JPS6315324B2 - - Google Patents

Info

Publication number
JPS6315324B2
JPS6315324B2 JP13135385A JP13135385A JPS6315324B2 JP S6315324 B2 JPS6315324 B2 JP S6315324B2 JP 13135385 A JP13135385 A JP 13135385A JP 13135385 A JP13135385 A JP 13135385A JP S6315324 B2 JPS6315324 B2 JP S6315324B2
Authority
JP
Japan
Prior art keywords
flow rate
gas
pressure
tuyere
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13135385A
Other languages
Japanese (ja)
Other versions
JPS61291910A (en
Inventor
Akira Yamane
Rinzo Tachibana
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13135385A priority Critical patent/JPS61291910A/en
Publication of JPS61291910A publication Critical patent/JPS61291910A/en
Publication of JPS6315324B2 publication Critical patent/JPS6315324B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4673Measuring and sampling devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/48Bottoms or tuyéres of converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、精錬炉の吹込ガス流量制御方法に係
り、特に、底吹き転炉、上底吹き転炉、AOD転
炉等の溶融金属内に種々の羽口を介してガスを吹
込む設備に採用して好適な、測定ガス流量を調節
弁にフイードバツクして設定流量となるようにガ
ス流量を制御する定流量制御によつて、羽口から
精錬炉内に吹込まれるガス流量を制御する精錬炉
の吹込ガス流量制御方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for controlling the flow rate of blown gas in a refining furnace, and in particular, the present invention relates to a method for controlling the flow rate of blown gas in a refining furnace. The constant flow rate control, which is suitable for use in equipment that blows gas through various types of tuyeres, feeds back the measured gas flow rate to the control valve to control the gas flow rate to the set flow rate. The present invention relates to a method for controlling the flow rate of gas blown into a refining furnace, which controls the flow rate of gas blown into the refining furnace.

〔従来の技術〕[Conventional technology]

一般に、第6図に示す如く、異種ガスA,B
を、転炉等の溶融金属精錬炉1へ、配管を介して
高温溶融金属に浸漬した羽口2を通じて吹込む設
備は、流量計3A,3B、流量調節弁4A,4
B、遮断弁5A,5Bを含むガス供給ラインLA,
LBと、前記流量計3A,3Bで測定されたガス
流量をフイードバツク信号として前記流量調節弁
4A,4Bそれぞれを制御する流量調節計6A,
6Bとを備えている。
Generally, as shown in Fig. 6, different gases A and B
The equipment for blowing into a molten metal refining furnace 1 such as a converter through a tuyere 2 immersed in high-temperature molten metal via piping includes flowmeters 3A, 3B, flow rate control valves 4A, 4.
B, gas supply line LA including shutoff valves 5A and 5B,
LB, and a flow rate regulator 6A that controls each of the flow rate regulating valves 4A and 4B using the gas flow rate measured by the flow meters 3A and 3B as a feedback signal.
6B.

このような設備における従来のガス流量制御及
びガス切替え制御は、第7図のタイムチヤートに
示す方式を採用するのが一般的である。
Conventional gas flow rate control and gas switching control in such equipment generally employs the method shown in the time chart of FIG.

即ち、精錬炉1の吹錬中にガスAからガスBに
切替える場合、例えばタイマーで設定された切替
えトリガータイミングでガスBの供給ラインLB
の遮断弁5Bに開の駆動指令を出し、該遮断弁5
Bが開になつたことを確認してから、先行ガスA
のガス供給ラインLAの遮断弁5Aを閉にする。
この時、双方のガス供給ラインLA,LBの流量調
節弁4A,4Bの動作は、それぞれ対応する遮断
弁5A,5Bが開状態である時には、流量フイー
ドバツク制御を、又、遮断弁5A,5Bが閉状態
である時には、プリセツト開度を保つ方式となつ
ている。この時、異種ガスへの切替えと共にガス
の性質が異なるので流量設定値も変更するのが普
通である。
That is, when switching from gas A to gas B during blowing in the refining furnace 1, for example, the supply line LB of gas B is switched at the switching trigger timing set by a timer.
A drive command to open the shutoff valve 5B is issued, and the shutoff valve 5B is opened.
After confirming that B is open, turn on the leading gas A.
Close the shutoff valve 5A of the gas supply line LA.
At this time, the operation of the flow rate control valves 4A and 4B of both gas supply lines LA and LB is such that when the corresponding cutoff valves 5A and 5B are open, flow rate feedback control is performed, and when the cutoff valves 5A and 5B are in the open state, When in the closed state, the preset opening degree is maintained. At this time, when switching to a different type of gas, it is common to change the flow rate setting value because the properties of the gas are different.

