媒体では効率
良く垂直磁気記録を行なうことができないという問題点
があった。またCo−Cr膜に加え高透磁率層を裏打ち
層として形成された二層構造の垂直磁気記録媒体の場
合、Co−Cr膜の抗磁力Hc(700Oe以上)に対して
高透磁率層の抗磁力Hcは極めて小(10Oe以下)となつ
ていたため、衝撃性のバルクハウゼンノイズが発生する
という問題点があつた。これに加えて、このバルクハウ
ゼンノイズを防止するには少なくとも10Oe以上の抗磁力
を有することが必要となるが、この条件を満たしかつ裏
打ち層としての機能を有する適当な素材が無いという問
題点もあつた。
Problems to be Solved by the Invention In the above-described conventional perpendicular magnetic recording / reproducing method, in order to strongly orient the easy magnetization axis of Co of the perpendicular magnetic recording medium in the perpendicular direction, Co, Cr, Nb, Ta and the like are added. It was However, although the easy axis of magnetization of Co is strongly oriented in the perpendicular direction by the addition of Cr, Nb, and Ta, it is a ferromagnetic material of Co.
However, the addition of non-magnetic materials such as Cr, Nb, and Ta reduces the saturation magnetization Ms of the perpendicular magnetic recording medium, which makes it impossible to obtain a high reproduction output. When a ring core head is used as the magnetic head, the generated magnetic field contains a large amount of in-plane components, so that the efficiency is improved in the perpendicular magnetic recording medium having only strong anisotropy only in the vertical direction as described above. There is a problem that perpendicular magnetic recording cannot be performed well. Further, in the case of a double-layered perpendicular magnetic recording medium formed by using a high-permeability layer as a backing layer in addition to the Co-Cr film, the resistance of the high-permeability layer against the coercive force Hc (700 Oe or more) of the Co-Cr film. Since the magnetic force Hc was extremely small (10 Oe or less), there was a problem that shockable Barkhausen noise was generated. In addition to this, it is necessary to have a coercive force of at least 10 Oe or more to prevent this Barkhausen noise, but there is also a problem that there is no suitable material that satisfies this condition and has a function as a backing layer. Atsuta

そこで本発明では、コバルト,クロムにニオブ及びタン
タルのうち少なくとも一方を加えてなる磁性材をコーテ
ィングした際、磁性層が抗磁力の異なる二層に分かれて
形成されることに注目し、この二層の内抗磁力の小なる
下層を垂直磁気記録に積極的に利用すると共にリングコ
アヘッドにより垂直磁気記録再生を行なうことにより上
記問題点を解決した垂直磁気記録再生方法を提供するこ
とを目的とする。
Therefore, in the present invention, attention is paid to the fact that when a magnetic material formed by adding at least one of niobium and tantalum to cobalt and chromium is coated, the magnetic layer is divided into two layers having different coercive forces. It is an object of the present invention to provide a perpendicular magnetic recording / reproducing method which solves the above problems by positively utilizing the lower layer having a lower coercive force in perpendicular magnetic recording and performing perpendicular magnetic recording / reproduction by a ring core head.

問題点を解決するための手段 上記問題点を解決するために本発明では、コバルト及び
クロムに、ニオブ及びタンタルのうち少なくとも一方を
添加してなる磁性材によりベース上に抵抗磁力の、原点
近傍で急激に立ち上がる曲線で表わされる面内M−Hヒ
ステリシス特性である磁化ジャンプを有する層を形成す
ると共に、該層上に、該層のニオブ又はタンタルの添加
量より小なる量で、該磁化ジャンプを生じない量のニオ
ブ及びタンタルのうち少なくとも一方をコバルト及びク
ロムに添加した磁性材よりなる垂直磁化層を形成してな
る垂直磁気記録媒体に、リングコアヘッドを用いて記録
/再生する構成とした。
Means for Solving the Problems In order to solve the above-mentioned problems, in the present invention, the magnetic force obtained by adding at least one of niobium and tantalum to cobalt and chromium causes resistance magnetic force on the base in the vicinity of the origin. A layer having a magnetization jump having an in-plane MH hysteresis characteristic represented by a sharply rising curve is formed, and the magnetization jump is formed on the layer in an amount smaller than the amount of niobium or tantalum added to the layer. A ring core head was used to record / reproduce on / from a perpendicular magnetic recording medium formed by forming a perpendicular magnetization layer made of a magnetic material in which at least one of niobium and tantalum which does not occur is added to cobalt and chromium.

実施例 本発明になる垂直磁気記録再生方法に用いる垂直磁気記
録媒体(以下単に記録媒体という)は、まずベースとな
るポリイミド基板上にコバルト(Co),クロム(C
r)にニオブ(Nb)及びタンタル(Ta)のうち少な
くとも一方を加えた磁性材をターゲットとしてスパッタ
リングし、続いてその上にCo,Crにニオブ(Nb)
及びタンタル(Ta)のうち少なくとも一方を上記添加
量より少量加えた磁性材をターゲツトとしてスパツタリ
ングすることにより得られる。
EXAMPLE A perpendicular magnetic recording medium (hereinafter simply referred to as a recording medium) used in a perpendicular magnetic recording / reproducing method according to the present invention is prepared by firstly depositing cobalt (Co), chromium (C) on a base polyimide substrate.
Sputtering is performed with a magnetic material obtained by adding at least one of niobium (Nb) and tantalum (Ta) to r) as a target, and subsequently niobium (Nb) is added to Co and Cr thereon.
And at least one of tantalum (Ta) is added to the magnetic material in a smaller amount than the above amount, and the magnetic material is sputtered as a target.

従来より金属等(例えばCo−Cr合金)をベース上に
スパツタリングした際、被膜形成された薄膜はその膜面
に垂直方向に対して同一結晶構造を形成するのではな
く、ベース近傍の極めて薄い部分にまず小粒径の第一の
結晶層を形成し、その上部に続いて大粒径の第二の結晶
層が形成されることが各種の実験(例えば走査型電子顕
微鏡による写真撮影)により明らかになってきている
(Edward R.Wuori and Professor J.H.Judy:“INI
TIAL LAYER EFFECT IN CO−C
R FILMS”,IEEE Trans.,VOL.MA
G−20,No.5,SEPTEMBER 1984,P774〜
P775またはWilliam G.Haines:“VSMPROFIL
ING OF Co Cr FILMS:A NEW
ANALYTICAL TECHNIQUE“IEEE
Trans.,VOL,MAG−20,No.5,SEPT
EMBER 1984,P812〜P814)。
Conventionally, when a metal or the like (for example, Co-Cr alloy) is sputtered on a base, the thin film formed does not form the same crystal structure in the vertical direction on the film surface, but an extremely thin portion near the base. First, a small crystal grain first crystal layer was formed, and then a large crystal grain second crystal layer was formed on top of it, by various experiments (eg, scanning electron microscope photography). (Edward R. Wuori and Professor JHJudy: “INI
TIAL LAYER EFFECT IN CO-C
R FILMS ", IEEE Trans., VOL.MA
G-20, No.5, SEPTEMBER 1984, P774〜
P775 or William G. Haines: “VSMPROFIL
ING OF Co Cr FILMS: A NEW
ANALYTICAL TECHNIQUE "IEEE"
Trans. , VOL, MAG-20, No. 5, SEPT
EMBER 1984, P812-P814).

