JPS61291910A - Method for controlling flow rate of gas to be blown to refining furnace - Google Patents

Method for controlling flow rate of gas to be blown to refining furnace

Info

Publication number
JPS61291910A
JPS61291910A JP13135385A JP13135385A JPS61291910A JP S61291910 A JPS61291910 A JP S61291910A JP 13135385 A JP13135385 A JP 13135385A JP 13135385 A JP13135385 A JP 13135385A JP S61291910 A JPS61291910 A JP S61291910A
Authority
JP
Japan
Prior art keywords
flow rate
gas
tuyere
pressure
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13135385A
Other languages
Japanese (ja)
Other versions
JPS6315324B2 (en
Inventor
Akira Yamane
明 山根
Rinzo Tachibana
橘 林三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13135385A priority Critical patent/JPS61291910A/en
Publication of JPS61291910A publication Critical patent/JPS61291910A/en
Publication of JPS6315324B2 publication Critical patent/JPS6315324B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4673Measuring and sampling devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/48Bottoms or tuyéres of converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To improve the transient responsiveness for the gas flow rate change in a refining process by measuring the flow rates of the gases to be blown to a gas blown furnace such as converter, feeding the measured values back to gas flow rate control valves and controlling the gas flow rates to set values. CONSTITUTION:The values measured by flowmeters 14A, 14B for a gas A and gas B are fed as feedback signals to flow rate control valves 22A, 22B for controlling the constant flow rates of flow rate control valves 16A, 16B for both gases in the stage of changing the gas flow rate in the process for refining the molten iron, etc. in the converter 10 by blowing the tuyere cooling gases such as oxygen A and propane B from tuyeres 12 to the converter. The tuyere back pressure signal measured with a pressure gauge 20 near the tuyere is fed as a feedback signal. The control signals from a pressure controller 24 for controlling the constant pressure of the flow rate control valves 16A, 16B, the flow rate control valves 22A, 22B and the pressure controller 24 are selected and are changed over by change-over circuits 26A, 26B, by which the flow rates of both gases are changed with the fast responsiveness.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野] 本発明は、精錬炉の吹込ガス流量制御方法に係り、特に
、底吹き転炉、上底吹き転炉、AOD転炉等の溶融金属
内に種々の羽口を介してガスを吹込む設備に採用して好
適な、測定ガス流量をyJr弁にフィードバックして設
定流量となるようにガス流量を制御する定流鍵制御によ
って、羽口から精錬炉内に吹込まれるガス流量を制御す
る精錬炉の吹込ガス流量制御方法に関する。 【従来の技術] 一般に、第6図に示す如く、異種ガスA、Bを、転炉等
の溶融金属精錬炉1へ、配管を介して高温溶融金属に浸
漬した羽口2を通じて吹込む設備は、流量計3A、3B
、流量調節弁4A、4B、遮断弁5A15Bを含むガス
供給ラインLA、LBと、前記流量計3A、3Bで測定
されたガス流量をフィードバック信号として前記流wr
ite弁4A、4Bそれぞれを制御づる流it調節計6
A16Bとを備えている。 このような設備における従来のガス流量制御及ヒカス切
替え制御は、第7図のタイムチャートに示す方式を採用
するのが一般的である。 即ち、精錬炉1の吹練中にガスAからガスBに切替える
場合、例えばタイマーで設定された切替えトリガータイ
ミングでガスBの供給ラインLBの遮断弁5Bに開の駆
動指令を出し、該遮断弁5Bが開になったことを確認し
てから、先行ガスAのガス供給ラインLAの遮断弁5A
を閉にする。 この時、双方のガス供給ラインLA、LBの流量調節弁
4A、4Bの動作は、それぞれ対応する遮断弁5A、5
Bが開状態である時には、流量フィードバック制御を、
又、遮断弁5A、5Bが閉状態である時には、プリセッ
ト開度を保つ方式となっている。この時、異種ガスへの
切替えと共にガスの性質が異なるのでijl設定値も変
更するのが普通である。 ところで、各ガスA、Bは、遮断弁5A、5B以降のか
なりの長さの配管及びヘッダー等を通って羽口2に到達
し、m練炉1の溶融金属内へ吹込まれる。この時、遮断
弁5A、5Bと羽口6との間の配管内の総体積(以下バ
ッファボリュームと称する)が、am的作用をなし、比
較的安定な状態での異種ガス間の切替えを可能にしてい
る。 又、T!!4種ガスの切替えを行わずに単に流量の設定
値を変える場合には、流量!1節計6A、6Bの設定値
を変更するだけであり、従って、ガス流量制御系自体の
応答は、調整されたPIDパラメータとバルブの時定数
に委ねられていた。 【発明が解決しようとプる問題点】 一般に、底吹き精錬炉の底吹きプロセスガス制御系では
、羽口部の圧力損失の総圧力損失に対する割合いが大き
いため、この羽口部の圧力損失が、ガス流量・切替え制
御系の制御の薮点となっている。この羽口の圧力111
1¥Ff性(Tuyere  chart )は、圧縮
性流体力学の基本的な原理を用いて、理論的に算出する
ことが可能である。 即ち、羽口内径が大きく、ガスが溶融金属中に吹込まれ
るまでの熱収支が無視できる場合、即ち、例えば内管か
ら02ガスを、外管からプロパンガス等の冷却ガスを吹
込む二重管羽口、あるいは内径5 mm程度の単管を1
0数本炉底に配列して不活性ガスを吹込む羽口の場合に
は、等エントロピー流における臨界条件から羽口の7 
uyere  chartを求めることができる。 又、羽口内径が小さく羽口管内を流れるガスの熱収支が
支配的になる場合、即ち、例えば、内径1〜2nの細管
をrIi10本配置した羽口の場合には、Raylei
gh流れを仮定することにより羽口のT uyere 
 chartを求めることができる。 以上のように、羽口の圧力流量特性は、羽口の種類に応
じて求める方法は相違するものの、いずれの場合でも、
流量は圧力の関数となり、圧力がある定められた値より
高くなると、一般的に線形な関係を有する結果となる。 このような特性を持つ羽口を使用して、第6図に示すよ
うなガス流量・切替側部系を構成する場合、遮断弁5A
、5Bと羽口2との闇のバッファボリュームが、実際に
溶融金属内に吹込まれるガス流量の速応性を逆に阻1!
Fする結果となるという問題点を有する。 即ち、冶金反応の観点からは、第8図に実mAで示すよ
うな流量の応答性を得るのが理想的である。又、バッフ
ァボリュームに供給プるガス流量制御系の応答は、流量
11節計のPIDパラメータを最適値にした場合、一点
111i1Bに示す波形となる。ところが、実際にバッ
ファボリュームから羽口を通して溶融金属内に吹込まれ
るガス流量の応答波形は、バッファボリュームの影響に
より破線Cで示プようになる。しかも、バッファボリュ
ームが大きければ大きい程、又、羽口のT uyere
chartにおける流量/圧力の傾きが小さければ小さ
い程、実際に溶融金属内に吹込まれるガス流量の速応性
が悪くなる結果となる。
[Industrial Field of Application] The present invention relates to a method for controlling the flow rate of blown gas in a refining furnace, and in particular, the present invention relates to a method for controlling the flow rate of blown gas in a refining furnace, and in particular, the present invention relates to a method for controlling the flow rate of blown gas in a refining furnace. The gas is blown into the smelting furnace from the tuyere using constant flow key control, which is suitable for use in equipment that blows gas into the tuyere and controls the gas flow rate to the set flow rate by feeding back the measured gas flow rate to the yJr valve. The present invention relates to a method for controlling the flow rate of blown gas in a refining furnace. [Prior Art] Generally, as shown in FIG. 6, equipment for injecting different gases A and B into a molten metal refining furnace 1 such as a converter through a tuyere 2 immersed in high-temperature molten metal via piping is used. , flowmeter 3A, 3B