ところで、各ガスA,Bは、遮断弁5A,5B
以降のかなりの長さの配管及びヘツダー等を通つ
て羽口2に到達し、精錬炉1の溶融金属内へ吹込
まれる。この時、遮断弁5A,5Bと羽口6との
間の配管内の総体積(以下バツフアボリユームと
称する)が、緩衝的作用をなし、比較的安定な状
態での異種ガス間の切替えを可能にしている。
By the way, each gas A, B is connected to a cutoff valve 5A, 5B.
After passing through a considerable length of piping, header, etc., it reaches the tuyere 2 and is blown into the molten metal of the refining furnace 1. At this time, the total volume in the pipe between the shutoff valves 5A, 5B and the tuyere 6 (hereinafter referred to as buffer volume) acts as a buffer, allowing switching between different gases in a relatively stable state. making it possible.

又、異種ガスの切替えを行わずに単に流量の設
定値を変える場合には、流量調節計6A,6Bの
設定値を変更するだけであり、従つて、ガス流量
制御系自体の応答は、調整されたPIDパラメータ
とバルブの時定数に委ねられていた。
Furthermore, when simply changing the set value of the flow rate without switching between different gases, the set value of the flow rate controllers 6A and 6B is simply changed, and therefore the response of the gas flow rate control system itself is adjusted. was left to the PID parameters and valve time constants.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

一般に、底吹き精錬炉の底吹きプロセスガス制
御系では、羽口部の圧力損失の総圧力損失に対す
る割合いが大きいため、この羽口部の圧力損失
が、ガス流量・切替え制御系の制御の要点となつ
ている。この羽口の圧力流量特性(Tuyere
chart)は、圧縮性流体力学の基本的な原理を用
いて、理論的に算出することが可能である。
Generally, in the bottom-blown process gas control system of a bottom-blown smelting furnace, the pressure loss at the tuyere has a large proportion to the total pressure loss, so the pressure loss at the tuyere is the main factor in controlling the gas flow rate and switching control system. This is the main point. The pressure flow characteristics of this tuyere (Tuyere
chart) can be calculated theoretically using the basic principles of compressible fluid mechanics.

即ち、羽口内径が大きく、ガスが溶融金属中に
吹込まれるまでの熱収支が無視できる場合、即
ち、例えば内管からO2ガスを、外管からプロパ
ンガス等の冷却ガスを吹込む二重管羽口、あるい
は内径5mm程度の単管を10数本炉底に配列して不
活性ガスを吹込む羽口の場合には、等エントロピ
ー流における臨界条件から羽口のTuyere chart
を求めることができる。
In other words, when the inner diameter of the tuyere is large and the heat balance until the gas is blown into the molten metal can be ignored. In the case of a heavy pipe tuyere or a tuyere in which inert gas is blown into the furnace by arranging ten or more single pipes with an inner diameter of about 5 mm at the bottom of the furnace, the Tuyere chart of the tuyere is determined from the critical conditions in isentropic flow.
can be found.