本発明者は上記観点に注目しCo−Cr合金を基とし、
またこれに第三元素を添加した金属を各種スパツタリン
グし、形成される小粒径の結晶層とその上部に形成され
た大粒径の結晶層との物理的性質を測定した結果、第三
元素としてNbまたはTaを添加した場合、小粒径結晶
層の抗磁力が大粒径結晶層よりも非常に小でありかつ垂
直方向と面内方向の抗磁力には極端な差が生じてないこ
とがわかつた。本発明ではこの抵抗磁力を有すると共に
垂直方向及び面内方向の抗磁力差の少ない小粒径結晶層
を等方性層として用い、この小粒径結晶層上にNb及び
差aの添加量の少ない高い飽和磁化Msを有すると共に
磁化容易軸が強く垂直方向へ配向したCo−Cr−Nb
薄膜またはCo−Cr−Ta薄膜を形成し、これを垂直
磁化層として用いると共にリングコアヘッドを用いて垂
直磁気記録再生を行なうことを特徴とする。
The present inventor pays attention to the above viewpoint, based on a Co—Cr alloy,
In addition, various kinds of metals were sputtered with the addition of the third element, and the physical properties of the small-sized crystal layer formed and the large-sized crystal layer formed on the upper part were measured. When Nb or Ta is added as the alloy, the coercive force of the small grain size crystal layer is much smaller than that of the large grain size crystal layer, and there is no extreme difference between the coercive force in the vertical direction and in the in-plane direction. I got caught. In the present invention, a small grain size crystal layer having the resistance magnetic force and a small difference in coercive force in the vertical direction and the in-plane direction is used as an isotropic layer, and the addition amount of Nb and the difference a is added to the small grain size crystal layer. Co-Cr-Nb which has a small high saturation magnetization Ms and has a strong easy axis and is oriented in the vertical direction.
It is characterized in that a thin film or a Co-Cr-Ta thin film is formed and is used as a perpendicular magnetization layer, and perpendicular magnetic recording / reproduction is performed using a ring core head.

以下本発明者が行なつたスパツタリングにより形成され
たCo,Cr,Nb及びTaのうち少なくとも一方を添
加してなる磁性材の小粒径結晶層と、大粒径結晶層の抗
磁力を測定した実験結果を詳述する。Co−Cr薄膜,
Co−Cr−Nb薄膜及びCo−Cr−Ta薄膜をスパ
ツタリングするに際し、スパツタリング条件は下記の如
く設定した(NbまたはTaを添加した各場合において
スパツタリング条件は共に等しく設定した)。
The coercive forces of the small grain size crystal layer and the large grain size crystal layer of the magnetic material obtained by adding at least one of Co, Cr, Nb and Ta formed by the sputtering method performed by the present inventor were measured below. The experimental results will be described in detail. Co-Cr thin film,
When the Co-Cr-Nb thin film and the Co-Cr-Ta thin film were sputtered, the spattering conditions were set as follows (the sputtering conditions were set equal in each case where Nb or Ta was added).

*スパツタ装置 RFマグネトロンスパツタ装置 *スパツタリング方法 連続スパツタリング。予め予備排気圧1×10-6Torrまで
排気した後Arガスを導入し1×10-3Torrとした *ベース ポリイミド(厚さ20μm) *ターゲツト Co−Cr合金を使用し、Nb及びTaの添加は正方形
状のNb板及びTa板を所要枚数Co−Cr合金上に配
置することにより行なつた。
* Sputter device RF magnetron sputter device * Sputtering method Continuous sputtering. Preliminary exhaust pressure was exhausted to 1 × 10 -6 Torr and then Ar gas was introduced to obtain 1 × 10 -3 Torr * Base polyimide (thickness 20 μm) * Target Co-Cr alloy is used, Nb and Ta are added Was performed by disposing square Nb plates and Ta plates on the required number of Co—Cr alloys.

*ターゲツト基板間距離 110mm なお薄膜の磁気特性は振動試料型磁力計(理研電子製,
以下VSMと略称する)にて、薄膜の組成はエネルギー
分散型マイクロアナライザ(KEVEX社製,以下ED
Xと略称する)にて、また結晶配向性はX線回折装置
(理学電機製)にて夫々測定した。
* Distance between target substrates 110mm The magnetic properties of the thin film are based on a vibrating sample magnetometer (manufactured by Riken Denshi,
The composition of the thin film is an energy dispersive microanalyzer (KEVEX, hereinafter ED).
(Abbreviated as X) and the crystal orientation was measured by an X-ray diffractometer (manufactured by Rigaku Denki).

Co−Crに第三元素としてNbを添加(2〜10at%
添加範囲において同一現象が生ずる)し、ポリイミドベ
ースに0.2μmの膜厚でスパッタリングした記録媒体に
15KOeの磁界を印加した場合の面内方向のヒステリシ
ス曲線を第1図に示す。同図より面内方向の磁界がゼロ
近傍部分でヒステリシス曲線は急激に変則的に立ち上が
り(図中矢印Aで示す)、いわゆる磁化ジヤンプが生じ
ていることがわかる。スパツタリングされたCo−Cr
−Nb薄膜がスパツタリング時に常に均一の結晶成長を
行なったと仮定した場合、第1図に示された磁化ジヤン
プは生ずるはずはなく、これよりCo−Cr−Nb薄膜
内に磁気的性質の異なる複数の結晶層が存在することが
推測される。
Addition of Nb as a third element to Co-Cr (2-10 at%
The same phenomenon occurs in the range of addition), and a hysteresis curve in the in-plane direction when a magnetic field of 15 KOe is applied to a recording medium sputtered with a film thickness of 0.2 μm on a polyimide base is shown in FIG. From the figure, it can be seen that the hysteresis curve rises abruptly and irregularly (indicated by arrow A in the figure) near the zero magnetic field in the in-plane direction, and so-called magnetization jump occurs. Sputtered Co-Cr
If it is assumed that the -Nb thin film always undergoes uniform crystal growth during sputtering, the magnetization jump shown in FIG. 1 should not occur, which results in a plurality of Co-Cr-Nb thin films having different magnetic properties. It is assumed that a crystal layer exists.

続いて第1図で示した実験条件と同一条件にてCo−C
r−Nbをポリイミドベースに0.05μmの膜厚でスパツ
タリングした記録媒体に15KOeの磁界を印加した場合
の面内方向のヒステリシス曲線を第2図に示す。同図に
おいては第1図に見られたようなヒステリシス曲線の磁
化ジャンプは生じておらず0.05μm程度の膜厚における
Co−Cr−Nb薄膜は略均一な結晶となつていること
が理解される。これに加えて同図より0.05μm程度の膜
厚における抗磁力Hcに注目するに、抗磁力Hcは
極めて小なる値となつており面内方向に対する透磁率が
大であることが理解される。上記結果よりスパツタリン
グによりベース近傍位置にはじめに成長する初期層は抗
磁力Hcが小であり、この初期槽は走査型電子顕微鏡
写真で確かめられている(前記試料参照)ベース近傍位
置に成長する小粒径の結晶層であると考えられる。また
初期層の上方に成長する層は、初期層の抗磁力Hcよ
り大なる抗磁力Hcを有し、この層は同じく走査型電
子顕微鏡写真で確かめられている大粒径の結晶層である
と考えられる。
Then, under the same experimental conditions as shown in FIG.
FIG. 2 shows a hysteresis curve in the in-plane direction when a magnetic field of 15 KOe was applied to a recording medium obtained by sputtering r-Nb on a polyimide base with a film thickness of 0.05 μm. In the figure, it is understood that the magnetization jump of the hysteresis curve as seen in FIG. 1 does not occur, and the Co-Cr-Nb thin film at a film thickness of about 0.05 μm is a substantially uniform crystal. . In addition to this, paying attention to the coercive force Hc at a film thickness of about 0.05 μm, it is understood that the coercive force Hc has a very small value and the magnetic permeability in the in-plane direction is large. From the above results, the coercive force Hc of the initial layer initially grown near the base by spattering is small, and this initial tank is confirmed by scanning electron micrographs (see the above sample). It is considered to be a crystal layer having a diameter. Further, the layer grown above the initial layer has a coercive force Hc larger than the coercive force Hc of the initial layer, and this layer is also a large grain crystal layer confirmed by a scanning electron microscope photograph. Conceivable.

