JPS61224135A - Vertical magnetic recording medium - Google Patents

Vertical magnetic recording medium

Info

Publication number
JPS61224135A
JPS61224135A JP29156285A JP29156285A JPS61224135A JP S61224135 A JPS61224135 A JP S61224135A JP 29156285 A JP29156285 A JP 29156285A JP 29156285 A JP29156285 A JP 29156285A JP S61224135 A JPS61224135 A JP S61224135A
Authority
JP
Japan
Prior art keywords
layer
magnetization
crystal layer
small
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29156285A
Other languages
Japanese (ja)
Inventor
Yasuo Ishizaka
石坂 安雄
Noboru Watanabe
昇 渡辺
Kazuo Kimura
一雄 木村
Eiichiro Imaoka
今岡 英一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP29156285A priority Critical patent/JPS61224135A/en
Publication of JPS61224135A publication Critical patent/JPS61224135A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a high reproducing output by forming the lower layer obtained by incorporating a specified amt. of other elements into cobalt and chromium on a base and forming the upper layer obtained by incorporating the smaller amt. of the same elements into cobalt and chromium on the lower layer to constitute the titled vertical magnetic recording medium having an in-plane M-H hysteresis characteristic shown by a curve having a steep rise in the vicinity of the origin. CONSTITUTION:The lower layer obtained by incorporating a specified amt. of other elements into cobalt and chromium is formed on a base and the upper layer obtained by incorporating the smaller amt. of the same elements into cobalt and chromium is formed on the lower layer. Consequently, the obtained vertical magnetic recording medium is provided with an in-plane M-H hysteresis characteristic shown by a curve having a steep rise in the vicinity of the origin. Accordingly, the magnetic flux emitted from a magnetic head is passed through the upper layer having high coercive force and absorbed rapidly and sharply by the magnetic pole of the magnetic head, strong residual magnetization is generated in the upper layer and hence a high reproducing output can be realized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は垂直磁気記録媒体に係り、特に記録再生出力を
増大し得る垂直磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a perpendicular magnetic recording medium, and more particularly to a perpendicular magnetic recording medium capable of increasing recording and reproducing output.

従来の技術 一般に、磁気ヘッドにより磁気記録媒体に記録。Conventional technology Generally, recording is performed on a magnetic recording medium using a magnetic head.

再生を行なうには、磁気ヘッドにより磁気記録媒体の磁
性層にその媒体長手方向(面内方向)の磁化を行なわせ
て記録し、これを再生するものが汎用されている。しか
るに、これによれば記録が高密度になるに従って減磁界
が大きくなり減磁作用が高密度記録に悪影響を及ぼすこ
とが知られている。そこで近年上記悪影響を解消するも
のとして、磁気記録媒体の磁性層に垂直方向に磁化を行
なう垂直磁気記録方式が提案されている。これによれば
記録密度を向上させるに従い減磁界が小さくなり理論的
には残留磁化の減少がない良好な高密度記録を行なうこ
とができる。
In order to perform reproduction, a commonly used system is to magnetize the magnetic layer of a magnetic recording medium in the longitudinal direction (in-plane direction) of the medium using a magnetic head, record the information, and then reproduce the recorded information. However, according to this method, it is known that as the recording density increases, the demagnetizing field increases and the demagnetizing effect adversely affects high-density recording. Therefore, in recent years, a perpendicular magnetic recording method has been proposed in which the magnetic layer of a magnetic recording medium is magnetized in the perpendicular direction to eliminate the above-mentioned adverse effects. According to this, as the recording density is improved, the demagnetizing field becomes smaller, and theoretically, it is possible to perform good high-density recording without reducing residual magnetization.

従来この垂直磁気記録方式に用いる垂直磁気記録媒体と
しては、ベースフィルム上にGO−Cr膜をスパッタリ
ングにより被膜形成したものがあった。周知の如く、c
o−Cr膜は比較的高い飽和磁化(MS )を有し、か
つ膜面に対し垂直な磁化容易軸を持つ(すなわち膜面に
対し垂直方向の抗磁力Hc上が大である)ため垂直磁気
記録媒体としては極めて有望な材質であることが知られ
ている。しかるにco−Cr膜はその磁化容易軸がCr
の添加によりCoの磁化容易軸(R密六万晶のC軸)が
垂直に近い配向を有しているものの十分には垂直方向に
配向しておらず強い垂直磁気異方性を得ることができな
かった。このため従来、Co−Crにニオブ(Nb >
及びタンタル(Ta )等の第三元素を添加することに
よりCOの磁化容易軸を垂直方向に強く配向させた構成
の垂直磁気記録媒体があった。またco−crsとベー
スフィルムとの間に、いわゆる裏打ら層である高透磁率
層(すなわち抗磁力Hcが小なる層。例えばNi −F
e )を別個形成して二層構造とし^透磁率層内で広が
っている磁束を所定磁気記録位置にて磁気ヘッドの磁極
に向は集中させて吸い込ませることにより分布が鋭くか
つ強い垂直磁化を行ない得る構成の垂直磁気記録媒体が
あった。
Conventionally, perpendicular magnetic recording media used in this perpendicular magnetic recording system include those in which a GO--Cr film is formed on a base film by sputtering. As is well known, c
The o-Cr film has a relatively high saturation magnetization (MS) and an axis of easy magnetization perpendicular to the film surface (that is, the coercive force Hc in the direction perpendicular to the film surface is large), so it has perpendicular magnetization. It is known that it is an extremely promising material as a recording medium. However, the axis of easy magnetization of the co-Cr film is Cr.
Although the easy axis of magnetization of Co (C axis of R-dense 60,000 crystal) is oriented close to perpendicular, it is not fully oriented in the perpendicular direction and strong perpendicular magnetic anisotropy can be obtained. could not. For this reason, conventionally, niobium (Nb >
There is also a perpendicular magnetic recording medium in which the axis of easy magnetization of CO is strongly oriented in the perpendicular direction by adding a third element such as tantalum (Ta). In addition, between the co-crs and the base film, there is a high magnetic permeability layer (i.e., a layer with low coercive force Hc, such as Ni-F
e) is formed separately to have a two-layer structure^ The magnetic flux spreading within the magnetic permeability layer is concentrated and attracted to the magnetic pole of the magnetic head at a predetermined magnetic recording position, thereby creating a sharp perpendicular magnetization with a sharp distribution. There is a perpendicular magnetic recording medium with a configuration that allows this.

発明が解決しようとする問題点 上記従来の垂直磁気記録媒体では、COの磁化容易軸を
強く垂直方向へ配向させるために、COにCr及びNb
、Ta等を添加していた。しかるにOr及びNb 、T
aの添加によりCOの磁化容易軸は強く垂直方向へ配向
するものの、強磁性体であるCOに非磁性体であるOr
及びNb 、 Taを添加することにより垂直磁気記録
媒体としての飽和磁化MSが低下してしまい高い再生出
力を得ることができないという問題点があった。またG
o−Cr膜に加え高透磁率層を裏打ち層として形成され
た二層構造の垂直磁気記録媒体の場合、Go−Cr膜の
抗磁力)−1c(7000e以上)に対して高透磁率層
の抗磁力1−1cは極めて小(1000以下)となって
いたため、衝撃性のバルクハウゼンノイズが発生すると
いう問題点があった。
Problems to be Solved by the Invention In the above-mentioned conventional perpendicular magnetic recording medium, in order to strongly orient the axis of easy magnetization of CO in the perpendicular direction, Cr and Nb are added to CO.
, Ta, etc. were added. However, Or and Nb, T
Although the easy axis of magnetization of CO is strongly oriented in the perpendicular direction by the addition of a,
Also, by adding Nb and Ta, the saturation magnetization MS of the perpendicular magnetic recording medium decreases, making it impossible to obtain high reproduction output. G again
In the case of a two-layer perpendicular magnetic recording medium in which a high magnetic permeability layer is formed as a backing layer in addition to an o-Cr film, the coercive force of the high magnetic permeability layer is Since the coercive force 1-1c was extremely small (1000 or less), there was a problem in that an impulsive Barkhausen noise was generated.

これに加えて、このバルクハウゼンノイズを防止するに
は少なくとも100e以上の抗磁力を有することが必要
となるが、この条件を満たしかつ裏打ち層としての機能
を有する適当な素材が無いという問題点もあった。
In addition, in order to prevent this Barkhausen noise, it is necessary to have a coercive force of at least 100e, but there is also the problem that there is no suitable material that satisfies this condition and functions as a backing layer. there were.

そこで本発明では、コバルト、クロムにニオブ及びタン
タルのうち少なくとも一方を加えてなる磁性材をコーテ
ィングした際、磁性層が抗磁力の異なる二層に分かれて
形成されることに注目し、この二層の内抗磁力の小なる
小粒径結晶層を垂直磁気記録に積極的に利用することに
より上記問題点を解決した垂直磁気記録媒体を提供する
ことを目的とする。
Therefore, in the present invention, we focused on the fact that when a magnetic material made of cobalt and chromium is coated with at least one of niobium and tantalum, the magnetic layer is formed into two layers with different coercive forces. An object of the present invention is to provide a perpendicular magnetic recording medium that solves the above problems by actively utilizing a small-grain crystal layer with a small coercive force for perpendicular magnetic recording.