又、羽口内径が小さく羽口管内を流れるガスの
熱収支が支配的になる場合、即ち、例えば、内径
1〜2mmの細管を数10本配置した羽口の場合に
は、Rayleigh流れを仮定することにより羽口の
Tuyere chartを求めることができる。
In addition, when the tuyere has a small inner diameter and the heat balance of the gas flowing inside the tuyere tube becomes dominant, for example, in the case of a tuyere with several dozen thin tubes with an inner diameter of 1 to 2 mm, Rayleigh flow is assumed. By doing so, the tuyere
You can ask for a Tuyere chart.

以上のように、羽口の圧力流量特性は、羽口の
種類に応じて求める方法は相違するものの、いず
れの場合でも、流量は圧力の関数となり、圧力が
ある定められた値より高くなると、一般的に線形
な関係を有する結果となる。
As mentioned above, although the method for determining the pressure-flow characteristics of a tuyere differs depending on the type of tuyere, in any case, the flow rate is a function of pressure, and when the pressure rises above a certain value, This generally results in a linear relationship.

このような特性を持つ羽口を使用して、第6図
に示すようなガス流量・切替制御系を構成する場
合、遮断弁5A,5Bと羽口2との間のバツフア
ボリユームが、実際に溶融金属内に吹込まれるガ
ス流量の速応性を逆に阻害する結果となるという
問題点を有する。
When tuyeres with such characteristics are used to construct a gas flow rate/switching control system as shown in FIG. However, there is a problem in that the rapid response of the gas flow rate blown into the molten metal is adversely affected.

即ち、冶金反応の観点からは、第8図に実線A
で示すような流量の応答性を得るのが理想的であ
る。又、バツフアボリユームに供給するガス流量
制御系の応答は、流量調節計のPIDパラメータを
最適値にした場合、一点鎖線Bに示す波形とな
る。ところが、実際にバツフアボリユームから羽
口を通して溶融金属内に吹込まれるガス流量の応
答波形は、バツフアボリユームの影響により破線
Cで示すようになる。しかも、バツフアボリユー
ムが大きければ大きい程、又、羽口のTuyere
chartにおける流量/圧力の傾きが小さければ小
さい程、実際に溶融金属内に吹込まれるガス流量
の速応性が悪くなる結果となる。
That is, from the viewpoint of metallurgical reactions, the solid line A in FIG.
It is ideal to obtain a flow rate response as shown in . Further, the response of the gas flow rate control system supplied to the buffer volume has a waveform shown by a dashed-dotted line B when the PID parameter of the flow rate controller is set to the optimum value. However, the response waveform of the gas flow rate actually blown into the molten metal from the buffer volume through the tuyere becomes as shown by the broken line C due to the influence of the buffer volume. Moreover, the larger the tuyeres, the larger the tuyeres.
The smaller the gradient of flow rate/pressure in the chart, the worse the responsiveness of the gas flow rate actually blown into the molten metal.

〔発明の目的〕[Purpose of the invention]