小粒径結晶層と大粒径結晶層が併存するCo−Cr−N
b薄膜において磁化ジャンプが生ずる理由を第3図から
第5図を用いて以下述べる。なお後述する如く、磁化ジ
ャンプは組成比率及びスパツタリング条件に関し全ての
Co−Cr−Nb薄膜に対して発生するものではない。
所定の条件下においてCo−Cr−Nb薄膜をスパツタ
リングにより形成しこの薄膜のヒステリシス曲線を測定
により描くと第3図に示す如く磁化ジャンプが現われた
ヒステリシス曲線となる。また小粒径結晶層のみからな
るヒステリシス曲線は膜厚寸法を小としたスパツタリン
グ(約0.075μm以下、これについては後述する)を行
ない、これを測定することにより得ることができる(第
4図に示す)。また大粒径結晶層は均一結晶構造を有し
ていると考えられ、かつ第3図に示すヒステリシス曲線
は小粒径結晶層のヒステリシス曲線と大粒径結晶層のヒ
ステリシス曲線を合成したものと考えられるため第5図
に示す如く抗磁力Hcが小粒径結晶層よりも大であ
り、磁化ジヤンプのない滑らかなヒステリシス曲線を形
成すると考えられる。すなわち第3図におて示されてい
る磁化ジヤンプの存在は、磁気特性の異なる二層が同一
の薄膜内に形成されていることを示しており、従つて第
1図に示されたCo−Cr−Nb薄膜にも磁気特性の異
なる二層が形成されていることが理解できる。なお大粒
径結晶層の抗磁力は、小粒径結晶層と大粒径結晶層が併
存するCo−Cr−Nb薄膜のヒステリシス曲線から小
粒径結晶層のみのCo−Cr−Nb薄膜のヒステリシス
曲線を差引いて得られるヒステリシス曲線より求めるこ
とができる。上記各実験結果によりCo−Cr−Nb薄
膜のヒステリシス曲線に磁化ジャンプが生じている時、
磁気特性の異なる二層が形成されていることが証明され
たことになる。
Co-Cr-N in which a small grain size crystal layer and a large grain size crystal layer coexist
The reason why the magnetization jump occurs in the thin film b will be described below with reference to FIGS. 3 to 5. As will be described later, the magnetization jump does not occur in all Co—Cr—Nb thin films with respect to the composition ratio and the sputtering condition.
When a Co—Cr—Nb thin film is formed by sputtering under predetermined conditions and a hysteresis curve of this thin film is drawn by measurement, a hysteresis curve in which a magnetization jump appears appears as shown in FIG. Also, a hysteresis curve consisting of a small grain size crystal layer can be obtained by performing spattering with a small film thickness dimension (about 0.075 μm or less, which will be described later) and measuring it (see FIG. 4). Shown). The large crystal grain layer is considered to have a uniform crystal structure, and the hysteresis curve shown in FIG. 3 is a combination of the hysteresis curve of the small crystal grain layer and the hysteresis curve of the large crystal grain layer. It is considered that the coercive force Hc is larger than that of the small grain size crystal layer, as shown in FIG. 5, and forms a smooth hysteresis curve without magnetization jump. That is, the presence of the magnetization jump shown in FIG. 3 indicates that two layers having different magnetic properties are formed in the same thin film, and accordingly, the Co-- shown in FIG. It can be understood that the Cr-Nb thin film also has two layers having different magnetic properties. The coercive force of the large grain crystal layer is determined from the hysteresis curve of the Co—Cr—Nb thin film in which the small grain crystal layer and the large grain crystal layer coexist. It can be obtained from the hysteresis curve obtained by subtracting the curve. According to the above experimental results, when a magnetization jump occurs in the hysteresis curve of the Co-Cr-Nb thin film,
It was proved that two layers having different magnetic properties were formed.

続いてCo−Cr−Nb薄膜のベース上へのスパツタリ
ングの際形成される上記二層の夫々の磁気的性質をCo
−Cr−Nb薄膜の厚さ寸法に関連させつつ第6図を用
いて以下説明する。第6図はCo−Cr−Nb薄膜の膜
厚寸法をスパッタリング時間を変えることにより制御
し、各膜厚寸法における面内方向の抗磁力Hc,垂直
方向の抗磁力Hc⊥,磁化ジャンプ量σjを夫々描いた
ものである。
Subsequently, the magnetic properties of each of the two layers formed during the sputtering of the Co-Cr-Nb thin film on the base are determined by Co
It will be described below with reference to FIG. 6 in relation to the thickness dimension of the —Cr—Nb thin film. In FIG. 6, the film thickness dimension of the Co—Cr—Nb thin film is controlled by changing the sputtering time, and the coercive force Hc in the in-plane direction, the coercive force Hc⊥ in the vertical direction, and the magnetization jump amount σj at each film thickness dimension are controlled. They are drawn respectively.

まず面内方向の抗磁力Hcに注目するに、膜厚寸法が
0.08μm以下においては極めて小なる値(150Oe以下)
となつており、面内方向に対する透磁率は高いと考えら
れる。これに加え垂直方向の抗磁力Hc⊥と面内方向の
抗磁力Hcの値を比較するに相方とも150Oe以下とな
つておりその差は小で、いわゆる等方性を有した層とな
つている。また膜厚寸法が大となつても抗磁力Hcは
大きく変化するようなことはない。また磁化ジヤンプ量
σjに注目すると、磁化ジヤンプ量は膜厚寸法が0.075
μmにて急激に立ち上がり0.075μm以上の膜厚におい
ては滑らかな下に凸の放物線形状を描く。更に垂直方向
の抗磁力Hc⊥に注目すると、抗磁力Hc⊥は膜厚寸法
0.05μm〜0.1μmで急激に立ち上がり0.1μm以上の膜
厚寸法では900Oe以上の高い抗磁力を示す。これらの結
果より小粒径結晶層と大粒径結晶層の境は略0.075μm
の膜厚寸法のところにあり、膜厚寸法が0.075μm以下
の小粒径結晶層は面内方向及び垂直方向に対する抗磁力
Hc,Hc⊥が低い、いわゆる低抗磁力層となつてお
り、また膜厚寸法が0.075μm以上の大粒径結晶層は面
内方向の抗磁力Hcは低いものの垂直方向に対する抗
磁力Hc⊥は非常に高い値を有する、いわゆる高抗磁力
層となつており垂直磁気記録に適した層となつている。
更に磁化ジヤンプが生じない膜厚寸法(0.075μm以
下)においては、面内方向及び垂直方向に対する抗磁力
Hc,Hc⊥は低く、これより大なる膜厚寸法(0.07
5μm以上)においては垂直方向に対する抗磁力Hc⊥
が急増する。これによつても磁化ジヤンプが生じている
場合、Co−Cr−Nb薄膜に磁気特性の異なる二層が
形成されていることが推測される。
First, paying attention to the coercive force Hc in the in-plane direction,
Extremely small value under 0.08 μm (150 Oe or less)
Therefore, it is considered that the magnetic permeability in the in-plane direction is high. In addition to this, when comparing the values of the coercive force Hc⊥ in the vertical direction and the coercive force Hc in the in-plane direction, it was found that the values were 150 Oe or less in both directions, and the difference was small, forming a layer with so-called isotropic properties. . Further, the coercive force Hc does not change significantly even when the film thickness is large. Focusing on the amount of magnetization jump σj, the amount of magnetization jump is 0.075
It sharply rises at μm and draws a smooth downward convex parabola at a film thickness of 0.075 μm or more. Furthermore, focusing on the coercive force Hc⊥ in the vertical direction, the coercive force Hc⊥ is the film thickness dimension.
A sharp rise from 0.05 μm to 0.1 μm shows a high coercive force of 900 Oe or more at a film thickness of 0.1 μm or more. From these results, the boundary between the small grain size crystal layer and the large grain size crystal layer is approximately 0.075 μm.
The small grain size crystal layer having a thickness of 0.075 μm or less has a low coercive force Hc, Hc⊥ in the in-plane direction and the vertical direction, which is a so-called low coercive force layer. A large grain size crystal layer having a thickness of 0.075 μm or more has a low coercive force Hc in the in-plane direction, but has a very high coercive force Hc⊥ in the vertical direction. It is a layer suitable for recording.
Further, in the film thickness dimension (0.075 μm or less) where the magnetization jump does not occur, the coercive forces Hc and Hc⊥ in the in-plane direction and the perpendicular direction are low, and the film thickness dimension larger than this (0.07 μm)
5 μm or more), the coercive force Hc⊥ in the vertical direction
Will increase rapidly. Even if the magnetization jump occurs due to this, it is presumed that two layers having different magnetic properties are formed in the Co—Cr—Nb thin film.