問題点を解決するための手段 上記問題点を解決するために本発明では、ベース上にコ
バルト、クロムに他の元素を所定量含有させてなる下層
と、この下層上にコバルト、クロムに上記他の元素と同
じ元素を上記所定台より小なる量で含有させてなる上層
を形成して、垂直磁気記録媒体が原点近傍で急激な立ち
上がりを有する曲線で表わされる面内M−Hヒステリシ
ス特性を有するよう構成した。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention has a lower layer formed by containing cobalt, chromium, and other elements in predetermined amounts on a base, and a lower layer containing cobalt, chromium, and the above-mentioned other elements on this lower layer. The perpendicular magnetic recording medium has an in-plane M-H hysteresis characteristic represented by a curve with a sharp rise near the origin by forming an upper layer containing the same element as the element in an amount smaller than the predetermined amount. It was configured as follows.

実施例 本発明になる垂直磁気記録媒体(以下単に記録媒体とい
う)は、まずベースとなるポリイミド基板上にコバルト
(CO)、クロム(Cr )にニオブ(Nb )及びタ
ンタル(Ta )のうち少なくとも一方を加えた磁性材
をターゲットとしてスパッタリングし、続いてその上に
CO、Crにニオブ(Nb )及びタンタル(Ta )
のうち少なくとも一方を上記添加間より少量加えた磁性
材をターゲットとしてスパッタリングすることにより得
られる。
Embodiment A perpendicular magnetic recording medium (hereinafter simply referred to as a recording medium) according to the present invention is manufactured by first depositing cobalt (CO), chromium (Cr), niobium (Nb), and tantalum (Ta) on a polyimide substrate. sputtering using a magnetic material as a target, followed by CO, Cr, niobium (Nb) and tantalum (Ta).
It can be obtained by sputtering using as a target a magnetic material to which at least one of them is added in a smaller amount than during the above addition.

従来より金属等(例えばGo−Cr合金)をベース上に
スパッタリングした際、被膜形成された薄膜はその膜面
に垂直方向に対して同一結晶構造を形成するのではなく
、ベース近傍の極めて薄い部分にまず小粒径の第一の結
晶層を形成し、その上部に続いて大粒径の第二の結晶層
が形成されることが各種の実験(例えば走査型電子顕微
鏡による写真撮影)により明らかになってきている( 
E dward  R、Wuori  and  P 
rofessor  J 。
Conventionally, when sputtering metal etc. (e.g. Go-Cr alloy) onto a base, the thin film formed does not form the same crystal structure in the direction perpendicular to the film surface, but instead forms an extremely thin part near the base. Various experiments (e.g., scanning electron microscopy photography) have shown that a first crystal layer with small grain size is formed first, followed by a second crystal layer with large grain size. It is becoming (
E dward R, Wuori and P
rofessor J.

H,Judy : ”INITIAL  LAYERE
FFECT  IN  Co−CRFTLMS”。
H, Judy: ”INITIAL LAYERE
FFECT IN Co-CRFTLMS”.

IEEE  Trans、、VOL、MAG−20゜N
o、5.SEPTEMBER1984,P 774〜P
775またはWilliam  G、Haines :
 “VSMPROF I L ING  OF  Co
 CrFTLMS:A  NEW  ANALYTIC
ALTECHN rQLIE″ IEEE  Tran
s、  、  VOL、MAG−20,No、5.SE
PTEMBER1984、P  812〜P  814
)。
IEEE Trans, , VOL, MAG-20°N
o, 5. SEPTEMBER1984, P 774~P
775 or William G. Haines:
“VSMPROF I LING OF Co.
CrFTLMS: A NEW ANALYTIC
ALTECHN rQLIE'' IEEE Tran
s, , VOL, MAG-20, No, 5. S.E.
PTEMBER1984, P 812-P 814
).

本発明省は上記観点に注目しCo−Cr合金を基とし、
またこれに第三元素を添加した金属を各種スパッタリン
グし、形成される小粒径の結晶層とその上部に形成され
た大粒径の結晶層との物理的性質を測定した結果、第三
元素としてNbまたはTaを添加した場合、小粒径結晶
層の旌磁力が大粒径結晶層よりも非常に小でありかつ垂
直方向と面内方向の抗磁力には極端な差が生じてないこ
とがわかった。本発明ではこの低抗磁力を有すると共に
垂直方向及び面内方向の抗磁力差の少ない小粒径結晶層
を等方性層として用い、この小粒径結晶層上にNb及び
Taの添加量の少ない高い飽和磁化MSを有すると共に
磁化容易軸が強く垂直方向へ配向LりCO−Cr −N
b tlli、tタハ、C0−Cr −Ta WJ膜を
形成し、これを垂直磁化層として用いることを特徴とす
る。
The Ministry of the Invention has focused on the above points and based on Co-Cr alloy,
In addition, as a result of sputtering various metals to which a third element was added, and measuring the physical properties of the small crystal layer formed and the large crystal layer formed on top of it, we found that the third element When Nb or Ta is added, the coercive force of the small-grain crystal layer is much smaller than that of the large-grain crystal layer, and there is no extreme difference between the coercive force in the vertical direction and the in-plane direction. I understand. In the present invention, a small-grain crystal layer having low coercive force and a small difference in coercive force in the perpendicular direction and in-plane direction is used as an isotropic layer, and on this small-grain crystal layer, the amount of Nb and Ta added is CO-Cr-N has a low and high saturation magnetization MS, and the easy axis of magnetization is strongly oriented in the perpendicular direction.
It is characterized in that a b tlli, t taha, C0-Cr-Ta WJ film is formed and this is used as a perpendicular magnetization layer.

以下本発明者が行なったスパッタリングにより形成され
たGo、Cr、Nb及びTaのうち少なくとも一方を添
加してなる磁性材の小粒径結晶層と、大粒径結晶層の抗
磁力を測定した実験結果を詳述する。 Go −Cr 
fil膜、 co −Cr−Nb薄膜及びCO−Cr 
−Tam膜をスパッタリングするに際し、スパッタリン
グ条件はF記の如く設定した(NbまたはTaを添加し
た各場合においてスパッタリング条件は共に等しく設定
した)。
The following experiment was conducted by the present inventor to measure the coercive force of a small-grain crystal layer and a large-grain crystal layer of a magnetic material formed by sputtering and containing at least one of Go, Cr, Nb, and Ta. Detail the results. Go-Cr
fil film, co -Cr-Nb thin film and CO-Cr
When sputtering the -Tam film, the sputtering conditions were set as shown in F (the sputtering conditions were set equally in each case where Nb or Ta was added).

*スパッタ装置 RFマグネトロンスパッタ装置 *スパッタリング方法 連続スパッタリング。予め予備排気圧1×x 10−6
 Torrまで排気した後Arガスを導入し1 X I
Q−3T Orrとした*ベース ポリイミド(厚さ20μm) *ターゲット Go−cr金合金使用し、Nb及びTaの添加は正方形
状のNb板及びTa板を所要枚数co−Cr合金上に配
置することにより行なった *ターゲット基板間距離 110+n醜 なお薄膜の磁気特性は振動試料型磁力計(I!I研電子
製、以下VSMと略称する)にて、薄膜の組成はエネル
ギー分散型マイクロアナライザ(KEVEX社製、以下
EDXと略称する)にて、また結晶配向性はX線回折装
置(理学電礪製)にて夫々測定した。
*Sputtering equipment RF magnetron sputtering equipment *Sputtering method Continuous sputtering. Preliminary exhaust pressure 1×x 10-6
After exhausting to Torr, Ar gas was introduced and 1
*Base polyimide (thickness 20 μm) with Q-3T Orr *Target Go-Cr gold alloy is used, and Nb and Ta are added by placing the required number of square Nb plates and Ta plates on the co-Cr alloy. The magnetic properties of the ugly thin film were measured using a vibrating sample magnetometer (manufactured by I!Iken Electronics, hereinafter referred to as VSM), and the composition of the thin film was measured using an energy dispersive microanalyzer (KEVEX). The crystal orientation was measured using an X-ray diffractometer (manufactured by Rigakuden).