本発明は、前記従来の問題点を解消するべくな
されたもので、精錬炉における吹込ガス流量制御
系で、ガスの吹込み流量設定値をステツプ的に大
幅に変更する場合や吹込みガスの種類を切替える
場合において、実際に羽口から溶融金属内に吹込
まれるガス流量の立上り又は立下りを速くするよ
うにして、過渡応答特性を著しく改善することの
できる精錬炉の吹込ガス流量制御方法を提供する
ことを目的とする。
The present invention has been made to solve the above-mentioned conventional problems, and is used when the blowing gas flow rate control system in a refining furnace is used to significantly change the set value of the gas blowing flow rate in steps or when changing the type of blowing gas. A method for controlling the flow rate of blown gas in a smelting furnace that can significantly improve transient response characteristics by speeding up the rise or fall of the gas flow rate actually blown into the molten metal from the tuyere when switching the gas flow rate into the molten metal. The purpose is to provide.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、測定ガス流量を調節弁にフイードバ
ツクして設定流量となるようにガス流量を制御す
る定流量制御によつて、羽口から精錬炉内に吹込
まれるガス流量を制御する精錬炉の吹込ガス流量
制御方法において、第1図にその要旨を示す如
く、ガスの吹込流量設定値をステツプ的に大幅に
変更、若しくは、ガス種類を変更する際に、ま
ず、前記定流量制御から、測定羽口背圧を前記調
節弁にフイードバツクしてガス圧力を制御する定
圧力制御へと切替え、次いで、前記羽口背圧が、
流量圧力特性曲線に基づき変更後の流量設定値に
関連させて定めた圧力設定値に達した時に、該羽
口背圧による定圧力制御から前記定流量制御へと
復帰することにより、前記目的を達成したもので
ある。
The present invention provides a refining furnace that controls the gas flow rate injected into the refining furnace from the tuyere by constant flow control that controls the gas flow rate to a set flow rate by feeding back the measured gas flow rate to a control valve. In the blown gas flow rate control method, as shown in Fig. 1, when changing the set value of the gas blown flow rate in steps or changing the type of gas, first, the constant flow rate control is changed to the measurement mode. Switching to constant pressure control in which the tuyere back pressure is fed back to the control valve to control the gas pressure, and then the tuyere back pressure is
When the pressure setting value determined in relation to the changed flow rate setting value based on the flow rate pressure characteristic curve is reached, the constant pressure control using the tuyere back pressure returns to the constant flow rate control, thereby achieving the above purpose. This has been achieved.

〔作用〕[Effect]

前述したように、等エントロピー流れあるいは
Rayleigh流れを仮定することによつて、羽口か
ら炉内へ吹込まれるガスの流量は羽口背圧の関数
として表される。従つて、羽口圧力から算術的に
吹込みガス流量を求めることが可能である。
As mentioned above, isentropic flow or
By assuming Rayleigh flow, the flow rate of gas blown into the furnace from the tuyere can be expressed as a function of tuyere backpressure. Therefore, it is possible to calculate the blown gas flow rate arithmetically from the tuyere pressure.

本発明は、この点に着目してなされたもので、
羽口背圧を測定し、その値を指標にして、流量調
節弁の制御モードを切替えることにより、実際に
羽口から精錬炉内の溶融金属に吹込まれるガス流
量の過渡応答特性を著しく改善するようにしたも
のである。
The present invention has been made focusing on this point,
By measuring the tuyere back pressure and using that value as an index to switch the control mode of the flow control valve, we have significantly improved the transient response characteristics of the gas flow rate that is actually injected from the tuyere into the molten metal in the smelting furnace. It was designed to do so.

即ち、本発明においては、測定ガス流量を調節
弁にフイードバツクして設定流量となるようにガ
ス流量を制御する定流量制御によつて、羽口から
精錬炉内に吹込まれるガス流量を制御するに際
し、ガスの吹込流量設定値をステツプ的に大幅に
変更、若しくは、ガス種類を変更する際に、ま
ず、前記定流量制御から、測定羽口背圧を前記調
節弁にフイードバツクしてガス圧力を制御する定
圧力制御へと切替え、次いで、前記羽口背圧が、
流量圧力特性曲線に基づき変更後の流量設定値に
関連させて定めた圧力設定値に達した時に、該羽
口背圧による定圧力制御から前記定流量制御へと
復帰するようにしている。従つて、ガスの吹込み
流量設定値をステツプ的に大幅に変更する場合や
吹込みガスの種類を切替える場合等に発生する、
羽口部での圧力損失及びバルブデツキから羽口ま
でのバツフアボリユームの影響に起因した、精錬
炉内の溶融金属への実吹込み量の速応性に支障が
でる不都合を解消することができる。即ち、羽口
からの吹込みガス流量の応答性を著しく改善する
ことができる。
That is, in the present invention, the gas flow rate blown into the refining furnace from the tuyere is controlled by constant flow control in which the measured gas flow rate is fed back to the control valve and the gas flow rate is controlled to a set flow rate. When significantly changing the set value of the gas blowing flow rate in steps or changing the type of gas, first, from the constant flow rate control, the measured tuyere back pressure is fed back to the control valve to adjust the gas pressure. The control switches to constant pressure control, and then the tuyere backpressure is
When the pressure setting value determined in relation to the changed flow rate setting value based on the flow rate pressure characteristic curve is reached, the constant pressure control based on the tuyere back pressure is returned to the constant flow rate control. Therefore, this problem may occur when changing the gas injection flow rate setting value step by step or changing the type of injection gas.
It is possible to eliminate the inconvenience of impeding the quick response of the actual amount of injection into the molten metal in the smelting furnace due to pressure loss at the tuyere portion and the influence of the buffer volume from the valve deck to the tuyere. That is, the responsiveness of the flow rate of gas blown from the tuyere can be significantly improved.