次にCo−Crに第3元素としてTaを添加(1〜10
at%添加範囲において同一現象が生ずる)し、上記した
Nbを添加した場合と同一の実験を行なつた結果を第7
図に示す。第7図はCo−Cr−Ta薄膜の膜厚寸法を
スパツタリング時間を変えることにより制御し、各膜厚
寸法における面内方向の抗磁力Hc,垂直方向の抗磁
力Hc⊥,磁化ジヤンプ量σjを夫々描いたものであ
る。同図よりCo−CrにTaを添加した場合も、Co
−CrにNbを添加した場合と略同様な結果が得られ、
小粒径結晶層と大粒径結晶層の境は略0.075μmの膜厚
寸法のところにあり、膜厚寸法が0.075μm以下の小粒
径結晶層は面内方向及び垂直方向に対する抗磁力Hc
,Hc⊥が低い(Hc,Hc⊥共に170Oe以下)、
いわゆる低抗磁力層となつている。これに加えて垂直方
向及び面内方向抗磁力Hc⊥,Hcの値の差は小でい
わゆる等方性を有した層となつている。また膜厚寸法が
0.075μm以上の大粒径結晶層は面内方向の抗磁力Hc
は低いものの垂直方向に対する抗磁力Hc⊥は非常に
高い値(750Oe以上)となつている。
Next, Ta is added to Co—Cr as a third element (1 to 10).
The same phenomenon occurs in the addition range of at%), and the result of performing the same experiment as in the case of adding Nb described above is
Shown in the figure. FIG. 7 shows that the film thickness dimension of the Co-Cr-Ta thin film is controlled by changing the sputtering time, and the coercive force Hc in the in-plane direction, the coercive force Hc⊥ in the vertical direction, and the magnetization jump amount σj at each film thickness dimension. They are drawn respectively. From the figure, when Ta is added to Co-Cr,
A result similar to the case of adding Nb to -Cr is obtained,
The boundary between the small grain crystal layer and the large grain crystal layer is at a film thickness dimension of about 0.075 μm, and the small grain crystal layer having a film thickness dimension of 0.075 μm or less has a coercive force Hc in the in-plane direction and the vertical direction.
, Hc⊥ is low (both Hc and Hc⊥ are 170 Oe or less),
It is a so-called low coercive force layer. In addition to this, the difference between the values of the coercive forces Hc⊥ and Hc in the vertical and in-plane directions is small, and the layer is so-called isotropic. In addition, the film thickness dimension
Coercive force Hc in the in-plane direction for large grain crystal layers of 0.075 μm or more
Although it is low, the coercive force Hc⊥ in the vertical direction is extremely high (750 Oe or more).

なお上記実験で注意すべきことは、スパツタリング条件
及びNb,Taの添加量を前記した値(Nb:2〜10
at%,Ta:1〜10at%)より変えた場合磁化ジヤンプ
は生じないが、しかるに磁化ジヤンプが生じないCo−
Cr−Nb薄膜、Co−Cr−Ta薄膜及びCo−Cr
薄膜においても小粒径結晶層及び大粒径結晶層が形成さ
れていることである(前記資料参照)。磁化ジヤンプが
生じないCo−Cr−Nb薄膜のヒステリシス曲線の一
例を第8図に示す。第8図(A)は小粒径結晶層及び大
粒径結晶層を含む面内方向のヒステリシス曲線であり、
第8図(B)は小粒径結晶層のみの面内方向のヒステリ
シス曲線,第8図(C)は大粒径結晶層のみの面内方向
のヒステリシス曲線である。各図より小粒径結晶層の面
内方向の残留磁化Mrは大粒径結晶層の残留磁化M
よりも大であるため、両結晶層を含む残留磁化M
は大粒径結晶層の残留磁化Mrのみの時より
も不利となり異方性磁界Hkが小さくなる。また小粒径
結晶層は配向が悪いこと(Δθ50が大)が知られてお
り、また面内方向の抗磁力Hcも大で垂直磁気記録に
は適さない。
It should be noted that in the above experiment, the sputtering conditions and the amounts of Nb and Ta added are the above-mentioned values (Nb: 2 to 10).
At%, Ta: 1 to 10 at%), the magnetization jump does not occur, but the magnetization jump does not occur.
Cr-Nb thin film, Co-Cr-Ta thin film and Co-Cr
This means that a small grain size crystal layer and a large grain size crystal layer are also formed in the thin film (see the above-mentioned reference). An example of the hysteresis curve of the Co-Cr-Nb thin film in which the magnetization jump does not occur is shown in FIG. FIG. 8 (A) is an in-plane hysteresis curve including a small grain size crystal layer and a large grain size crystal layer,
FIG. 8 (B) is a hysteresis curve in the in-plane direction of only the small grain crystal layer, and FIG. 8 (C) is a hysteresis curve in the in-plane direction of the large grain crystal layer only. From each figure, the remanent magnetization Mr B in the in-plane direction of the small grain crystal layer is the remanent magnetization M of the large grain crystal layer.
Since it is larger than r C, the residual magnetization M including both crystal layers
r A is more disadvantageous than when only the residual magnetization Mr C of the large grain crystal layer is used, and the anisotropic magnetic field Hk becomes smaller. It is also known that the small grain size crystal layer has a poor orientation (large Δθ50), and the coercive force Hc in the in-plane direction is also large, which is not suitable for perpendicular magnetic recording.