Go−Crに第三元素としてNbを添加(2〜1Qat
%添加範囲において同一現象が生ずる)し、ポリイミド
ベースに0.2μ重の膜厚でスパッタリングした記録媒
体に15KOeの磁界を印加した場合の面内方向のヒス
テリシス曲線を第1図に示す。同図より面内方向の磁界
がゼロ近傍部分でヒステリシス曲線は急激に変則的に立
ち上がり(図中矢印Aで示す)、いわゆる磁化ジャンプ
が生じていることがわかる。スパッタリングされたC0
−Cr −Nb l膜がスパッタリング時に常に均一の
結晶成長を行なったと仮定した場合、第1図に示された
磁化ジャンプは生ずるはずはなく、これよりGo −C
r−Nb薄膜内に磁気的性質の異なる複数の結晶層が存
在することが推測される。
Adding Nb as a third element to Go-Cr (2 to 1 Qat
% addition range), and FIG. 1 shows a hysteresis curve in the in-plane direction when a magnetic field of 15 KOe is applied to a recording medium sputtered to a film thickness of 0.2 μm on a polyimide base. It can be seen from the figure that the hysteresis curve rises abruptly and irregularly (indicated by arrow A in the figure) at a portion where the in-plane magnetic field is near zero, and a so-called magnetization jump occurs. Sputtered C0
If we assume that the -Cr-Nb I film always undergoes uniform crystal growth during sputtering, the magnetization jump shown in Figure 1 should not occur, and from this we can conclude that the Go -C
It is presumed that a plurality of crystal layers having different magnetic properties exist within the r-Nb thin film.

続いて第1図で示した実験条件と同一条件にてGo −
Cr−Nbをポリイミドベースニ0.05μ霧の膜厚で
スパッタリングした記録媒体に15KOeの磁界を印加
した場合の面内方向のヒステリシス曲線を第2図に示す
。同図においては第1図に見られたようなヒステリシス
曲線の磁化ジャンプは生じておらず0.05μm程度の
膜厚におけるCo −Cr−Nb薄膜は略均−な結晶と
なっていることが理解される。これに加えて同図より0
.05μm程度の膜厚における抗磁力HC/に注目する
に、抗磁力HC/は極めて小なる値となっており面内方
向に対する透磁率が大であることが理解される。上記結
果よりスパッタリングによりベース近傍位置にはじめに
成長する初期層は抗磁カHC/が小であり、この初期層
は走査型電子顕微鏡写真で確かめられている(前記資料
参照)ベース近傍位置に成長する小粒径の結晶層である
と考えられる。また初期層の上方に成長する層は、初期
層の抗磁力HC/より大なる抗磁力HC/を有し、この
層は同じく走査型電子顕微鏡写真で確かめられている大
粒径の結晶層であると考えられる。
Next, under the same experimental conditions as shown in Fig. 1, Go −
FIG. 2 shows a hysteresis curve in the in-plane direction when a magnetic field of 15 KOe is applied to a recording medium in which Cr--Nb is sputtered to a film thickness of 0.05 μm on a polyimide base. In the figure, there is no magnetization jump in the hysteresis curve as seen in Figure 1, and it can be seen that the Co-Cr-Nb thin film with a film thickness of about 0.05 μm has an approximately uniform crystal structure. be done. In addition to this, from the same figure 0
.. When paying attention to the coercive force HC/ at a film thickness of about 0.05 μm, it is understood that the coercive force HC/ has an extremely small value and the magnetic permeability in the in-plane direction is large. From the above results, the initial layer that first grows in the vicinity of the base by sputtering has a small coercive force HC/, and this initial layer grows in the vicinity of the base, as confirmed by scanning electron micrographs (see the above document). This is thought to be a crystal layer with small grain size. In addition, the layer growing above the initial layer has a coercive force HC/ larger than that of the initial layer, and this layer is also a large-grain crystal layer confirmed by scanning electron micrographs. It is believed that there is.

小粒径結晶層と大粒径結晶層が併存するCo −Cr−
Nb薄膜において磁化ジャンプが生ずる理由を第3図か
ら第5図を用いて以下述べる。なお後述する如く、磁化
ジャンプは組成比率及びスパッタリング条件に関し全て
のGo −Cr −Nb 薄膜に対して発生するもので
はない。所定の条件下においてCo −Cr −Nb 
811をスパッタリングにより形成しこの薄膜のヒステ
リシス曲線を測定により描くと第3図に示す如く磁化ジ
ャンプが現われたヒステリシス曲線となる。また小粒径
結晶層のみからなるヒステリシス曲線は膜厚寸法を小と
したスパッタリング(約0.075μ−以下、これにつ
いては後述する)を行ない、これを測定することにより
得ることができる(第4図に示す)。
Co -Cr- in which a small grain size crystal layer and a large grain size crystal layer coexist
The reason why the magnetization jump occurs in the Nb thin film will be described below using FIGS. 3 to 5. As will be described later, the magnetization jump does not occur in all Go--Cr--Nb thin films, depending on the composition ratio and sputtering conditions. Under certain conditions, Co -Cr -Nb
When 811 is formed by sputtering and the hysteresis curve of this thin film is drawn by measurement, a hysteresis curve in which a magnetization jump appears as shown in FIG. 3 is obtained. In addition, a hysteresis curve consisting only of a small-grain crystal layer can be obtained by performing sputtering with a small film thickness (approximately 0.075μ or less, which will be described later) and measuring it (see Section 4). (shown in figure).

また大粒径結晶層は均一結晶構造を有していると考えら
れ、かつ第3図に示すヒステリシス曲線は小粒径結晶層
のヒステリシス曲線と大粒径結晶層のヒステリシス曲線
を合成したものと考えられるため第5図に示す如く抗磁
力HC/が小粒径結晶層よりも大であり、磁化ジャンプ
のない滑らかなヒステリシス曲線を形成すると考えられ
る。すなわち第3図において示されている磁化ジャンプ
の存在は、磁気特性の異なる二層が同一の薄膜内に形成
されていることを示しており、従って第1図に示された
Co −Cr −Nb N膜にも磁気特性の異なる二層
が形成されていることが理解できる。
Furthermore, the large-grain crystal layer is considered to have a uniform crystal structure, and the hysteresis curve shown in Figure 3 is a composite of the hysteresis curve of the small-grain crystal layer and the hysteresis curve of the large-grain crystal layer. Therefore, as shown in FIG. 5, the coercive force HC/ is larger than that of the small-grain crystal layer, and it is thought that a smooth hysteresis curve with no magnetization jump is formed. In other words, the existence of the magnetization jump shown in FIG. 3 indicates that two layers with different magnetic properties are formed in the same thin film, and therefore the Co-Cr-Nb shown in FIG. It can be seen that two layers with different magnetic properties are formed in the N film as well.

なお大粒径結晶層の抗磁力は、小粒径結晶層と大粒径結
晶層が併存するGo −Cr−Nb薄膜のヒステリシス
曲線から小粒径結晶層のみのGo −Cr−Nb薄膜の
ヒステリシス曲線を差引いて得られるヒステリシス曲線
より求めることができる。
The coercive force of the large-grain crystal layer can be calculated from the hysteresis curve of the Go-Cr-Nb thin film with both the small-grain crystal layer and the large-grain crystal layer. It can be determined from the hysteresis curve obtained by subtracting the curves.

上記各実験結果によりCo −Cr −Nb wJll
のヒステリシス曲線に磁化ジャンプが生じている時、磁
気特性の異なる二層が形成されていることが証明された
ことになる。
Based on the above experimental results, Co -Cr -Nb wJll
When a magnetization jump occurs in the hysteresis curve, it is proven that two layers with different magnetic properties are formed.

続いてGo −Cr−Nb薄膜のベース上へのスパッタ
リングの際形成される上記二層の夫々の磁気的性質をG
o −Cr−Nb薄膜の厚さ寸法に関連させつつ第6図
を用いて以下説明する。第6図ハGo −Cr −Nb
 3i1111の膜厚寸法をスパッタリング時間を変え
ることにより制御し、各膜厚寸法における面内方向の抗
磁力HC/、垂直方向の抗磁力Hc上、磁化ジャンプ量
σjを夫々溝いたものである。
Subsequently, the magnetic properties of each of the two layers formed during sputtering onto the base of the Go-Cr-Nb thin film are determined by
The following description will be made with reference to FIG. 6 in relation to the thickness dimension of the o-Cr-Nb thin film. Fig. 6 Go -Cr -Nb
The film thickness of 3i1111 is controlled by changing the sputtering time, and a magnetization jump amount σj is grooved on the in-plane coercive force HC/ and the perpendicular coercive force Hc at each film thickness.