〔実施例〕〔Example〕

以下図面を参照して、本発明が採用された転炉
の底吹きガス流量制御装置の実施例を詳細に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a bottom-blown gas flow rate control device for a converter to which the present invention is applied will be described in detail with reference to the drawings.

本実施例は、第2図に示す如く、流量計14
A,14B、流量調節弁16A,16B、遮断弁
18A,18Bを備えた、転炉10内へ羽口12
を通じてガスA,Bを供給する、ガス供給ライン
LA,LBと、該ガス供給ラインLA,LBの精錬炉
10の羽口12近傍に設置した圧力計20と、前
記流量計14A,14Bで測定されたガス流量を
フイードバツク信号として前記流量調節弁16
A,16Bそれぞれを定流量制御する流量調節計
22A,22Bと、前記圧力計20で測定された
羽口背圧信号をフイードバツク信号として、流量
調節弁16A,16Bを定圧力制御する圧力調節
計24と、前記流量調節計22A,22Bと圧力
調節計24とからの制御信号を、選択して切替え
る信号切替回路26A,26Bとで構成される。
In this embodiment, as shown in FIG.
A, 14B, flow control valves 16A, 16B, and cutoff valves 18A, 18B, the tuyere 12 is inserted into the converter 10.
Gas supply line that supplies gas A and B through
LA, LB, a pressure gauge 20 installed near the tuyere 12 of the refining furnace 10 of the gas supply lines LA, LB, and the gas flow rate measured by the flowmeters 14A, 14B as a feedback signal to the flow rate regulating valve 16.
Flow rate regulators 22A and 22B that control constant flow rates for the flow rate regulating valves 16A and 16B, respectively, and a pressure regulator 24 that controls the flow rate regulating valves 16A and 16B at constant pressure using the tuyere back pressure signal measured by the pressure gauge 20 as a feedback signal. and signal switching circuits 26A, 26B that selectively switch control signals from the flow rate regulators 22A, 22B and the pressure regulator 24.

前記信号切替回路26A,26Bは、次のよう
にして流量調節弁16A,16Bに出力する信号
を選択する。即ち、定常制御状態では、信号切替
回路26A,26Bによつて、流量調節計22
A,22Bの出力を流量調節弁16A,16Bに
伝達する。又、ガス切替え時や、あるいは流量設
定値を大幅に変化させる時の過渡状態では、羽口
背圧が予め決定された圧力設定値に到達するまで
の間は、信号切替回路26A,26Bを切替えて
圧力調節計24の出力を流量調節弁16A,16
Bに伝達する。なお、この過渡状態における羽口
背圧の圧力設定値及び圧力調節計24が出力する
圧力設定値は、羽口の圧力流量特性に基づいて決
定する。
The signal switching circuits 26A, 26B select the signals to be output to the flow control valves 16A, 16B in the following manner. That is, in the steady control state, the signal switching circuits 26A and 26B control the flow rate controller 22.
The outputs of A and 22B are transmitted to flow control valves 16A and 16B. In addition, in a transient state when switching gases or changing the flow rate setting value significantly, the signal switching circuits 26A and 26B are switched until the tuyere back pressure reaches a predetermined pressure setting value. The output of the pressure regulator 24 is connected to the flow rate regulating valves 16A, 16.
Communicate to B. Note that the pressure set value of the tuyere back pressure and the pressure set value output by the pressure regulator 24 in this transient state are determined based on the pressure flow characteristics of the tuyere.