ここで上記の如く小粒径結晶層と大粒径結晶層を有する
Co−Cr−Nb薄膜及びCo−Cr−Ta薄膜を垂直
磁気記録媒体として考えた場合、Co−Cr−Nb薄膜
及びCo−Cr−Ta薄膜にその膜面に対し垂直方向に
膜厚の全てに亘つて垂直磁化を行なおうとした場合、小
粒径結晶層の存在は垂直磁化に対し極めて不利な要因と
なると従来考えられていた(磁化ジヤンプが生じている
場合及び磁化ジヤンプが生じていない場合の相方におい
て不利な要因となる)。すなわち磁化ジヤンプが生じて
いる場合の小粒径結晶層は、面内方向及び垂直方向に対
する抗磁力Hc,Hc⊥が共に極めて低く(170Oe以
下)、この層においては垂直磁化はほとんどされないと
考えられる。また磁化ジヤンプが生じていない場合の小
粒径結晶層においても、面内方向の抗磁力Hcは磁化
ジヤンプの生じている場合の抗磁力Hcよりは大であ
るが垂直方向の抗磁力Hc⊥は垂直磁気記録を実現し得
る程の抗磁力はなくやはり良好な垂直磁化は行なわれな
いと考えられる。従つて膜面に対して垂直方向に磁化を
行なつても小粒径結晶層における垂直磁化はほとんど行
なわれず、磁性膜全体としての垂直磁化効率が低下して
しまう。この影響はリングコアヘツドのように磁束の面
内成分を多く含む磁気ヘツドにおいては顕著である。
When the Co--Cr--Nb thin film and the Co--Cr--Ta thin film having the small grain size crystal layer and the large grain size crystal layer as described above are considered as the perpendicular magnetic recording medium, the Co--Cr--Nb thin film and the Co--Cr--Nb thin film are used. When it is attempted to perform perpendicular magnetization on a Cr-Ta thin film in the direction perpendicular to the film surface over the entire film thickness, the existence of a small grain size crystal layer is conventionally considered to be an extremely disadvantageous factor for the perpendicular magnetization. (It becomes a disadvantageous factor in the case where the magnetization jump occurs and the case where the magnetization jump does not occur). That is, the coercive force Hc and Hc⊥ in the in-plane direction and the perpendicular direction are both extremely low (170 Oe or less) in the small grain crystal layer where the magnetization jump occurs, and it is considered that the perpendicular magnetization is hardly generated in this layer. . Also in the small grain size crystal layer in the case where the magnetization jump is not generated, the coercive force Hc in the in-plane direction is larger than the coercive force Hc in the case where the magnetization jump is generated, but the coercive force Hc⊥ in the vertical direction is It is considered that there is not enough coercive force to realize perpendicular magnetic recording, and good perpendicular magnetization cannot be achieved. Therefore, even if the magnetization is performed in the direction perpendicular to the film surface, the perpendicular magnetization in the small grain crystal layer is hardly performed, and the perpendicular magnetization efficiency of the entire magnetic film is reduced. This effect is remarkable in a magnetic head, such as a ring core head, which contains many in-plane components of magnetic flux.

しかるに本発明における小粒径結晶層の磁気特性は、面
内方向に対する抗磁力Hcが小であり比較的高い透磁
率及び磁気的な等方性を有しており、これは従来Co−
Cr薄膜とベース間に配設した裏打ち層と似た特性を有
している。つまりCo−Cr−Nb薄膜及びCo−Cr
−Ta薄膜において、低抗磁力Hcを有する小粒径結
晶層をいわゆる裏打ち層である高透磁率層として用いる
ことが可能であると考えられる。
However, the magnetic characteristics of the small grain size crystal layer in the present invention have a small coercive force Hc in the in-plane direction, a relatively high magnetic permeability and magnetic isotropy.
It has characteristics similar to the backing layer disposed between the Cr thin film and the base. That is, Co-Cr-Nb thin film and Co-Cr
In a -Ta thin film, it is considered possible to use a small grain size crystal layer having a low coercive force Hc as a so-called backing layer having a high magnetic permeability.

従つてCo−Cr−Nb薄膜及びCo−Cr−Ta薄膜
の単一膜がスパツタリングされる際形成される小粒径結
晶層を裏打ち層として機能させ、また大粒径結晶層を垂
直磁化層として機能させることが考えられる。しかるに
Co−Cr−Nb薄膜及びCo−Cr−Ta薄膜の単一
膜では、Co−Crに添加されるNb,Taの添加量は
磁化ジヤンプが発生する所定量に規制されてしまう。ま
た強磁性材であるCoに非磁性材であるNb,Taを添
加することにより飽和磁化Msが低下してしまい高出力
の垂直磁気記録が行なえない。
Therefore, the small grain crystal layer formed when the single film of the Co-Cr-Nb thin film and the Co-Cr-Ta thin film is sputtered functions as the backing layer, and the large grain crystal layer serves as the perpendicular magnetization layer. It is possible to make it function. However, in the single film of Co-Cr-Nb thin film and Co-Cr-Ta thin film, the addition amount of Nb and Ta added to Co-Cr is restricted to a predetermined amount at which the magnetization jump occurs. Further, the saturation magnetization Ms is lowered by adding Nb and Ta which are non-magnetic materials to Co which is a ferromagnetic material, so that high output perpendicular magnetic recording cannot be performed.

この点に鑑み本発明では上記磁化ジヤンプが生ずる条件
下で、まずベース上にCo−Cr−Nb薄膜またはCo
−Cr−Ta薄膜の小粒径結晶層を形成させ(約0.1μ
m以下)、その上にNb及びTaの添加量を磁化ジヤン
プの生ずる条件値より小として飽和磁化Msを大とした
Co−Cr−Nb薄膜またはCo−Cr−Ta薄膜をス
パツタリングし垂直磁気記録に直接寄与する大粒径結晶
層を形成した。上記構成の垂直磁気記録媒体において小
粒径結晶層としてCo−Cr−Nb薄膜を用いた場合の
各種磁気特性をNbの添加量を小としたCo−Cr−N
b単層薄膜及び磁気ジヤンプの生じているCo−Cr−
Nb単層薄膜と比較して第9図に、この垂直磁気記録媒
体にセンダスト(登録商標)よりなるリングコアヘツド
で垂直磁気記録再生した時の第9図に示す各薄膜の記録
波長と再生出力の関係を第10図に、また小粒径結晶層
としてCo−Cr−Nb薄膜を用いた場合の各種磁気特
性をTaの添加量を小としたCo−Cr−Ta単層薄膜
及び磁化ジヤンプの生じているCo−Cr−Taの単層
薄膜と比較して第11図に、更にこの垂直磁気記録媒体
にセンダストよりなるリングコアヘツドで垂直磁気記録
再生した時の第11図に示す夫々の薄膜の記録波長と再
生出力の関係を第13図に夫々示す。第9図及び第11
図より磁化ジヤンプの生ずる条件下で形成したCo−C
r−Nb及びCo−Cr−Ta(以下Co−Cr−Nb
とCo−Cr−Taを総称する場合Co−Cr−Nb
(Ta)と示す)の小粒径結晶層上に磁化ジヤンプの生
ずる条件値より小なる量のNbまたはTaを添加したC
o−Cr−Nb(Ta)の大粒径結晶層を形成させた垂
直磁気記録媒体(以下二層媒体という)は、磁化ジヤン
プの生じているCo−Cr−Nb(Ta)薄膜の各単層
垂直磁気記録媒体よりも飽和磁化Msが大となつてお
り、かつ垂直方向の抗磁力Hc⊥も高い値となつており
垂直磁化に適した特性を有している。一方、第10図に
示される如く、再生出力と記録波長特性は磁化ジヤンプ
の生じているCo−Cr−Nb薄膜の垂直磁気記録媒体
(以下磁化ジヤンプ単層媒体という)及びNbの添加量
を小としたCo−Cr−Nb薄膜の垂直磁気記録媒体
(以下低添加単層媒体と略称する)に比較して二層媒体
は全ての記録波長領域で高い値を示しており強い再生出
力が得られる。
In view of this point, in the present invention, under the condition that the above-mentioned magnetization jump occurs, first, a Co-Cr-Nb thin film or Co is formed on the base.
Form a small grain size crystal layer of -Cr-Ta thin film (approx.
m or less), and a Co-Cr-Nb thin film or a Co-Cr-Ta thin film having a large saturation magnetization Ms with the added amount of Nb and Ta being smaller than the condition value that causes the magnetization jump, is sputtered for perpendicular magnetic recording. A large grain crystal layer that directly contributed was formed. In the perpendicular magnetic recording medium having the above-mentioned structure, various magnetic characteristics in the case of using a Co-Cr-Nb thin film as a small grain crystal layer are obtained by using Co-Cr-N with a small amount of Nb added.
b Single layer thin film and Co-Cr- with magnetic jump
Compared with the Nb single-layer thin film, FIG. 9 shows the recording wavelength and reproduction output of each thin film shown in FIG. 9 when perpendicular magnetic recording and reproduction were performed on this perpendicular magnetic recording medium with a ring core head made of Sendust (registered trademark). The relationship is shown in FIG. 10, and various magnetic characteristics when a Co—Cr—Nb thin film is used as a small grain size crystal layer are shown in FIG. 11 in comparison with the single layer thin film of Co-Cr-Ta described above, and recording of each thin film shown in FIG. 11 when perpendicular magnetic recording and reproduction were performed on this perpendicular magnetic recording medium with a ring core head made of sendust. FIG. 13 shows the relationship between the wavelength and the reproduction output. 9 and 11
As shown in the figure, Co-C formed under the condition that a magnetization jump occurs
r-Nb and Co-Cr-Ta (hereinafter Co-Cr-Nb
And Co-Cr-Ta are collectively referred to as Co-Cr-Nb
(Denoted as (Ta)) C in which an amount of Nb or Ta smaller than the condition value causing the magnetization jump is added on the small grain crystal layer (denoted by (Ta)).
A perpendicular magnetic recording medium (hereinafter referred to as a two-layer medium) on which a large grain crystal layer of o-Cr-Nb (Ta) is formed is a single layer of a Co-Cr-Nb (Ta) thin film having a magnetization jump. The saturation magnetization Ms is larger than that of the perpendicular magnetic recording medium, and the coercive force Hc⊥ in the perpendicular direction is also a high value, which is a characteristic suitable for perpendicular magnetization. On the other hand, as shown in FIG. 10, the reproduction output and the recording wavelength characteristics are such that the perpendicular magnetic recording medium of the Co—Cr—Nb thin film in which the magnetization jump occurs (hereinafter referred to as the magnetization jump single layer medium) and the addition amount of Nb are small. In comparison with the perpendicular magnetic recording medium of Co-Cr-Nb thin film (hereinafter abbreviated as a low-doped single layer medium), the double-layer medium shows a high value in all recording wavelength regions and a strong reproduction output can be obtained. .