, the gas supply lines LA and LB including the flow rate adjustment valves 4A and 4B, and the cutoff valve 5A and 15B, and the gas flow rate measured by the flowmeters 3A and 3B are used as feedback signals to adjust the flow rate wr.
Flow IT controller 6 that controls each of the IT valves 4A and 4B
It is equipped with A16B. Conventional gas flow rate control and power switching control in such equipment generally employs the method shown in the time chart of FIG. 7. That is, when switching from gas A to gas B during blowing in the refining furnace 1, a drive command to open the cutoff valve 5B of the gas B supply line LB is issued at the switching trigger timing set by a timer, for example, and the cutoff valve is After confirming that 5B is open, open the shutoff valve 5A of the gas supply line LA for the preceding gas A.
close. At this time, the operation of the flow rate control valves 4A and 4B of both gas supply lines LA and LB is controlled by the corresponding cutoff valves 5A and 5.
When B is open, the flow rate feedback control is
Further, when the shutoff valves 5A and 5B are in a closed state, a preset opening degree is maintained. At this time, it is common to change the ijl setting value when switching to a different type of gas, since the properties of the gas are different. Incidentally, each of the gases A and B reaches the tuyere 2 through considerable lengths of piping and headers after the shutoff valves 5A and 5B, and is blown into the molten metal of the m-drilling furnace 1. At this time, the total volume in the pipe between the shutoff valves 5A, 5B and the tuyere 6 (hereinafter referred to as buffer volume) acts like an am, making it possible to switch between different gases in a relatively stable state. I have to. Also, T! ! If you simply want to change the flow rate setting without switching between the four types of gases, change the flow rate! Only the set values of the one-section meters 6A and 6B were changed, and therefore, the response of the gas flow control system itself was left to the adjusted PID parameters and valve time constants. [Problems to be Solved by the Invention] Generally, in the bottom-blown process gas control system of a bottom-blown smelting furnace, the pressure loss at the tuyeres has a large proportion to the total pressure loss. is the turning point in the control of the gas flow rate/switching control system. This tuyere pressure 111
The 1\Ff property (Tuyere chart) can be calculated theoretically using the basic principle of compressible fluid mechanics. In other words, if the inner diameter of the tuyere is large and the heat balance until the gas is blown into the molten metal is negligible, for example, a double tuyere where 02 gas is blown from the inner tube and a cooling gas such as propane gas is blown from the outer tube. 1 tube tuyere or a single tube with an inner diameter of about 5 mm
In the case of several tuyeres arranged at the bottom of the furnace to blow inert gas, due to the critical condition in isentropic flow, the
uyere chart can be obtained. In addition, when the inner diameter of the tuyere is small and the heat balance of the gas flowing in the tuyere tube becomes dominant, for example, in the case of a tuyere in which 10 thin tubes with an inner diameter of 1 to 2n are arranged, Raylei
By assuming a gh flow, the tuyere
Chart can be obtained. As mentioned above, although the method for determining the pressure flow characteristics of a tuyere differs depending on the type of tuyere, in any case,
Flow rate is a function of pressure, resulting in a generally linear relationship as pressure increases above a certain determined value. When tuyeres with such characteristics are used to configure a gas flow rate/switching side system as shown in Fig. 6, the shutoff valve 5A
The dark buffer volume between , 5B and tuyere 2 actually inhibits the rapid response of the gas flow rate injected into the molten metal!
This has the problem that it results in F. That is, from the viewpoint of metallurgical reactions, it is ideal to obtain a flow rate response as shown in actual mA in FIG. 8. Further, the response of the gas flow rate control system supplied to the buffer volume becomes a waveform shown at one point 111i1B when the PID parameter of the flow rate 11-section meter is set to the optimum value. However, the response waveform of the gas flow rate actually blown into the molten metal from the buffer volume through the tuyere becomes as shown by the broken line C due to the influence of the buffer volume. Moreover, the larger the buffer volume, the larger the tuyere volume.
The smaller the slope of the flow rate/pressure in the chart, the worse the rapid response of the gas flow rate actually blown into the molten metal.