まず面内方向の抗磁力HC/に注目するに、膜厚寸法が
0,08μm以下においては極めて小なる値(1500
8以下)となっており、面内方向に対する透磁率は高い
と考えられる。これに加え垂直方向の抗磁力1−1c上
と面内方向の抗磁力HC/の値を比較するに相方とも1
50Qe以Fとなっておりその差は小で、いわゆる等方
性を有した層となっている。また膜厚寸法が大となって
も抗磁力HC/は大きく変化するようにことはない。ま
た磁化ジャンプ量σjに注目すると、磁化ジャンプ量は
膜厚寸法が0.075μ膳にて急激に立ち上がり0、0
75μ−以上の膜厚においては滑らかな下に凸の放物線
形状を描く。更に垂直方向の抗磁力11c上に注目する
と、抗磁力Hc上は膜厚寸法0.05μm〜0.1μ園
で急激に立ち上がり0.1μ−以上の膜厚寸法では90
008以上の高い抗磁力を示す。これらの結果より小粒
径結晶層と大粒径結晶層の境は略0.075μ鴎の膜厚
寸法のところにあり、膜厚寸法が0.075μm以下の
小粒径結晶層は面内方向及び垂直方向に対する抗磁力H
c ZtHc上が低い、いわゆる低抗磁力層となってお
り、また膜厚寸法が0.075μ−以上の大粒径結晶層
は面内方向の抗磁力HC/は低いものの垂直方向に対す
る抗磁力1−1c上は非常に高い値を有する、いわゆる
高抗磁力層となっており垂直磁気記録に適した層となっ
ている。更に磁化ジャンプが生じない膜厚寸法(o、o
ysμ−以下)においては、面内方向及び垂直方向に対
する抗磁力Hc /、Hc↓は低く、これより大なる膜
厚寸法(0,075μ−以上)においては垂直方向に対
する抗磁力HC上が急増する。これによっても磁化ジャ
ンプが生じている場合、Go −Cr−Nb薄膜に磁気
特性の異なる二層が形成されていることが推測される。
First of all, paying attention to the coercive force HC/ in the in-plane direction, it is extremely small (1500 μm or less) when the film thickness is 0.08 μm or less.
8 or less), and the magnetic permeability in the in-plane direction is considered to be high. In addition, when comparing the values of the vertical coercive force 1-1c and the in-plane coercive force HC/, both partners are 1-1c.
It is 50Qe or more F, and the difference is small, making it a so-called isotropic layer. Furthermore, even if the film thickness increases, the coercive force HC/ does not change significantly. Also, if we pay attention to the magnetization jump amount σj, the magnetization jump amount rises sharply when the film thickness is 0.075 μm and becomes 0, 0.
At a film thickness of 75 μm or more, a smooth downwardly convex parabolic shape is drawn. Furthermore, if we pay attention to the coercive force 11c in the vertical direction, the coercive force Hc rises rapidly in the film thickness range of 0.05 μm to 0.1 μm and reaches 90% in the film thickness of 0.1 μm or more.
Shows high coercive force of 008 or higher. From these results, the boundary between the small-grain crystal layer and the large-grain crystal layer is located at a film thickness of approximately 0.075 μm, and the small-grain crystal layer with a film thickness of 0.075 μm or less is located in the in-plane direction. and coercive force H in the vertical direction
c It is a so-called low coercive force layer with low ZtHc, and the large grain crystal layer with a film thickness of 0.075μ or more has a low coercive force HC/ in the in-plane direction, but a coercive force 1 in the perpendicular direction. The layer above −1c is a so-called high coercive force layer having a very high value, and is a layer suitable for perpendicular magnetic recording. Furthermore, the film thickness dimension (o, o
ysμ- or less), the coercive force Hc/, Hc↓ in the in-plane direction and perpendicular direction is low, and when the film thickness is larger than this (0,075μ- or more), the coercive force HC in the perpendicular direction increases rapidly. . If a magnetization jump also occurs due to this, it is presumed that two layers with different magnetic properties are formed in the Go-Cr-Nb thin film.

次にco−crに第三元素としてTaを添加(1〜1Q
at%添加範囲において同一現象が生ずる)し、上記し
たNbを添加した場合と同一の実験を行なった結果を第
7図に示す。第7図はC0−Cr−Ta薄膜の膜厚寸法
をスパッタリング時間を変えることにより制御し、各膜
厚寸法における面内方向の抗磁力HC/、垂直方向の抗
磁力Hc上、磁化ジャンプ量σjを夫々描いたものであ
る。同図よりco−crにTaを添加した場合も、Co
−CrにNbを添加した場合と略同様な結果が得られ、
小粒径結晶層と大粒径結晶層の境は略0.075μ諺の
膜厚寸法のところにあり、膜厚寸法が0.075μm以
下の小粒径結晶層は面内方向及び垂直方向に対する抗磁
力HC/、HC↓が低い(Hc /、 llc 上共に
1700e以下)、イわゆる低抗磁力層となっている。
Next, add Ta as a third element to co-cr (1-1Q
The same phenomenon occurs in the at% addition range), and the results of the same experiment as in the case of adding Nb described above are shown in FIG. Figure 7 shows that the film thickness of the C0-Cr-Ta thin film is controlled by changing the sputtering time, and the in-plane coercive force HC/, the perpendicular coercive force Hc, and the magnetization jump amount σj at each film thickness are controlled. are drawn respectively. From the same figure, even when Ta is added to co-cr, Co
-Almost the same results as when Nb is added to Cr are obtained,
The boundary between the small-grain crystal layer and the large-grain crystal layer is at a film thickness of approximately 0.075 μm, and the small-grain crystal layer with a film thickness of 0.075 μm or less has a thickness in the in-plane direction and in the vertical direction. The coercive force HC/ and HC↓ are low (both Hc / and llc are 1700e or less), making it a so-called low coercive force layer.

これに加えて垂直方向及び面内方向抗磁力1−1c上、
 HC/の値の差は小でいわゆる等方性を有した層とな
っている。また膜厚寸法が0.075μ−以上の大粒径
結晶層は面内方向の抗磁力HC/は低いものの垂直方向
に対する抗磁力1−1c上は非常に高い値(750Qe
以上)となっている。
In addition to this, on the vertical and in-plane coercive force 1-1c,
The difference in HC/ values is small and the layer is so-called isotropic. In addition, although the large-grain crystal layer with a film thickness of 0.075μ or more has a low coercive force HC/ in the in-plane direction, it has a very high coercive force 1-1c in the perpendicular direction (750Qe
above).

なお上記実験で注意すべきことは、スパッタリング条件
及びNb、Taの添加量を前記した値(Nb : 2〜
10at%、 Ta : 1〜10at%)より変えた
場合磁化ジャンプは生じないが、しかるに磁化ジャンプ
が生じないGo −Cr −Nb ’NJ膜。
What should be noted in the above experiment is that the sputtering conditions and the added amounts of Nb and Ta are set to the values described above (Nb: 2 to 2).
10 at%, Ta: 1 to 10 at%), no magnetization jump occurs, but the Go-Cr-Nb'NJ film does not cause any magnetization jump.

Go −Cr−Ta薄膜及びco −Cr s膜におい
ても小粒径結晶層及び大粒径結晶層が形成されているこ
とである(前記資料参照)。磁化ジャンプが生じないC
o −cr −Nb l膜のヒステリシス曲線の一例を
第8図に示す。第8図(A)は小粒径結晶層及び大粒径
結晶層を含む面内方向のヒステリシス曲線であり、第8
図(B)は小粒径結晶層のみの面内方向のヒステリシス
曲線、第8図(C)は大粒径結晶層のみの面内方向のヒ
ステリシス曲線である。各図より小粒径結晶層の面内方
向の残留磁化Mrs/は大粒径結晶層の残留磁化Mrc
/よりも大であるため、両結晶層を含む残留磁化Mr^
/は大粒径結晶層の残留磁化Mr c /のみの時より
も不利となり異方性磁界Hkが小さくなる。また小粒径
結晶層は配向が悪いこと(Δθ50が大)が知られてお
り、また面内方向の抗磁力HC/も大で垂直磁気記録に
は適さない。
A small grain size crystal layer and a large grain size crystal layer are also formed in the Go-Cr-Ta thin film and the co-Crs film (see the above-mentioned document). C where no magnetization jump occurs
An example of the hysteresis curve of the o-cr-Nbl film is shown in FIG. FIG. 8(A) is a hysteresis curve in the in-plane direction including a small-grain crystal layer and a large-grain crystal layer;
FIG. 8(B) shows an in-plane hysteresis curve of only the small-grain crystal layer, and FIG. 8(C) shows an in-plane hysteresis curve of only the large-grain crystal layer. From each figure, the residual magnetization Mrs/in the in-plane direction of the small grain crystal layer is the residual magnetization Mrc of the large grain crystal layer.
Since the residual magnetization Mr^ including both crystal layers is larger than /,
/ is more disadvantageous than when only the residual magnetization Mr c / of the large grain crystal layer is present, and the anisotropic magnetic field Hk becomes smaller. Furthermore, it is known that the small-grain crystal layer has poor orientation (large Δθ50), and also has a large in-plane coercive force HC/, making it unsuitable for perpendicular magnetic recording.