特に短波長領域(記録波長が1μm〜0.2μmの領域)
においては、磁化ジヤンプ単層媒体及び低添加単層媒体
もその再生出力を増大させているものの二層媒体は更に
対し効率で再生出力が増大している。従つて二層媒体は
特に短波長領域での垂直磁気記録再生に適しているとい
える。なおCo−Cr−Taの二層媒体でも第13図に
示す如く同様の結果が得られた。
Particularly short wavelength range (recording wavelength range from 1 μm to 0.2 μm)
In (1), the reproduction output is increased more efficiently in the double-layer medium, whereas the magnetization jump single-layer medium and the low-doped single-layer medium also increase the reproduction output. Therefore, it can be said that the double-layer medium is particularly suitable for perpendicular magnetic recording / reproduction in the short wavelength region. Similar results were obtained with a Co-Cr-Ta two-layer medium as shown in FIG.

上記現象の生ずる理由を第12図を用いて以下推論す
る。ポリイミド等のベース1上に磁化ジヤンプの生ずる
条件を満足させてCo−Cr−Nb(Ta)磁性材を約
0.1μmの膜厚寸法でスパツタリングすると、前述の如
く被膜されたCo−Cr−Nb(Ta)薄膜は略その全
体において小粒径結晶層2が形成されているものと考え
られる。この小粒径結晶層2は面内方向の抗磁力Hc
が小で、かつ垂直方向の抗磁力Hc⊥との差が少ない等
方性を有した層となつている。従つて小粒径結晶層2に
いわゆる裏打ち層と略同様な機能を行なわせることがで
きる。
The reason why the above phenomenon occurs will be inferred below with reference to FIG. Co-Cr-Nb (Ta) magnetic material is applied to the base 1 such as polyimide by satisfying the condition that a magnetic jump is generated.
When the sputtering is performed with the film thickness of 0.1 μm, it is considered that the Co-Cr-Nb (Ta) thin film coated as described above has the small grain crystal layer 2 formed almost entirely. This small grain crystal layer 2 has a coercive force Hc in the in-plane direction.
Is small and has a small difference from the coercive force Hc⊥ in the vertical direction and is an isotropic layer. Therefore, the small grain size crystal layer 2 can be made to perform a function substantially similar to that of a so-called backing layer.

小粒径結晶層2の上部には、Nb及びTaの添加量を磁
化ジヤンプの生ずる条件値より小としたCo−Cr−N
b(Ta)磁性材が約0.1μmの膜厚寸法でスパツタリ
ングされる。小粒径結晶層2よりNb及びTaの添加量
の小なるCo−Cr−Nb(Ta)磁性材が小粒径結晶
層2上にスパツタリングされる際、両者は結晶構造及び
組成において似た特性を有しているため両磁性材の境界
部分においてNb及びTaの添加量の小なるCo−Cr
−Nb(Ta)薄膜材の小粒径結晶層はほとんど発生せ
ず(発生したとしても垂直磁気記録特性に影響を与える
厚さまで到らないと考えられる)、高い飽和磁化Msを
有すると共に垂直方向に強い抗磁力を有し、垂直磁化に
直接寄与する大粒径結晶層3が直ちに成長すると考えら
れる。また大粒径結晶層3を形成するCo−Cr−Nb
(Ta)薄膜において、Nb及びTaの添加量は小粒径
結晶層2の如く磁化ジヤンプが生ずる条件値に規制され
ることなく任意に選定することができる。前述の如くN
b及びTaの添加によりCoの飽和磁化Msは低下する
ものの、Coの磁化容易軸は垂直方向に強く配向する。
従つてNb及びTaの添加量を適宜選定することによ
り、Coの磁化容易軸を強く垂直方向に配向させつつ高
飽和磁化Msを維持することができる。小粒径結晶層2
上に形成されるCo−Cr−Nb(Ta)薄膜のNb及
びTaの添加量は上記適宜量に選定されている。よつて
二層媒体4に摺接してリングコアヘツド5から放たれた
磁束線は大粒径結晶層3を貫通して小粒径結晶層2に到
り、抵抗磁力でかつ等方性を有する小粒径結晶層2内で
磁束は面内方向に進行し、リングコアヘツド5の磁極部
分で急激に磁束が吸い込まれることにより大粒径結晶層
3に垂直磁化がされると考えられる。よつて磁束が形成
する磁気ループは第12図に矢印で示す如く、馬蹄形状
となり所定垂直磁気記録位置において高い飽和磁化Ms
を有する大粒径結晶層3に磁束が集中して鋭く貫通する
ため、大粒径結晶層3には残留磁化の大なる垂直磁化が
行なわれる。すなわち面内方向成分を多く含む磁界を発
生するリングコアヘッド5においても、残留磁化の大な
る強い垂直磁気記録を行なうことが可能となり、磁気記
録再生効率を向上させることができる。これに加え、N
b及びTaを添加することにより記録媒体の熱膨張率を
調整できることが知られており、よつてNb及びTaの
添加量を適宜選定することが可能となることにより熱膨
張率を調整し得、カールの少ない記録媒体を容易に製造
することができる。また小粒径結晶層2の面内方向の抗
磁力Hcは第6図,第7図より10Oe〜50Oe程度であり
大粒径結晶層3の抗磁力Hc⊥に対して極端に小なる値
ではないため衝撃性のバルクハウゼンノイズが発生する
こともなく良好な垂直磁気記録再生を行ない得る。
On the upper part of the small grain crystal layer 2, Co-Cr-N is used in which the amount of Nb and Ta added is smaller than the condition value at which the magnetization jump occurs.
The b (Ta) magnetic material is sputtered with a film thickness of about 0.1 μm. When a Co—Cr—Nb (Ta) magnetic material having a smaller amount of Nb and Ta added than the small grain size crystal layer 2 is sputtered on the small grain size crystal layer 2, both have similar crystal structures and compositions. Because of the presence of Co, the amount of Nb and Ta added in the boundary portion of both magnetic materials is small.
-The small grain size crystal layer of the Nb (Ta) thin film material hardly occurs (even if it occurs, it is considered that it does not reach the thickness that affects the perpendicular magnetic recording characteristics), has a high saturation magnetization Ms, and has a perpendicular direction. It is considered that the large grain crystal layer 3 having a strong coercive force and directly contributing to the perpendicular magnetization grows immediately. Further, Co—Cr—Nb forming the large grain crystal layer 3
In the (Ta) thin film, the amounts of Nb and Ta added can be arbitrarily selected without being restricted by the condition value that causes the magnetization jump, as in the small grain crystal layer 2. As mentioned above, N
Although the saturation magnetization Ms of Co is lowered by the addition of b and Ta, the easy axis of magnetization of Co is strongly oriented in the vertical direction.
Therefore, by appropriately selecting the addition amounts of Nb and Ta, it is possible to maintain the high saturation magnetization Ms while strongly orienting the easy axis of Co in the perpendicular direction. Small grain crystal layer 2
The amount of Nb and Ta added to the Co-Cr-Nb (Ta) thin film formed above is selected to be the above appropriate amount. Therefore, the magnetic flux lines slidably contacting the two-layer medium 4 and emitted from the ring core head 5 pass through the large grain crystal layer 3 to reach the small grain crystal layer 2 and are small in resistance magnetic force and isotropic. It is considered that the magnetic flux advances in the in-plane direction in the grain size crystal layer 2 and is abruptly absorbed by the magnetic pole portion of the ring core head 5, whereby the large grain size crystal layer 3 is perpendicularly magnetized. Therefore, the magnetic loop formed by the magnetic flux has a horseshoe shape as shown by an arrow in FIG. 12 and has a high saturation magnetization Ms at a predetermined perpendicular magnetic recording position.
Since the magnetic flux is concentrated and sharply penetrates into the large-grain crystal layer 3 having, the large-grain crystal layer 3 is perpendicularly magnetized with a large residual magnetization. That is, even in the ring core head 5 that generates a magnetic field containing a large amount of in-plane components, it is possible to perform strong perpendicular magnetic recording with a large residual magnetization, and improve the magnetic recording / reproducing efficiency. In addition to this, N
It is known that the thermal expansion coefficient of the recording medium can be adjusted by adding b and Ta. Therefore, the thermal expansion coefficient can be adjusted by making it possible to appropriately select the addition amounts of Nb and Ta, A recording medium with less curl can be easily manufactured. Further, the coercive force Hc in the in-plane direction of the small grain crystal layer 2 is about 10 Oe to 50 Oe from FIGS. 6 and 7, which is extremely small with respect to the coercive force Hc⊥ of the large grain crystal layer 3. Since there is no impact Barkhausen noise, good perpendicular magnetic recording and reproduction can be performed.