【発明の目的】[Purpose of the invention]

本発明は、前記従来の問題点を解消するべくなされたも
ので、精錬炉における吹込ガス流量制御系で、ガスの吹
込み流量設定値をステップ的に大幅に変更する場合や吹
込みガスの種類を切替える場合において、実際に羽口か
ら溶融金属内に吹込まれるガス流量の立上り又は立下り
を速くするようにして、過渡応答特性を著しく改善プる
ことのできる精錬炉の吹込ガス流量制御方法を提供する
ことを目的とする。
The present invention has been made to solve the above-mentioned conventional problems, and is used in a blowing gas flow rate control system in a refining furnace, when the set value of the gas blowing flow rate is significantly changed in steps, and when the type of blowing gas is changed. A method for controlling the flow rate of blown gas in a smelting furnace, which can significantly improve transient response characteristics by speeding up the rise or fall of the flow rate of gas actually blown into molten metal from the tuyere when switching the flow rate. The purpose is to provide

【問題点を解決するための手段】[Means to solve the problem]

本発明は、測定ガス流量を調節弁にフィードバックして
設定流量となるようにガス流量を制御する定流量制御に
よって、羽口から精錬炉内に吹込まれるガス流量を制御
する精錬炉の吹込ガス流量制御方法において、第1図に
その要旨を示す如く、ガスの吹込流量設定値をステップ
的に大幅に変更、若しくは、ガス種類を変更する際に、
まず、前記定流量制御から、測定羽口背圧を前記調節弁
にフィードバックしてガス圧力を制御−yる定圧力制御
へと切替え、次いで、前記羽口背圧が、流量圧力特性曲
線に基づき変更後の流量設定値に関連させて定めた圧力
設定値に達した時に、該羽口背圧による定圧力制御から
前記定流量制御へと復帰することにより、前記目的を達
成したものである。 〔作用〕 前述したように、等エントロピー流れあるいはRayl
eigh流れを仮定することによって、羽口から炉内へ
吹込まれるガスの流量は羽口背圧の関数として表される
。従って、羽口圧力から算術的に吹込みガス流量を求め
ることが可能である。 本発明は、この点に着目してなされたもので、羽口背圧
を測定し、その値を指標にして、流ram節弁の制御モ
ードを切替えることにより、実際に羽口から精錬炉内の
溶融金属に吹込まれるガス流量の過渡応答特性を著しく
改善するようにしたものである。 即ち、本発明においては、測定ガス流量を調節弁にフィ
ードバックして設定流量となるようにガス流量を制御す
る定流II量制御よって、羽口から精錬炉内に吹込まれ
るガス流量を制御するに際し、ガスの吹込流量設定値を
ステップ的に大幅に変更、若しくは、ガス種類を変更す
る際に、まず、前記定流量−1111から、測定羽口背
圧を前記調節弁にフィードバックしてガス圧力を制卸す
る定圧力制御へと切替え、次いで、前記羽口背圧が、流
量圧力特性曲線に基づき変更後のi!設定値に関連させ
て定めた圧力設定値に達した時に、該羽口背圧による定
圧力制御から前記定流量制御へとtl[帰するようにし
ている。従って、ガスの吹込み流II定値をステップ的
に大幅に変更する場合や吹込みガスの種類を切替える場
合等に発生ずる、羽口部での圧力損失及びバルブデツキ
から羽口までのバッファボリュームの影響に起因した、
精錬炉内の溶融金属への実吹込み錘の連応性に支障がで
る不都合を解消することができる。即ち、羽口からの吹
込みガス流量の応答性を著しく改善することができる。 【実施例1 以下図面を参照して、本発明が採用された転炉の底吹き
ガス流量制御装置の実施例を詳細に説明する。 本実施例は、第2図に示す如く、流量計14A、14B
、流量調節弁16A、16B、遮断弁18A、18Bを
備えた、転炉10内へ羽口12を通じてガスA、Bを供
給する、ガス供給ラインLA、LBと、該ガス供給ライ
ンLA、LBのN棟炉10の羽口12近傍に設置した圧
力計20と、前記流量計14A、 74Bで測定された
ガス流量をフィードバック信号として前記流量調節弁1
6A116Bそれぞれを定流量制御する流量調節計22
A、22Bと、前記圧力計20で測定された羽口背圧信
号をフィードバック信号として、流1調節弁16A11
6Bを定圧力制御する圧力調節計24と、前記流I11
節計22A、22Bと圧力調節計24とからの制御信号
を、選択して切替える信号切替回路26A、26Bとで
構成される。 前記信号切替回路26A、26Bは、次のようにして流
量調節弁16A、16Bに出力する信号を選択する。即
ち、定常制御状態では、信号切替回路26A、268k
mよ−)r、流量wi節計22A、22Bの出力を流量
調節弁16A、16Bに伝達する。又、ガス切替え時や
、あるいは流Il設定値を大幅に変化させる時の過渡状
態では、羽口背圧が予め決定された圧力設定値に到達す
るまでの間は、信号切替回路26A、26Bを切替えて
圧力調節計24の出力を流I調節弁16A、16Bに伝
達する。なお、この過渡状態における羽口背圧の圧力設
定値及び圧力調節計24が出力する圧力設定値は、羽口
の圧力流量特性に基づいて決定づる。 具体的には、羽口圧力に対する流量の関係(圧力流量特
性)は、第3図に示す如く、f −F (P)なる関数
で表わすことが可能あり、流量「を与えると、逆関数F
−1(f)でもって圧力Pを計算することができる。従
って流量設定値S1、Szと羽口の圧力流量特性から求
められる関係式f−F(P)とを用いて、圧力設定1i
t!PをP−F’(S)の関係式から求める。この場合
、制御系の時定数を考慮してp raax−σを域値(
圧力設定1i1)とする。但し、σは微小圧力値である
。なお、場合によってはこの域値は前記圧力設定値P−
F−1(S)として設定してもよい。 次に、本実施例の作用を説明する。 先ず、ガスAの流量を設定値S1から82にステップ的
に大幅に増加させる場合について説明する。 第4図は流@設定値を低位レベルS、から高位レベルS
2ヘステツプ的に大幅に流量を変化させた場合の118
11 flit系の動き及び流量圧力推移を示すもので
ある。 まず、第2図において、ガスAのガス供給ラインLAで
は、遮断弁18Aが開であり、流儀調部弁16Aは、流
!調節計22Aにより、該流量調節計22Aで設定した
流量設定値S1になるよう。 に流量計14Aからの測定流量をフィードバックして開
度調整される。従って、ガスAは定流量制御されて羽口
12から精錬炉10内に吹き込まれる。この時、圧力計
20によって測定される羽口12の背圧pはI)−F−
’(S+)に極近い値で安定している。このようなガス
A系の定流量制御の時は、信号切替回路26Aは流量調
節計22A側につながっており、流量計14Aによって
ガスAの流量を測定しながら定流量S1になるように調
箇弁16Aの開度が制御される。 次に、第4図における時刻t1に流量を流量設定1ff
is1からSzに大幅に上昇させる操作が次の手順によ
り行われる。 ″  ガスAの流量が流!i段設定aszになった時の
羽口12の予想圧力は、第3図に示されるTuyere
chartを用いて、F−1(Sz)として求まるので
、(F−1(Sz)−σ)を羽口背圧の域値として定め
る。なお、ここでF’(Sz)そのものを、域値として
も定めることができるが、ここでは制御系の時定数を考
慮し、安全をみて羽口背圧の域値を(F’(Sz)−σ
)とする。 切替え後のガスAの流量設定値はSzであるが、トリガ
ータイミングとしての時刻【1に切替え指令により信号
切替回路26Aが切替わり、ガスAの流量2!lI御は
、流量調節計22Aによる定流量制御から圧力調節計2
4Aによる定圧力制御へ切替わる。このようにして、圧
力y4節計24Aは(F’(Sz)−σ)を羽口背圧域
値として、圧力計20Aによって測定された圧力を流I
I調節弁16Aにフィードバックする定圧力制御に入る
。この結果、第4図に示すような圧力推移により羽口背
圧はF″1(S+)から(F−’(Sz)−σ)に上昇
プる。これに伴なって流量計14Aによって測定される
ガスAの流量は、第4図(a )に示す如く、急激に立
ち上がる。この圧力上昇過程において、ガスAの5!潰
は流量設定値S2をオーバーした後一定値を示すように
なり、一方、羽口背圧は域値(F’(Sz)−σ)に達
する。このことは、流ff11節弁16Aと羽口12と
の間のバッファボリュームにガスAが充圧されたことを
示すものに池ならない。この立ち上がり期間t、〜〔2
の圧力立ち上がり曲線DEをg (j−t+)で表わす
と、実際に羽口12から精錬炉1o内に吹込まれるガス
Aの流量は、F(g (t−tりとなる。 この流量は、目的とする流量設定値S2より少ないけれ
ども、従来の流量制御と比較すると、吹込み流量の立ち
上がりははるかに早くなる。 羽口背圧が上昇してktlI (F−’ (32)−σ
)になったことが圧力計20によって検出されると、信
号切替回路26Aが切替わり、流量調節計22Aは流量
設定値を82とした定流量制御に戻る。 このようにして、流儀調部弁16Aは流量計14Aの測
定値をフィードバックして流量が設定値$2になるよう
に定流量制御されることになる。 これに伴なって羽口背圧もF−1(Sz)近傍で安定し
、以後、設定値S2で羽口からガスAが継続的に吹出さ
れる。 以上、ガスAをステップ的に大幅に層相づる場合につい
て説明したが、ステップ的に大幅に減少づる時にも、前
記羽口の圧力流量特性から求めた流量の少ないレベルで
の圧力域値により、同様な操作で適用が可能である。 次に、ガスAからガスBに切替える場合を説明する。 ガスAは、流量調節計22Aによって流量調節弁16A
を制御することで、定流量制御されている。次に、切替
えトリガータイミングでガスBの遮断弁18Bに開の駆
動指令を出力し、この遮断弁18Bが開になったことを
確認してから、先行ガスAの遮断弁18Aを開にして、
ガスAからガスBに切替える。この切替えトリガータイ
ミングで、信号切替回路26Bの指令により、圧力調節
計24による流量調節弁16Bの定圧力制御に入る。 次に、羽口背圧が域値に達したら、信号切替回路26B
の指令により、流量調節弁16Bは流量調節計22Bに
よる切替え後の設定流量値によって定流量制御に切替え
られる。 以上のように、ガスAからガスBに切替える場合も、基
本的には前述したガスAを大幅に増加する時の操作と同
じものとなる。 以下、180を転炉により溶鋼撹拌のため羽口から不活