ここで上記の如く小粒径結晶層と大粒径結晶層を有する
Go −Or −Nb WJ膜及びco −Qr −T
al膜を垂直磁気記録媒体として考えた場合、Go −
Cr−Nb薄膜及びGo −Cr−Ta薄膜にその膜面
に対し垂直方向に膜厚の全てに亘って垂直磁化を行なお
うとした場合、小粒径結晶層の存在は垂直磁化に対し極
めて不利な要因となると従来考えられていた(磁化ジャ
ンプが生じている場合及び磁化ジャンプが生じていない
場合の相方において不利な要因となる)。すなわち磁化
ジャンプが生じている場合の小粒径結晶層は、面内方向
及び垂直方向に対する抗磁力Hc /、Hc上が共に極
めて低く(1700e以下)、この層においては垂直磁
化はほとんどされないと考えられる。
Here, as described above, a Go-Or-Nb WJ film and a co-Qr-T film having a small-grain crystal layer and a large-grain crystal layer are used.
When considering the Al film as a perpendicular magnetic recording medium, Go −
When attempting to perpendicularly magnetize a Cr-Nb thin film or a Go-Cr-Ta thin film over the entire film thickness in a direction perpendicular to the film surface, the existence of a small-grain crystal layer is extremely disadvantageous for perpendicular magnetization. It was previously thought that this would be a disadvantageous factor in cases where a magnetization jump occurs and in cases where a magnetization jump does not occur. In other words, in a small-grain crystal layer where a magnetization jump occurs, the coercive force Hc / and Hc in the in-plane direction and perpendicular direction are both extremely low (1700e or less), and it is thought that there is almost no perpendicular magnetization in this layer. It will be done.

また磁化ジャンプが生じていない場合の小粒径結晶層に
おいても、面内方向の抗磁力HC/は磁化ジャンプの生
じている場合の抗磁力HC/よりは大であるが垂直方向
の抗磁力HC上は垂直磁気記録を実現し得る程の抗磁力
はなくやはり良好な垂直磁化は行なわれないと考えられ
る。従って膜面に対して垂直方向に磁化を行なっても小
粒径結晶層における垂直磁化はほとんど行なわれず、磁
性膜全体としての垂直磁化効率が低下してしまう。
Furthermore, even in a small-grain crystal layer when no magnetization jump occurs, the coercive force HC/ in the in-plane direction is larger than the coercive force HC/ when a magnetization jump occurs, but the coercive force HC/ in the perpendicular direction In the above case, there is no coercive force sufficient to realize perpendicular magnetic recording, and it is thought that good perpendicular magnetization cannot be achieved. Therefore, even if magnetization is performed perpendicularly to the film surface, perpendicular magnetization in the small-grain crystal layer is hardly achieved, and the perpendicular magnetization efficiency of the magnetic film as a whole is reduced.

この影響はリングコアヘッドのように磁束の面内成分を
多く含む磁気ヘッドにおいては顕著である。
This effect is remarkable in a magnetic head that includes a large in-plane component of magnetic flux, such as a ring core head.

しかるに本発明における小粒径結晶層の磁気特性は、面
内方向に対する抗磁力HC/が小であり比較的高い透磁
率及び磁気的な等方性を有しており、これは従来Go−
Cr薄膜とベース間に配設した裏打ち層と似た特性を有
している。つまりGo −Cr−Nb薄膜及びco −
Or −Ta N膜において、低抗磁力HC/を有する
小粒径結晶層をいわゆる裏打ち層である高透磁率層とし
て用いることが可能であると考えられる。
However, the magnetic properties of the small-grain crystal layer in the present invention are that the coercive force HC/ in the in-plane direction is small, and it has relatively high magnetic permeability and magnetic isotropy, which are different from the conventional Go-
It has similar characteristics to the backing layer disposed between the Cr thin film and the base. That is, Go -Cr-Nb thin film and co -
In the Or-Ta N film, it is considered possible to use a small-grain crystal layer having a low coercive force HC/ as a high magnetic permeability layer, which is a so-called underlayer.

従つ”’CCo −Or −Nb ′WI膜及びC,o
 −Cr −Ta薄膜の単一膜がスパッタリングされる
際形成される小粒径結晶層を裏打ち層として機能させ、
また大粒径結晶層を垂直磁化層として機能させることが
考えられる。しかるにCo  Cr  Nb ii膜及
びGo −Cr −Ta pl膜の単一膜では、C0−
Crに添加されるNb、Taの添加量は磁化ジャンプが
発生する所定量に規制されてしまう。また強磁性材であ
るCGに非磁性材であるNb。
Accordingly, 'CCo -Or -Nb'WI film and C,o
A small-grain crystal layer formed when a single -Cr-Ta thin film is sputtered functions as a backing layer,
It is also possible to make the large grain crystal layer function as a perpendicular magnetization layer. However, in a single film of CoCrNb ii film and Go-Cr-Tapl film, C0-
The amount of Nb and Ta added to Cr is limited to a predetermined amount at which a magnetization jump occurs. Furthermore, CG is a ferromagnetic material and Nb is a non-magnetic material.

Taを添加することにより飽和磁化MSが低下してしま
い高出力の垂直磁気記録が行なえない。
By adding Ta, the saturation magnetization MS decreases, making it impossible to perform high-output perpendicular magnetic recording.

この点に鑑み本発明では上記磁化ジャンプが生ずる条件
下で、まずベース上にCo −Cr −Nb薄膜または
Go −Cr−Ta薄膜の小粒径結晶層を形成させ(約
0,1μ−以下)、その上にNb及びTaの添加量を磁
化ジャンプの生ずる条件値より小として飽和磁化1yl
sを大としたGo −Cr −Nbl膜またはGo −
0r−Ta薄膜をスパッタリングし垂直磁気記録に直接
寄与する大粒径結晶層を形成した。上記構成の垂直磁気
記録媒体において小粒径結晶層としてCo −Cr−N
b薄膜を用いた場合の各種磁気特性をNbの添加量を小
としたGo −0r−Nb単Jiil膜及び磁化ジャン
プの生L;でイルGo −Cr −Nb 4111N膜
と比較して第9図に、この垂直磁気記録媒体にセンダス
ト(登録商標)よりなるリングコアヘッドで磁気配録再
生した時の各msの記録波長と再生出力の関係を第10
図に、また小粒径結晶層としてGo −Cr−Ta薄膜
を用いた場合の各種磁気特性をTa(7)添加量を小と
しt、Go −Cr −Ta l1li薄膜及び磁化ジ
ャンプの生じているGo−Cr、−Ta単層薄膜と比較
して第11図に、更にこの垂直磁気記録媒体にセンダス
トよりなるリングコアヘッドで垂直磁気記録再生した時
の第11図に示す各薄膜の記録波長と再生出力の関係を
第13図に夫々示す。第9図及び第11図より磁化ジャ
ンプの生ずる条件下で形成したGo −Cr−Nb及び
Go −Cr −Ta  (以下Go −Cr−’Nb
とC0−Cr−Taを総称する場合Go −Cr −N
b(Ta)と示す)の小粒径結晶層上に磁化ジャンプの
生ずる条件値より小なる量のNbまたTaを添加したC
o −Or −Nb  (Ta )の大粒径結晶層を形
成させた垂直磁気記録媒体(以下二層媒体という)は、
磁化ジャンプが生じているGo −Cr −Nb  (
Ta )薄膜の各単層垂直磁気記録媒体よりも飽和磁化
1ylsが大となっており、かつ垂直方向の抗磁力)l
c上も高い値となっており垂直磁化に適した特性を有し
ている。一方、第10図に示される如く、再生出力と記
録波長特性は磁化ジャンプの生じているCO−Or −
Nb R膜の垂直磁気記録媒体(以下磁化ジャンプ単層
媒体という)及びNbの添加量を小としたCo −Cr
−Nb薄膜の垂直磁気記録媒体(以下低添加単層媒体と
略称する)に比較して二層媒体は全ての記録波長領域で
高い値を示しており強い再生出力が得られる。
In view of this, in the present invention, under the conditions where the magnetization jump occurs, a small crystal layer of a Co-Cr-Nb thin film or a Go-Cr-Ta thin film is first formed on the base (approximately 0.1μ or less). , and the amount of Nb and Ta added is smaller than the condition value for the occurrence of magnetization jump, and the saturation magnetization is 1yl.
Go-Cr-Nbl film with large s or Go-
A large-grain crystal layer that directly contributes to perpendicular magnetic recording was formed by sputtering an 0r-Ta thin film. In the perpendicular magnetic recording medium having the above structure, Co-Cr-N is used as the small-grain crystal layer.
Fig. 9 Comparison of various magnetic properties when using a thin film with a Go -0r-Nb single JIIL film with a small amount of Nb added and a Go -Cr-Nb 4111N film with magnetization jump. The relationship between the recording wavelength of each ms and the reproduction output when magnetic recording and reproduction is performed on this perpendicular magnetic recording medium using a ring core head made of Sendust (registered trademark) is shown in the 10th table.
The figure also shows various magnetic properties when a Go-Cr-Ta thin film is used as a small-grain crystal layer with a small amount of Ta(7) added, a Go-Cr-Ta l1li thin film, and a magnetization jump. In comparison with Go-Cr, -Ta single-layer thin films, Figure 11 shows the recording wavelength and reproduction of each thin film when perpendicular magnetic recording and reproduction is performed on this perpendicular magnetic recording medium using a ring core head made of Sendust. The relationship between the outputs is shown in FIG. 13. From FIG. 9 and FIG. 11, Go-Cr-Nb and Go-Cr-Ta (hereinafter Go-Cr-'Nb) formed under conditions where magnetization jump occurs.
When collectively referring to C0-Cr-Ta, Go -Cr -N
C to which Nb or Ta is added in an amount smaller than the condition value for magnetization jump to occur on the small grain size crystal layer of (denoted as b(Ta)).
A perpendicular magnetic recording medium (hereinafter referred to as a two-layer medium) in which a large-grain crystal layer of o -Or -Nb (Ta) is formed is:
Go -Cr -Nb (
Ta) The saturation magnetization 1yls is larger than each thin film single-layer perpendicular magnetic recording medium, and the perpendicular coercive force)l
It also has a high value of c, and has characteristics suitable for perpendicular magnetization. On the other hand, as shown in FIG. 10, the reproduction output and recording wavelength characteristics are CO-Or-
Perpendicular magnetic recording media with NbR film (hereinafter referred to as magnetization jump single layer media) and Co-Cr with a small amount of added Nb
Compared to a -Nb thin film perpendicular magnetic recording medium (hereinafter abbreviated as a low-doping single-layer medium), a dual-layer medium exhibits higher values in all recording wavelength regions and can obtain stronger reproduction output.