発明の効果 上述の如く本発明になる垂直磁気記録再生方法によれ
ば、コバルト及びクロムに、ニオブ及びタンタルのうち
少なくとも一方を添加してなる磁性材によりベース上に
抵抗磁力の、原点近傍で急激に立ち上がる曲線で表わさ
れる面内M−Hヒステリシス特性である磁化ジャンプを
有する層を形成すると共に、該層上に、該層のニオブ又
はタンタルの添加量より小なる量で、該磁化ジャンプを
生じない量のニオブ及びタンタルのうち少なくとも一方
をコバルト及びクロムに添加した磁性材よりなる垂直磁
化層を形成してなる垂直磁気記録媒体に、リングコアヘ
ツドを用いて記録/再生する構成とすることにより、垂
直磁気記録媒体はベース上に面内方向の抗磁力が小さく
かつ等方性を有する下層と、高い飽和磁化を有しかつ垂
直方向の抗磁力が大である上層との二層を形成された構
成となるため、リングコアヘツドより放たれた磁束は容
易に抵抗磁力を有すると共に等方性を有する下層に進入
し水平方向へ進行した後高い飽和磁化を有すると共に高
抗磁力を有する上層を貫通してリングコアヘツドの磁極
に急激にかつ鋭く吸い込まれるため、上層には強い残留
磁化が生じ面内成分を多く含む磁界を発生するリングコ
アヘッドにおいても高い再生出力を実現し得る垂直磁気
記録再生を行なうことができ、これに加え特に短い記録
波長に対しすぐれた垂直磁化が行なわれ良好な再生出力
を得ることができ、また下層は磁化ジヤンプが生じる、
すなわち面内方向に対する抗磁力が小で、かつ等方性有
する層であるため、いわゆる裏打ち層として確実に機能
すると共にその抗磁力は上層の抗磁力に対して不要に小
なる値ではないため衝撃性のバルクハウゼンノイズが発
生することもなく良好な垂直磁気記録再生が行なうこと
ができ、更に上層のNb及びTaの添加量は任意に選定
することが可能で、その添加量をCoの磁化容易軸を強
く垂直方向に配向させつつ高飽和磁化を維持し得る適宜
量に選定することにより再生出力の大なる良好な垂直磁
気記録再生を実現でき、かつ熱膨張率を調整できるので
カールの少ない垂直磁気記録媒体を容易に製造すること
ができる等の特長を有する。
As described above, according to the perpendicular magnetic recording / reproducing method of the present invention, the magnetic material formed by adding at least one of niobium and tantalum to cobalt and chromium causes the resistance magnetic force to rapidly increase on the base near the origin. Forming a layer having a magnetization jump which is an in-plane M-H hysteresis characteristic represented by a curve that rises at the same time, and causes the magnetization jump on the layer in an amount smaller than the amount of niobium or tantalum added to the layer. By using a ring core head for recording / reproducing on a perpendicular magnetic recording medium formed by forming a perpendicular magnetic layer made of a magnetic material in which at least one of niobium and tantalum in an amount not present is added to cobalt and chromium, The perpendicular magnetic recording medium has a lower layer having a small coercive force in the in-plane direction and isotropic on the base, and a high saturation magnetization and a perpendicular layer. Since the two layers, the upper layer and the upper layer, which have a large coercive force, are formed, the magnetic flux emitted from the ring core head easily enters the lower layer which has resistance magnetic force and isotropic property, and then travels in the horizontal direction. In a ring core head that has a strong remanent magnetization and generates a magnetic field containing a large amount of in-plane components because it is rapidly and sharply absorbed by the magnetic pole of the ring core head through the upper layer having high saturation magnetization and high coercive force. Perpendicular magnetic recording and reproduction that can realize a high reproduction output can be performed. In addition to this, excellent perpendicular magnetization can be performed especially for a short recording wavelength and a good reproduction output can be obtained, and the lower layer has a magnetization jump. Occurs,
That is, since the layer has a small coercive force in the in-plane direction and has an isotropic property, it reliably functions as a so-called backing layer and its coercive force is not a value unnecessarily small with respect to the coercive force of the upper layer, so that the impact Good perpendicular magnetic recording and reproduction can be performed without generating Barkhausen noise, and the addition amount of Nb and Ta in the upper layer can be arbitrarily selected. By properly selecting the amount that can maintain the high saturation magnetization while strongly orienting the axis in the vertical direction, good perpendicular magnetic recording / reproduction with a large reproduction output can be realized, and the coefficient of thermal expansion can be adjusted, so that the vertical direction with less curl It has the feature that a magnetic recording medium can be easily manufactured.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明になる垂直磁気記録再生方法に用いられ
る垂直磁気記録媒体の一実施例の磁性膜であるCo−C
r−Nb薄膜のヒステリシス曲線を示す図、第2図は小
粒径結晶層のヒステリシス曲線を示す図、第3図から第
5図は磁化ジヤンプが生ずる理由を説明するための図、
第6図はCo−Cr−Nb薄膜が二層構造となつている
こと及び各層の磁気特性を示す図、第7図はCo−Cr
−Nb薄膜が二層構造となつていること及び各層の磁気
特性を示す図、第8図は磁化ジヤンプが生じていないC
o−Cr−Nb薄膜のヒステリシス曲線の一例を示す
図、第9図は小粒径結晶層としてCo−Cr−Nb薄膜
を用いた場合の各種磁気特性をNbの添加量を小とした
Co−Cr−Nb単層薄膜及び磁化ジヤンプの生じてい
るCo−Cr−Nb単層薄膜と比較して示す図、第10
図は第9図に示した各薄膜の記録波長と再生出力の関係
を示す図、第11図は小粒径結晶層としてCo−Cr−
Ta薄膜を用いた場合の各種磁気記録特性をTaの添加
量を小としたCo−Cr−Ta単層薄膜及び磁化ジヤン
プの生じているCo−Cr−Ta単層薄膜と比較して示
す図、第12図は本発明になる垂直磁気記録再生方法に
用いられる垂直磁気記録媒体の結晶成長状態を概略的に
示すと共に磁束が形成する磁気ループを示す図、第13
図は第11図で示した各薄膜の記録波長と再生出力の関
係を示す図である。 1……ベース、2……小粒径結晶層、3……大粒径結晶
層、4……二層媒体、5……リングコアヘツド。
FIG. 1 is a magnetic film Co-C of one embodiment of a perpendicular magnetic recording medium used in the perpendicular magnetic recording / reproducing method according to the present invention.
FIG. 2 is a diagram showing a hysteresis curve of an r-Nb thin film, FIG. 2 is a diagram showing a hysteresis curve of a small grain crystal layer, and FIGS. 3 to 5 are diagrams for explaining the reason why magnetization jump occurs.
FIG. 6 is a diagram showing that the Co—Cr—Nb thin film has a two-layer structure and the magnetic characteristics of each layer, and FIG. 7 is Co—Cr.
-A diagram showing that the Nb thin film has a two-layer structure and the magnetic characteristics of each layer. Fig. 8 shows C in which no magnetization jump occurs.
FIG. 9 is a diagram showing an example of a hysteresis curve of an o-Cr-Nb thin film, and FIG. 9 shows various magnetic characteristics when a Co-Cr-Nb thin film is used as a small-grain-size crystal layer, Co- with a small amount of Nb added. The figure shown in comparison with the Cr-Nb single-layer thin film and the Co-Cr-Nb single-layer thin film in which the magnetization jump has occurred.
FIG. 11 shows the relationship between the recording wavelength and the reproduction output of each thin film shown in FIG. 9, and FIG. 11 shows Co-Cr- as a small grain crystal layer.
The figure which shows various magnetic recording characteristics when a Ta thin film is compared with a Co-Cr-Ta single-layer thin film with a small addition amount of Ta and a Co-Cr-Ta single-layer thin film in which a magnetization jump occurs. FIG. 12 is a diagram schematically showing a crystal growth state of a perpendicular magnetic recording medium used in the perpendicular magnetic recording / reproducing method according to the present invention and showing a magnetic loop formed by magnetic flux.
The figure is a diagram showing the relationship between the recording wavelength and the reproduction output of each thin film shown in FIG. 1 ... Base, 2 ... Small grain crystal layer, 3 ... Large grain crystal layer, 4 ... Double layer medium, 5 ... Ring core head.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今岡 英一郎 神奈川県横浜市神奈川区守屋町3丁目12番 地 日本ビクター株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Eiichiro Imaoka 3-12 Moriya-cho, Kanagawa-ku, Yokohama, Kanagawa Japan Victor Company of Japan, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】コバルト及びクロムに、ニオブ及びタンタ
ルのうち少なくとも一方を添加してなる磁性材によりベ
ース上に低抗磁力の、原点近傍で急激に立ち上がる曲線
で表わされる面内M−Hヒステリシス特性である磁化ジ
ャンプを有する層を形成すると共に、該層上に、該層の
ニオブ又はタンタルの添加量より小なる量で、該磁化ジ
ャンプを生じない量のニオブ及びタンタルのうち少なく
とも一方をコバルト及びクロムに添加した磁性材よりな
る垂直磁化層を形成してなる垂直磁気記録媒体に、リン
グコアヘッドを用いて信号を記録/再生することを特徴
とする垂直磁気記録再生方法。
1. An in-plane MH hysteresis characteristic represented by a curve having a low coercive force and rapidly rising near the origin on a base by a magnetic material obtained by adding at least one of niobium and tantalum to cobalt and chromium. And forming a layer having a magnetization jump of at least one of niobium and tantalum in an amount less than the amount of niobium or tantalum added to the layer, cobalt and tantalum in an amount that does not cause the magnetization jump. A perpendicular magnetic recording / reproducing method characterized in that a signal is recorded / reproduced on / from a perpendicular magnetic recording medium having a perpendicular magnetic layer formed of a magnetic material added to chromium, using a ring core head.
【請求項2】該リングコアヘッドは、センダスト(登録
商標)よりなることを特徴とする特許請求の範囲第1項
記載の垂直磁気記録再生方法。
2. The perpendicular magnetic recording / reproducing method according to claim 1, wherein the ring core head is made of Sendust (registered trademark).
JP60291563A 1985-12-24 1985-12-24 Perpendicular magnetic recording / reproducing method Expired - Lifetime JPH0642282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60291563A JPH0642282B2 (en) 1985-12-24 1985-12-24 Perpendicular magnetic recording / reproducing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60291563A JPH0642282B2 (en) 1985-12-24 1985-12-24 Perpendicular magnetic recording / reproducing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6463085A Division JPS61222023A (en) 1985-03-28 1985-03-28 Vertical magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS61224105A JPS61224105A (en) 1986-10-04
JPH0642282B2 true JPH0642282B2 (en) 1994-06-01