性ガスを吹込んだ時の、本発明の実施結果を説明する。 第5図は、N2ガスで?IL量設定設定値 N m3か
ら20 N m3に変えた場合の実際に羽口から吹込ま
れるガス流樋の推移を示したものである。図中の破線F
は従来の方式の結果を示づものであり、実線Gは本発明
を適用した場合の結果を示づものである。なお、バッフ
ァボリュームは0゜233 m”である。又、域値は1
9 N n+’/Winとしている。この第5図からも
明らかなように、従来方式の場合、設定値の95%に流
量が到達するまで36.1秒の時間を要しているが、本
発明によれば、その約1/3の13.5秒の時間で95
%に到達しており、実吹込み流量の立ち上がりが早くな
っていることがわかる。 なお、前記実施例は転炉10に採用したものであるが、
本発明はこれに限定されることなく、転炉以外の精錬炉
に採用づるようにしてもよい。 又、前記実施例においては、ガスを底吹きとしたが、本
発明はこれに限定されることなく、底吹き以外であって
も適用が可能である。 【発明の効果] 以上説明した通り、本発明によれば、吹込ガス流量副部
系で、ガスの吹込み流m設定値をステップ的に大幅に変
更する場合や、吹込みガスの種類を切替える場合等にお
いて、実際に羽口から炉内に吹込まれるガス流量の過渡
応答特性を著しく改@することができるという優れた効
果を有する。
The present invention provides a blowing gas for a refining furnace that controls the gas flow rate blown into the refining furnace from the tuyere by constant flow control that controls the gas flow rate to a set flow rate by feeding back the measured gas flow rate to the control valve. In the flow rate control method, as shown in Fig. 1, when changing the set value of the gas blowing flow rate in steps or changing the type of gas,
First, the constant flow rate control is switched to constant pressure control in which the measured tuyere back pressure is fed back to the control valve to control the gas pressure, and then the tuyere back pressure is adjusted based on the flow rate pressure characteristic curve. The above object is achieved by returning from constant pressure control based on the tuyere back pressure to constant flow control when a pressure set value determined in relation to the changed flow rate set value is reached. [Effect] As mentioned above, isentropic flow or Rayl
By assuming eight flow, the flow rate of gas blown into the furnace from the tuyere is expressed as a function of the tuyere backpressure. Therefore, it is possible to calculate the blown gas flow rate arithmetically from the tuyere pressure. The present invention has been made with attention to this point, and by measuring the tuyere back pressure and using that value as an index to switch the control mode of the flow ram control valve, it is possible to actually move the tuyere into the smelting furnace. The transient response characteristics of the gas flow rate blown into the molten metal are significantly improved. That is, in the present invention, the gas flow rate blown into the refining furnace from the tuyere is controlled by constant flow II amount control, which controls the gas flow rate so that the measured gas flow rate is fed back to the control valve to reach the set flow rate. When changing the gas blowing flow rate set value in steps or changing the type of gas, first feed back the measured tuyere back pressure from the constant flow rate -1111 to the control valve to adjust the gas pressure. Then, the tuyere back pressure is changed to i! based on the flow rate pressure characteristic curve. When a pressure set value determined in relation to the set value is reached, the constant pressure control based on the tuyere back pressure is changed to the constant flow rate control. Therefore, the influence of the pressure loss at the tuyere and the buffer volume from the valve deck to the tuyere, which occurs when the gas blowing flow II constant value is changed stepwise or when the type of blowing gas is changed, etc. Due to
It is possible to eliminate the inconvenience of interfering with the coordination of the actual injection weight to the molten metal in the smelting furnace. That is, the responsiveness of the flow rate of gas blown from the tuyere can be significantly improved. [Embodiment 1] Hereinafter, an embodiment of a bottom-blown gas flow rate control device for a converter to which the present invention is adopted will be described in detail with reference to the drawings. In this embodiment, as shown in FIG.
, gas supply lines LA and LB that supply gases A and B into the converter 10 through the tuyere 12 and are equipped with flow rate control valves 16A and 16B and cutoff valves 18A and 18B; The gas flow rate measured by the pressure gauge 20 installed near the tuyere 12 of the N-building furnace 10 and the flow meters 14A, 74B is used as a feedback signal to control the flow rate control valve 1.
Flow rate controller 22 that controls each of 6A and 116B at a constant flow rate
A, 22B and the tuyere back pressure signal measured by the pressure gauge 20 as a feedback signal, the flow 1 regulating valve 16A11
6B and a pressure regulator 24 that controls the flow I11 at a constant pressure.
It is comprised of signal switching circuits 26A, 26B that selectively switch control signals from the moderators 22A, 22B and the pressure regulator 24. The signal switching circuits 26A, 26B select the signals to be output to the flow control valves 16A, 16B in the following manner. That is, in the steady control state, the signal switching circuits 26A, 268k