特に短波長領域(記録波長が1μll−0,2μmの領
域)においては、磁化ジャンプ単層媒体及び低添加単層
媒体もその再生出力を増大させているものの二層媒体は
更に高い効率で再生出力が増大している。従って二層媒
体は特に短波長領域での垂直磁気記録再生に適している
といえる。なおGo −Cr−Taの二層媒体でも第1
3図に示す如く同様の結果が得られた。更にここで、上
記第9図及び第10図に示す各二層媒体に15KOeの
磁界を印加した場合の各面内方向のM−Hヒステリシス
曲線を第14図、第15図に示す。なお第14図は第9
図に示す二層媒体(下層がGo −Cr−Nbよりなる
)の特性を示しており、また第15図は第11図に示す
二層媒体(下層がC。
Particularly in the short wavelength range (recording wavelength range of 1μll-0.2μm), although magnetization jump single-layer media and low-doping single-layer media increase their reproduction output, double-layer media have even higher reproduction output efficiency. is increasing. Therefore, it can be said that the dual-layer medium is particularly suitable for perpendicular magnetic recording and reproduction in the short wavelength region. Note that even in the Go-Cr-Ta two-layer medium, the first
Similar results were obtained as shown in Figure 3. Further, FIGS. 14 and 15 show M-H hysteresis curves in each in-plane direction when a magnetic field of 15 KOe is applied to each of the two-layer media shown in FIGS. 9 and 10 above. Note that Figure 14 is
The characteristics of the two-layer medium shown in the figure (the lower layer is made of Go-Cr-Nb) are shown, and FIG. 15 shows the characteristics of the two-layer medium shown in FIG. 11 (the lower layer is made of C).

−Cr−Taよりなる)の特性を示している。両図に示
される如く、各二層媒体の面内M−Hヒステリシス曲線
は、原点近傍で急激な立ち上がりを有する、いわゆる磁
化ジャンプを有した特性を示しており、その磁化ジャン
プ暑は第1図に示すNb単層媒体の磁化ジャンプ聞より
大となっている(Ta単層媒体と比較した場合も同様の
結果となる)。換言すれば、二層媒体の面内M−Hヒス
テリシス特性は原点近傍において各単層媒体に比べてよ
り急激な立ち上がりを示しており、面内M−Hヒステリ
シス特性を有する二W4媒体の垂直磁気記録再生特性は
第10図及び第13図に示す如く各単層媒体に比べて高
い効率を示している。
-Cr-Ta). As shown in both figures, the in-plane M-H hysteresis curve of each two-layer medium exhibits characteristics with a so-called magnetization jump, which has a sharp rise near the origin, and the magnetization jump temperature is as shown in Fig. 1. This is larger than the magnetization jump of the Nb single-layer medium shown in (the same result is obtained when compared with the Ta single-layer medium). In other words, the in-plane M-H hysteresis characteristic of the two-layer medium shows a more rapid rise near the origin compared to each single-layer medium, and the perpendicular magnetic field of the two-layer medium with in-plane M-H hysteresis characteristic As shown in FIGS. 10 and 13, the recording/reproducing characteristics show higher efficiency than each single layer medium.

上記現象の生ずる理由を第12図を用いて以下推論する
。ポリイミド等のベース1上に磁化ジャンプの生ずる条
件を満足させてGo −Cr −Nb(Ta )磁性材
を約0,1μmの膜厚寸法でスパッタリングすると、前
述の如く被膜されたC0−Cr −Nb  (Ta >
8Mは略その全体において小粒径結晶層2が形成されて
いるものと考えられる。
The reason why the above phenomenon occurs will be deduced below using FIG. 12. When a Go-Cr-Nb (Ta) magnetic material is sputtered to a film thickness of about 0.1 μm on a base 1 made of polyimide or the like while satisfying the conditions for a magnetization jump to occur, a CO-Cr-Nb film is formed as described above. (Ta >
It is considered that 8M has a small-grain crystal layer 2 formed over almost its entire surface.

この小粒径結晶12は面内方向の抗磁力HC/が小で、
かつ垂直方向の抗磁力)lc上との差が少ない等方性を
有した層となっている。従って小粒径結晶層2にいわゆ
る裏打ち層と略同様な機能を行なわせることができる。
This small grain size crystal 12 has a small coercive force HC/ in the in-plane direction,
(and coercive force in the perpendicular direction) is an isotropic layer with little difference from that on lc. Therefore, the small-grain crystal layer 2 can perform substantially the same function as a so-called underlayer.

小粒径結晶層2の上部には、Nb及びTaの添加量を磁
化ジャンプの生ずる条件値より小としたCo −Cr 
−Nb  (Ta )磁性材が約0.1μmの膜厚寸法
でスパッタリングされる。小粒径結晶層2よりNb及び
Taの添加量の小なるCo −Cr−Nb  (Ta 
)磁性材が小粒径結晶層2上にスパッタリングされる際
、両者は結晶構造及び組成において似た特性を有してい
るため両磁性材の境界部分においてNb及びTaの添加
量の小なるC。
In the upper part of the small-grain crystal layer 2, a Co-Cr layer with added amounts of Nb and Ta smaller than the condition value for magnetization jump is formed.
-Nb (Ta) magnetic material is sputtered to a thickness of about 0.1 μm. Co-Cr-Nb (Ta
) When the magnetic material is sputtered onto the small-grain crystal layer 2, since both have similar properties in terms of crystal structure and composition, C with a small amount of added Nb and Ta is added at the boundary between the two magnetic materials. .

−Cr −Nb  (Ta )磁性材の小粒径結晶層は
ほとんど発生せず(発生したとしても垂直磁気記録特性
に影響を与える厚さまで到らないと考えられる)、高い
飽和磁化MSを有すると共に垂直方向に強い抗磁力を有
し、垂直磁化に直接寄与する大粒径結晶113が直ちに
成長すると考えられる。また大粒径結晶層3を形成する
Go −Cr −Nb(Ta )薄膜において、Nb及
びTaの添加量は小粒径結晶層2の如く磁化ジャンプが
生ずる条件値に規制されることなく任意に選定すること
ができる。前述の如<Nb及びTaの添加によりCOの
飽和磁化Msは低下するものの、Coの磁化容易軸は垂
直方向に強く配向する。従ってNb及びTaの添加量を
適宜選定することにより、COの磁化容易軸を強く垂直
方向に配向させつつ高飽和磁化MSを維持することがで
きる。小粒径結晶層2上に形成されるGo −Cr −
Nb  (Ta )WI膜のNb及びTaの添加量は上
記適宜量に選定されている。よって二層媒体4に摺接し
てリングコア状の磁気ヘッド5から放たれた磁束線は大
粒径結晶層3を貫通して小粒径結晶層2に到り、低抗磁
力でかつ等方性を有する小粒径結晶層2内で磁束は面内
方向に進行し、磁気ヘッド5の磁極部分で急激に磁束が
吸い込まれることにより大粒径結晶1i3に垂直磁化が
されると考えられる。よって磁束が形成する磁気ループ
は第12図に矢印で示す如く、馬蹄形状となり所定垂直
磁気記録位置において高い飽和磁化MSを有する大粒径
結晶FJ3に磁束が集中して鋭く貫通するため、大粒径
結晶層3には残留磁化の大なる垂直磁化が行なわれる。
-Cr-Nb (Ta) A small-grain crystal layer of magnetic material hardly occurs (even if it occurs, it is thought that it will not reach a thickness that affects perpendicular magnetic recording characteristics), and has high saturation magnetization MS. It is thought that large grain size crystals 113, which have a strong coercive force in the vertical direction and directly contribute to perpendicular magnetization, grow immediately. In addition, in the Go-Cr-Nb(Ta) thin film forming the large-grain crystal layer 3, the amounts of Nb and Ta added can be arbitrarily determined without being restricted by the condition value that causes a magnetization jump as in the small-grain crystal layer 2. can be selected. As described above, although the saturation magnetization Ms of CO is reduced by the addition of Nb and Ta, the axis of easy magnetization of Co is strongly oriented in the perpendicular direction. Therefore, by appropriately selecting the amounts of Nb and Ta added, it is possible to maintain high saturation magnetization MS while strongly orienting the axis of easy magnetization of CO in the perpendicular direction. Go - Cr - formed on the small grain size crystal layer 2
The amounts of Nb and Ta added to the Nb(Ta)WI film are selected to be the above-mentioned appropriate amounts. Therefore, the magnetic flux lines emitted from the ring core-shaped magnetic head 5 in sliding contact with the two-layer medium 4 penetrate the large-grain crystal layer 3 and reach the small-grain crystal layer 2, resulting in low coercive force and isotropy. It is thought that the magnetic flux advances in the in-plane direction within the small-grain crystal layer 2 having the magnetic head 5, and the magnetic flux is suddenly absorbed by the magnetic pole portion of the magnetic head 5, causing perpendicular magnetization to the large-grain crystal 1i3. Therefore, the magnetic loop formed by the magnetic flux becomes a horseshoe shape as shown by the arrow in FIG. 12, and the magnetic flux concentrates and sharply penetrates the large grain crystal FJ3 having a high saturation magnetization MS at a predetermined perpendicular magnetic recording position, so that the large grain The diameter crystal layer 3 is perpendicularly magnetized with a large residual magnetization.