Family

ID=17770538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60291563A Expired - Lifetime JPH0642282B2 (en) 1985-12-24 1985-12-24 Perpendicular magnetic recording / reproducing method

Country Status (1)

Country Link
JP (1) JPH0642282B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2832941B2 (en) * 1988-05-31 1998-12-09 三菱化学株式会社 In-plane magnetic recording media

Also Published As

Publication number Publication date
JPS61224105A (en) 1986-10-04

Similar Documents

Publication Publication Date Title
US6641934B1 (en) High density information recording medium, and manufacturing method of the same medium
JP2002309353A (en) Soft-magnetic membrane and magnetic head for recording using the membrane
JPH0640361B2 (en) Perpendicular magnetic recording / reproducing method
JP3612087B2 (en) Magnetic recording medium
US4731300A (en) Perpendicular magnetic recording medium and manufacturing method thereof
US4798765A (en) Perpendicular magnetic recording medium
US4603091A (en) Recording medium for perpendicular magnetization
US4792486A (en) Perpendicular magnetic recording medium
JP2007164941A (en) Perpendicular magnetic recording medium
US4622273A (en) Recording medium for perpendicular magnetization
JP4453479B2 (en) Exchange coupling type soft magnetic material
JPH0642282B2 (en) Perpendicular magnetic recording / reproducing method
JPH0532809B2 (en)
JPS60132305A (en) Iron-nitrogen laminated magnetic film and magnetic head using the same
JPH0642281B2 (en) Perpendicular magnetic recording / reproducing method
JPH0670852B2 (en) Perpendicular magnetic recording medium
JPH0532808B2 (en)
JPH0628091B2 (en) Perpendicular magnetic recording medium
US20060078762A1 (en) Magnetic film for a magnetic device, magnetic head for a hard disk drive, and solid-state device
JP2810457B2 (en) Perpendicular magnetic recording medium and its recording device
JPS61224135A (en) Vertical magnetic recording medium
JPS61224132A (en) Vertical magnetic recording medium
JPS61224131A (en) Vertical magnetic recording medium
JPS61204823A (en) Vertical magnetic recording medium
JPS61224129A (en) Vertical magnetic recording medium