myo-)r, the output of the flow meter 22A, 22B is transmitted to the flow rate control valves 16A, 16B. In addition, in a transient state when switching gases or greatly changing the flow Il set value, the signal switching circuits 26A and 26B are switched off until the tuyere back pressure reaches a predetermined pressure set value. The output of the pressure regulator 24 is then transmitted to the flow I regulating valves 16A and 16B. Note that the pressure set value of the tuyere back pressure and the pressure set value output by the pressure regulator 24 in this transient state are determined based on the pressure flow characteristics of the tuyere. Specifically, the relationship between the flow rate and the tuyere pressure (pressure flow rate characteristic) can be expressed by the function f −F (P), as shown in Fig. 3, and when the flow rate is given, the inverse function F
−1(f) can be used to calculate the pressure P. Therefore, using the flow rate settings S1, Sz and the relational expression f-F(P) obtained from the pressure flow characteristics of the tuyere, the pressure setting 1i
T! P is determined from the relational expression of P-F'(S). In this case, consider the time constant of the control system and set p raax-σ to the threshold value (
The pressure setting is 1i1). However, σ is a minute pressure value. Note that, depending on the case, this threshold value may be equal to the pressure setting value P-
It may be set as F-1(S). Next, the operation of this embodiment will be explained. First, a case will be described in which the flow rate of gas A is significantly increased stepwise from the set value S1 to 82. Figure 4 shows flow @ set value from low level S to high level S.
118 when the flow rate is significantly changed in 2 steps
11 shows the movement of the flit system and the flow rate and pressure transition. First, in FIG. 2, in the gas supply line LA for gas A, the shutoff valve 18A is open, and the flow control valve 16A is open. The flow rate setting value S1 set by the flow rate controller 22A is set by the controller 22A. The opening degree is adjusted by feeding back the measured flow rate from the flow meter 14A. Therefore, gas A is blown into the refining furnace 10 from the tuyere 12 under constant flow control. At this time, the back pressure p of the tuyere 12 measured by the pressure gauge 20 is I)-F-
It is stable at a value very close to '(S+). During such constant flow rate control of the gas A system, the signal switching circuit 26A is connected to the flow rate controller 22A side, and the flow meter 14A measures the flow rate of gas A while adjusting the flow rate to be constant S1. The opening degree of the valve 16A is controlled. Next, at time t1 in FIG. 4, the flow rate is set to 1ff.
An operation to significantly increase the value from is1 to Sz is performed by the following procedure. "The expected pressure at the tuyere 12 when the flow rate of gas A reaches the i stage setting asz is the Tuyere pressure shown in FIG.
Since it can be found as F-1 (Sz) using the chart, (F-1 (Sz) - σ) is determined as the threshold value of the tuyere back pressure. Note that F'(Sz) itself can also be determined as the threshold value, but here, taking into account the time constant of the control system and considering safety, the threshold value of the tuyere backpressure is determined as (F'(Sz) −σ
). The flow rate setting value of gas A after switching is Sz, but the signal switching circuit 26A is switched by the switching command at time [1] as the trigger timing, and the flow rate of gas A is set to 2! lI control is from constant flow control by flow rate controller 22A to pressure controller 2.
Switches to constant pressure control using 4A. In this way, the pressure y4 meter 24A sets the pressure measured by the pressure gauge 20A to the flow I with (F'(Sz)-σ) as the tuyere back pressure range value.
Constant pressure control is entered with feedback to the I control valve 16A. As a result, the tuyere back pressure increases from F''1 (S+) to (F-' (Sz) - σ) due to the pressure transition shown in Figure 4. The flow rate of gas A increases rapidly, as shown in Figure 4 (a). During this pressure increase process, the 5! , On the other hand, the tuyere back pressure reaches the threshold value (F'(Sz) - σ). This means that the buffer volume between the flow ff11 node valve 16A and the tuyere 12 is filled with gas A. This rising period t, ~[2
When the pressure rise curve DE of , is smaller than the target flow rate set value S2, but compared to conventional flow rate control, the rise of the blowing flow rate is much faster.The tuyere back pressure increases and ktlI (F-' (32)-σ