上記の如く垂直磁気記録が行なわれると大粒径結晶層3
には第16図に示す如く所定ビット間隔に対応し磁気方
向を逆にした複数の磁石が交互に形成される。そして、
この形成された複数の磁石下端部の小粒径結晶層2には
、相隣接して形成された磁石の上記下端部を連通ずる磁
束(゛第16図中矢印で示す)が形成されこれが磁化さ
れる。これにより各隣接する磁石の減磁作用はなくなり
、再生田力を増加させることができる。これに加えて上
記の如く小粒径結晶WI2のII膜厚寸法略0,1μ層
と非常に薄いため、垂直磁気記録媒体全体の膜厚寸法を
小とすることができ磁性層の機械的な柔軟性は大となり
磁気ヘッド5とのいわゆる当たりが良好となると共に製
造時にスパッタリング時間を短りシ得、低コストでかつ
生産性をもって垂直磁気記録媒体を製造することができ
る。これに加え、Nb及びTaを添加することにより記
録媒体の熱i張率を調整できることが知られており、よ
ってNb及びTaの添加けを適宜選定することが可能と
なることにより熱膨張率を調整し得、カールの少ない記
録媒体を容易に製造することができる。また小粒径結晶
層2の面内方向の抗磁力HC/は第6図、第7図より1
00e 〜500e程度であり大粒径結晶層3の抗磁力
Hc上に対して極端に小なる値ではないため衝撃性のバ
ルクハウゼンノイズが発生することもなく良好な垂直磁
気記録再生を行ない得る。
When perpendicular magnetic recording is performed as described above, the large-grain crystal layer 3
As shown in FIG. 16, a plurality of magnets with opposite magnetic directions are alternately formed at predetermined bit intervals. and,
A magnetic flux (indicated by an arrow in FIG. 16) that connects the lower ends of the magnets formed adjacent to each other is formed in the small-grain crystal layer 2 at the lower ends of the plurality of magnets formed, and this is magnetized. be done. This eliminates the demagnetizing effect of each adjacent magnet, making it possible to increase the regenerated force. In addition, as mentioned above, the II film thickness of the small-grain crystal WI2 is very thin, approximately 0.1 μm, so the film thickness of the entire perpendicular magnetic recording medium can be reduced, and the mechanical strength of the magnetic layer can be reduced. The flexibility is increased, so-called contact with the magnetic head 5 is improved, and the sputtering time during manufacturing can be shortened, making it possible to manufacture perpendicular magnetic recording media at low cost and with high productivity. In addition, it is known that the thermal elongation of a recording medium can be adjusted by adding Nb and Ta. Therefore, by appropriately selecting the amount of Nb and Ta added, the thermal expansion coefficient can be adjusted. It is possible to easily produce a recording medium that can be adjusted and has less curl. In addition, the coercive force HC/ in the in-plane direction of the small-grain crystal layer 2 is 1 from FIGS. 6 and 7.
Since it is about 00e to 500e and is not an extremely small value with respect to the coercive force Hc of the large grain crystal layer 3, good perpendicular magnetic recording and reproduction can be performed without generating impulsive Barkhausen noise.