) is detected by the pressure gauge 20, the signal switching circuit 26A is switched, and the flow rate controller 22A returns to constant flow rate control with the flow rate setting value set at 82. In this way, the flow control valve 16A feeds back the measured value of the flowmeter 14A and is controlled to have a constant flow rate so that the flow rate becomes the set value $2. Along with this, the tuyere back pressure is also stabilized near F-1 (Sz), and thereafter, gas A is continuously blown out from the tuyere at the set value S2. Above, we have explained the case where the gas A is greatly layered in a stepwise manner, but even when it is significantly reduced in a stepwise manner, the pressure range value at a low flow rate level determined from the pressure flow rate characteristics of the tuyere, It can be applied using similar operations. Next, the case of switching from gas A to gas B will be explained. Gas A is passed through the flow rate control valve 16A by the flow rate controller 22A.
Constant flow rate control is achieved by controlling . Next, at the switching trigger timing, an open drive command is output to the gas B cutoff valve 18B, and after confirming that the cutoff valve 18B is open, the preceding gas A cutoff valve 18A is opened.
Switch from gas A to gas B. At this switching trigger timing, the pressure regulator 24 enters constant pressure control of the flow rate regulating valve 16B in response to a command from the signal switching circuit 26B. Next, when the tuyere back pressure reaches the threshold value, the signal switching circuit 26B
In response to this command, the flow rate control valve 16B is switched to constant flow rate control based on the set flow rate value after switching by the flow rate controller 22B. As described above, when switching from gas A to gas B, the operation is basically the same as the operation when significantly increasing the amount of gas A described above. Hereinafter, the results of implementing the present invention will be explained when inert gas was blown through the tuyere to stir the molten steel in the converter No. 180. Figure 5 shows N2 gas? This figure shows the change in the gas flow gutter actually blown from the tuyere when the IL amount setting value is changed from N m3 to 20 N m3. Broken line F in the diagram
shows the results of the conventional method, and solid line G shows the results when the present invention is applied. In addition, the buffer volume is 0°233 m''. Also, the threshold value is 1
9 N n+'/Win. As is clear from FIG. 5, in the case of the conventional method, it takes 36.1 seconds for the flow rate to reach 95% of the set value, but according to the present invention, about 1/1 second of the time is required for the flow rate to reach 95% of the set value. 95 in 13.5 seconds of 3
%, and it can be seen that the actual blowing flow rate rises quickly. In addition, although the above embodiment was adopted for the converter 10,
The present invention is not limited thereto, and may be applied to refining furnaces other than converters. Further, in the above embodiments, the gas is bottom-blown, but the present invention is not limited to this, and can be applied to other gases other than bottom-blowing. [Effects of the Invention] As explained above, according to the present invention, the blowing gas flow rate subsystem can be used to significantly change the set value of the gas blowing flow m in steps or to switch the type of blowing gas. In some cases, it has the excellent effect of significantly modifying the transient response characteristics of the gas flow rate actually blown into the furnace from the tuyere.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る精錬炉の吹込ガス流量制御方法
の要旨を示づ−流れ図、第2図は、本発明が採用された
転炉の底吹きガス流量制御装置の実施例の全体構成を示
J1一部ブロック線図を含む正面図及び断面図、第3図
は、前記実施例における羽口の圧力流量特性(Tuye
re  Chart )の例を示(線図、第4図は、前
記実施例における流量推移及び圧力推移の例を示す線図
、第5図は、前記実施例の実施結果を従来法と比較して
示す線図、第6図は、従来の転炉の底吹きガス流量制W
J装置の全体構成を示づ、一部ブロック線図を含む正面
図及び断面図、第7図は、同じくガス切替えのタイムチ
ャートを示づ線図、第8図は、同じく、流量過渡特性を
示す線図である。 10・・・転炉、 12・・・羽口、 14A、14B・・・流量計、 16A116B・・・流量¥A節弁、 18A118B・・・遮断弁、 20・・・圧力計、 22A、22B・・・流量調節計、 24・・・圧力調節計、 26A・・・26B・・・信号切替回路。
FIG. 1 is a flowchart showing the gist of the method for controlling the flow rate of blown gas in a refining furnace according to the present invention, and FIG. A front view and a cross-sectional view including a partial block diagram showing the structure, and FIG.
Fig. 4 is a diagram showing an example of the flow rate transition and pressure transition in the above example, and Fig. 5 is a diagram showing an example of the implementation result of the above example with the conventional method. The diagram shown in Fig. 6 shows the bottom blowing gas flow rate control W of a conventional converter.
A front view and a cross-sectional view including a partial block diagram showing the overall configuration of the J device, FIG. 7 is a diagram showing a gas switching time chart, and FIG. 8 is a diagram showing the flow rate transient characteristics. FIG. 10... Converter, 12... Tuyere, 14A, 14B... Flow meter, 16A116B... Flow rate ¥A control valve, 18A118B... Shutoff valve, 20... Pressure gauge, 22A, 22B ...Flow rate regulator, 24...Pressure regulator, 26A...26B...Signal switching circuit.

Claims (1)

【特許請求の範囲】[Claims] (1)測定ガス流量を調節弁にフィードバックして設定
流量となるようにガス流量を制御する定流量制御によつ
て、羽口から精練炉内に吹込まれるガス流量を制御する
精錬炉の吹込ガス流量制御方法において、 ガスの吹込流量設定値をステップ的に大幅に変更、若し
くは、ガス種類を変更する際に、 まず、前記定流量制御から、測定羽口背圧を前記調節弁
にフィードバックしてガス圧力を制御する定圧力制御へ
と切替え、 次いで、前記羽口背圧が、流量圧力特性曲線に基づき変
更後の流量設定値に関連させて定めた圧力設定値に達し
た時に、該羽口背圧による定圧力制御から前記定流量制
御へと復帰することを特徴とする精錬炉の吹込ガス流量
制御方法。
(1) Smelting furnace blowing that controls the gas flow rate blown into the smelting furnace from the tuyere by constant flow control, which controls the gas flow rate to the set flow rate by feeding back the measured gas flow rate to the control valve. In the gas flow rate control method, when significantly changing the gas blowing flow rate set value in steps or changing the gas type, first, from the constant flow rate control, the measured tuyere back pressure is fed back to the control valve. Then, when the tuyere back pressure reaches a pressure set value determined in relation to the changed flow rate set value based on the flow rate pressure characteristic curve, the tuyere A blowing gas flow rate control method for a refining furnace, characterized in that the constant pressure control based on mouth back pressure is returned to the constant flow rate control.
JP13135385A 1985-06-17 1985-06-17 Method for controlling flow rate of gas to be blown to refining furnace Granted JPS61291910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13135385A JPS61291910A (en) 1985-06-17 1985-06-17 Method for controlling flow rate of gas to be blown to refining furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13135385A JPS61291910A (en) 1985-06-17 1985-06-17 Method for controlling flow rate of gas to be blown to refining furnace