発明の効果 上述の如く本発明になる垂直磁気記録媒体によれば、ベ
ース上にコバルト、クロムに他の元素を所定円含有させ
てなる下層と、この下層上にコバルト、クロムに上記他
の元素と同じ元素を上記所定量より小なる」で含有させ
てなる上層を形成して、垂直磁気記録媒体が原点近傍で
急激な立ち上がりを有する曲線で表わされる面内M−H
ヒステリシス特性を有するよう構成することにより、垂
直磁気記録媒体はベース上に面内方向の抗Wiftが小
さくかつ等方性を有する下層と、高い飽和磁化を有しか
つ垂直方向の抗磁力が大である上層との二層を形成され
た構成となるため、磁気ヘッドより放たれた磁束は容易
に低抗磁力を有すると共に等方性を有する下層に進入し
水平方向へ進行した後高い飽和磁化を有すると共に高抗
磁力を有する上層を貫通して磁気ヘッドの磁極に急激に
かつ鋭く吸い込まれるため、上層には強い残留磁化が生
じ高い再生出力を実現し得る垂直磁気記録再生を行なう
ことができ、これに加え特に短い記録波長に対しすぐれ
た垂直磁化が行なわれ良好な再生出力を得ることができ
、また下層は磁化ジャンプが生じる、すなわち面内方向
に対する抗磁力が小で、かつ等方性を有する層であるた
め、いわゆる裏打ち層として確実に機能すると共にその
抗磁力は上層の抗磁力に対して不要に小なる値ではない
ため衝撃性のバルクハウゼンノイズが発生することもな
く良好な垂直磁気記録再生が行なうことができ、これに
加えて低い抗磁力を有する唐には高抗磁力を有する層に
交互に磁化方向を変え、かつW41!シて磁化形成され
た複数の磁石の端部を連通す−る磁束が形成され、これ
が磁化されるため、各隣接する磁石の減磁作用はなくな
り再生出力を高めることができ更には磁性層の厚さが非
常に薄いため、磁性層の機械的な柔軟性は大となり磁気
ヘッドとのいわゆる当たりが良好となると共に磁性層の
形成時間の短縮を行ない得るため、上記の如く種々の効
果を有する垂直磁気記録媒体を量産性をもってかつ低い
コストで製造することができる更に上層のNb及び7a
の添加量は任意に選定することが可能で、その添加量を
COの磁化容易軸を強く垂直方向に配向させつつ高飽和
磁化を維持し得る適宜量に選定することにより再生出力
の大なる良好な垂直磁気記録再生を実現でき、かつ熱膨
張率を調整できるのでカールの少ない垂直磁気記録媒体
を容易に製造することができる等の特長を有する。
Effects of the Invention As described above, according to the perpendicular magnetic recording medium of the present invention, there is a lower layer on a base containing cobalt, chromium, and other elements in a predetermined circle, and a lower layer containing cobalt, chromium, and the other elements mentioned above on this lower layer. By forming an upper layer containing the same element in a smaller amount than the predetermined amount, the perpendicular magnetic recording medium has an in-plane M-H represented by a curve with a sharp rise near the origin.
By configuring it to have hysteresis characteristics, the perpendicular magnetic recording medium has a lower layer on the base that has a small in-plane anti-Wift and is isotropic, and a lower layer that has a high saturation magnetization and a large perpendicular coercive force. Because it has a two-layer structure with an upper layer, the magnetic flux emitted from the magnetic head easily enters the lower layer, which has low coercive force and isotropy, and propagates in the horizontal direction, causing high saturation magnetization. It penetrates the upper layer, which has a high coercive force, and is suddenly and sharply attracted to the magnetic pole of the magnetic head, so strong residual magnetization occurs in the upper layer, making it possible to perform perpendicular magnetic recording and reproduction that can realize high reproduction output. In addition, excellent perpendicular magnetization is achieved especially for short recording wavelengths, making it possible to obtain good reproduction output, and the lower layer has a magnetization jump, that is, the coercive force in the in-plane direction is small, and it is isotropic. This layer reliably functions as a so-called backing layer, and its coercive force is not unnecessarily small compared to the coercive force of the upper layer, so it does not generate impulsive Barkhausen noise and has good perpendicular magnetic properties. In addition to this, the magnetization direction is alternately changed between layers with low coercive force and layers with high coercive force, and W41! A magnetic flux is formed that connects the ends of the plurality of magnetized magnets, and this magnetization eliminates the demagnetizing effect of each adjacent magnet, increasing the reproduction output. Since the thickness is very thin, the mechanical flexibility of the magnetic layer is large, so that so-called contact with the magnetic head is good, and the time for forming the magnetic layer can be shortened, so it has various effects as described above. Furthermore, Nb and 7a in the upper layer enable mass production of perpendicular magnetic recording media at low cost.
The amount of addition can be arbitrarily selected, and by selecting the addition amount to an appropriate amount that maintains high saturation magnetization while strongly orienting the axis of easy magnetization of CO in the perpendicular direction, the reproduction output can be greatly improved. It has features such as being able to realize perpendicular magnetic recording and reproducing, and being able to adjust the coefficient of thermal expansion, making it possible to easily manufacture a perpendicular magnetic recording medium with little curl.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる垂直磁気記録媒体の一実施例の磁
性膜であるCo −Cr−Nb薄膜のヒステリシス曲線
を示す因、第2図は小粒径結晶層のヒステリシス曲線を
示す図、第3図から第5図は磁化ジャンプが生ずる理由
を説明するための図、第6図はCo −Cr−Nb薄膜
が二層構造となっていること及び各層の磁気特性を示す
図、第7図はCo −Cr −Ta WIliが二層構
造となっていること及び各層の磁気特性を示す図、第8
図は磁化ジャンプが生じていないGo −Or −Nb
薄膜のヒステリシス曲線の一例を示す図、第9図は小粒
径結晶層としてGo −Cr −Nb WIliを用い
た場合の各種磁気特性をNbの添加量を小としたC0−
0r −Nb IIFJ薄膜及び磁化ジャンプの生じて
いるGo −Cr −Nb l1lt薄膜と比較して示
す図、第10図は第9図に示した各薄膜の記録波長と再
生出力の関係を示す図、第11図は小粒径結晶層として
Co −Cr −Ta WIWAを用いた場合の各種磁
気記録特性をTaの添加量を小としたCo −Cr−T
a単層1111!及び磁化ジャンプの生じているGo 
−Cr −Ta単iim膜と比較して示す図、第12図
は本発明記録媒体の結晶成長状態を概略的に示すと共に
磁束が形成する磁気ループを示す図、第13図は第11
図で示した各i1[1!の記録波長と再生出力の関係を
示す図、第14図は第9図に示す二層媒体の面内M−H
ヒステリシス特性を示す図、第15図は第11図に示す
二層媒体の面内M−Hヒステリシス特性を示す図、第1
6図は小粒径結晶層に形成される大粒径結晶層に磁化形
成された複数の磁石の下端部間を連通ずる磁束を説明す
るための図である。 1・・・ベース、2・・・小粒径結晶層、3・・・大粒
径結晶層、4・・・二層媒体、5・・・磁気ヘッド。 特許出願人 日本ビクター株式会社 第2図
FIG. 1 shows a hysteresis curve of a Co-Cr-Nb thin film, which is a magnetic film of an embodiment of a perpendicular magnetic recording medium according to the present invention, and FIG. 2 shows a hysteresis curve of a small-grain crystal layer. Figures 3 to 5 are diagrams for explaining the reason why magnetization jumps occur; Figure 6 is a diagram showing that the Co-Cr-Nb thin film has a two-layer structure and the magnetic properties of each layer; The figure shows the two-layer structure of Co-Cr-Ta WIli and the magnetic properties of each layer.
The figure shows Go -Or -Nb where no magnetization jump occurs.
A diagram showing an example of a hysteresis curve of a thin film, FIG. 9 shows various magnetic properties when Go-Cr-Nb WIli is used as a small-grain crystal layer.
10 is a diagram showing the relationship between recording wavelength and reproduction output of each thin film shown in FIG. 9; Figure 11 shows various magnetic recording properties when using Co-Cr-Ta WIWA as a small-grain crystal layer.
a single layer 1111! and Go where magnetization jump occurs
-Cr-Ta monoim film is shown in comparison, FIG.
Each i1 [1! Figure 14 is a diagram showing the relationship between the recording wavelength and reproduction output of the two-layer medium shown in Figure 9.
A diagram showing the hysteresis characteristics, FIG. 15 is a diagram showing the in-plane M-H hysteresis characteristics of the two-layer medium shown in FIG.
FIG. 6 is a diagram for explaining the magnetic flux that communicates between the lower ends of the plurality of magnets magnetized in the large-grain crystal layer formed in the small-grain crystal layer. DESCRIPTION OF SYMBOLS 1...Base, 2...Small grain size crystal layer, 3...Large grain size crystal layer, 4...Two-layer medium, 5...Magnetic head. Patent applicant: Victor Japan Co., Ltd. Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)ベース上にコバルト、クロムに他の元素を所定量
含有させてなる下層と、該下層上に形成されコバルト、
クロムに上記他の元素と同じ元素を上記所定量より小な
る量で含有させてなる上層とよりなる垂直磁気記録媒体
であつて、原点近傍で急激な立ち上がりを有する曲線で
表わされる面内M−Hヒステリシス特性を有することを
特徴とする垂直磁気記録媒体。
(1) A lower layer made of cobalt and chromium containing a predetermined amount of other elements on the base, and a cobalt layer formed on the lower layer,
A perpendicular magnetic recording medium comprising an upper layer containing chromium and the same element as the other element in an amount smaller than the predetermined amount, the in-plane M- A perpendicular magnetic recording medium characterized by having H hysteresis characteristics.
(2)上記コバルト、クロムに添加される他の元素はニ
オブ及びタンタルのうち少なくとも一方であることを特
徴とする特許請求の範囲第1項記載の垂直磁気記録媒体
(2) The perpendicular magnetic recording medium according to claim 1, wherein the other element added to the cobalt and chromium is at least one of niobium and tantalum.
JP29156285A 1985-12-24 1985-12-24 Vertical magnetic recording medium Pending JPS61224135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29156285A JPS61224135A (en) 1985-12-24 1985-12-24 Vertical magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29156285A JPS61224135A (en) 1985-12-24 1985-12-24 Vertical magnetic recording medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6463085A Division JPS61222023A (en) 1985-03-28 1985-03-28 Vertical magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS61224135A true JPS61224135A (en) 1986-10-04

Family

ID=17770525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29156285A Pending JPS61224135A (en) 1985-12-24 1985-12-24 Vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61224135A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064630A (en) * 1983-09-16 1985-04-13 Daido Steel Co Ltd Catalyst
JPS60157908A (en) * 1983-12-27 1985-08-19 Fuji Heavy Ind Ltd Ground clearance adjuster of automobile
JPS60157909A (en) * 1984-01-30 1985-08-19 Kayaba Ind Co Ltd Automatic/manual change-over control method for suspension hardness

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064630A (en) * 1983-09-16 1985-04-13 Daido Steel Co Ltd Catalyst
JPS60157908A (en) * 1983-12-27 1985-08-19 Fuji Heavy Ind Ltd Ground clearance adjuster of automobile
JPS60157909A (en) * 1984-01-30 1985-08-19 Kayaba Ind Co Ltd Automatic/manual change-over control method for suspension hardness

Similar Documents

Publication Publication Date Title
US6641934B1 (en) High density information recording medium, and manufacturing method of the same medium
Ouchi Recent advancements in perpendicular magnetic recording
US4798765A (en) Perpendicular magnetic recording medium
JPH0640361B2 (en) Perpendicular magnetic recording / reproducing method
JP2007164941A (en) Perpendicular magnetic recording medium
US4792486A (en) Perpendicular magnetic recording medium
JPS61224135A (en) Vertical magnetic recording medium
JPH0532809B2 (en)
JPS60132305A (en) Iron-nitrogen laminated magnetic film and magnetic head using the same
JPS61224105A (en) Vertical magnetic recording and reproducing system
JPS61222022A (en) Vertical magnetic recording medium
JPS61224129A (en) Vertical magnetic recording medium
JP4286792B2 (en) Magnetic head
JPS61224131A (en) Vertical magnetic recording medium
JPS61224132A (en) Vertical magnetic recording medium
JPS61224133A (en) Vertical magnetic recording medium
OUCHI Review on recent developments of perpendicular recording media
JPS61224134A (en) Vertical magnetic recording medium
JPS61224130A (en) Vertical magnetic recording medium
JPS61224104A (en) Vertical magnetic recording and reproducing system
JPS61292220A (en) Vertical magnetic recording medium
JPH0483313A (en) Soft magnetic thin film and magnetic head
JPH0670852B2 (en) Perpendicular magnetic recording medium
JPS61204822A (en) Vertical magnetic recording medium
JPS61204821A (en) Vertical magnetic recording medium