Publications (2)

Publication Number Publication Date
JPS61291910A true JPS61291910A (en) 1986-12-22
JPS6315324B2 JPS6315324B2 (en) 1988-04-04

Family

ID=15055943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13135385A Granted JPS61291910A (en) 1985-06-17 1985-06-17 Method for controlling flow rate of gas to be blown to refining furnace

Country Status (1)

Country Link
JP (1) JPS61291910A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2527738Y2 (en) * 1990-05-15 1997-03-05 日本精工株式会社 Bearing device for semi-floating axle
JPH0559246U (en) * 1992-01-20 1993-08-06 オーバル機器工業株式会社 Bearing structure of positive displacement flowmeter

Also Published As

Publication number Publication date
JPS6315324B2 (en) 1988-04-04

Similar Documents

Publication Publication Date Title
US11788160B2 (en) Converter CO2—O2 mixed injection smelting method and method of dynamically controlling fire point area temperature
JPS61291910A (en) Method for controlling flow rate of gas to be blown to refining furnace
JPH02115311A (en) Method for controlling heat of blast furnace
CN115927784B (en) Based on CO 2 Converter steelmaking end point control method by dynamic mixed blowing
JPS6315323B2 (en)
JP3425698B2 (en) Method of controlling the flow rate of blown gas in refining furnace
JPS61284514A (en) Method for controlling flow rate of gas to be blown to refining furnace
Meyer et al. Static and dynamic control of the basic oxygen process
SU1093706A1 (en) Device for controlling metal blowing
JPS6113531B2 (en)
JPS6215606B2 (en)
KR102032613B1 (en) Methods of operating electric furnace
JPS6136051B2 (en)
SU1553809A1 (en) Method of controlling iron-melting in cupola furnace
JPS54119316A (en) Slopping control method in converter
SU1301845A1 (en) Device for controlling gas supply to converter tuyeres
GB1167873A (en) Method for the Automatic Control and Regulation of the Basic-Oxygen Process.
SU1521720A1 (en) Method of controlling temperature conditions of welding-on quartz glass blocks
SU1155350A2 (en) Method of regulating secondary cooling of ingots in continuous metal casting
JPS5881547A (en) Level controlling system of molten metal
JPS616702A (en) Method for controlling calorie of mixed gas
JPS626602B2 (en)
SU987863A1 (en) Method and apparatus for control of electric arc steel melting furnace electric mode
SU870441A1 (en) Method and device for control of slag formation in converter bath
SU1252350A1 (en) Method of controlling steel melting in converter