具体的には、羽口圧力に対する流量の関係(圧
力流量特性)は、第3図に示す如く、f=F(P)
なる関数で表わすことが可能あり、流量fを与え
ると、逆関数F-1(f)でもつて圧力Pを計算す
ることができる。従つて流量設定値S1、S2′と羽
口の圧力流量特性から求められる関係式f=F
(P)とを用いて、圧力設定値PをP=F-1(S)
の関係式から求める。この場合、制御系の時定数
を考慮してPmax−σを域値(圧力設定値)とす
る。但し、σは微小圧力値である。なお、場合に
よつてはこの域値は前記圧力設定値P=F-1(S)
として設定してもよい。
Specifically, the relationship between the flow rate and the tuyere pressure (pressure flow rate characteristic) is as shown in Fig. 3, f=F(P).
If the flow rate f is given, the pressure P can be calculated using the inverse function F -1 (f). Therefore, the relational expression f=F obtained from the flow rate set values S 1 , S 2 ′ and the pressure flow characteristics of the tuyere
(P) to calculate the pressure setting value P=F -1 (S)
It is obtained from the relational expression. In this case, Pmax-σ is set as the threshold value (pressure setting value) in consideration of the time constant of the control system. However, σ is a minute pressure value. In addition, in some cases, this threshold value may be the pressure setting value P=F -1 (S)
You can also set it as .

次に、本実施例の作用を説明する。 Next, the operation of this embodiment will be explained.

先ず、ガスAの流量を設定値S1からS2にステツ
プ的に大幅に増加させる場合について説明する。
First, a case will be described in which the flow rate of gas A is significantly increased stepwise from the set value S1 to S2 .

第4図は流量設定値を低位レベルS1から高位レ
ベルS2へステツプ的に大幅に流量を変化させた場
合の制御系の動き及び流量圧力推移を示すもので
ある。
FIG. 4 shows the movement of the control system and the flow rate pressure transition when the flow rate setting value is significantly changed stepwise from the lower level S1 to the higher level S2 .

まず、第2図において、ガスAのガス供給ライ
ンLAでは、遮断弁18Aが開であり、流量調節
弁16Aは、流量調節計22Aにより、該流量調
節計22Aで設定した流量設定値S1になるように
流量計14Aからの測定流量をフイードバツクし
て開度調整される。従つて、ガスAは定流量制御
されて羽口12から精錬炉10内に吹き込まれ
る。この時、圧力計20によつて測定される羽口
12の背圧pはp=F-1(S1)に極近い値で安定
している。このようなガスA系の定流量制御の時
は、信号切替回路26Aは流量調節計22A側に
つながつており、流量計14AによつてガスAの
流量を測定しながら定流量S1になるように調節弁
16Aの開度が制御される。
First, in FIG. 2, in the gas supply line LA of gas A, the cutoff valve 18A is open, and the flow rate adjustment valve 16A is controlled by the flow rate controller 22A to the flow rate setting value S 1 set by the flow rate controller 22A. The opening degree is adjusted by feeding back the measured flow rate from the flow meter 14A. Therefore, the gas A is blown into the refining furnace 10 from the tuyere 12 under constant flow control. At this time, the back pressure p of the tuyere 12 measured by the pressure gauge 20 is stable at a value extremely close to p=F -1 (S 1 ). During such constant flow control of the gas A system, the signal switching circuit 26A is connected to the flow rate controller 22A side, and the flow meter 14A measures the flow rate of gas A so that the flow rate becomes constant S1 . The opening degree of the control valve 16A is controlled.

次に、第4図における時刻t1に流量を流量設定
値S1からS2に大幅に上昇させる操作が次の手順に
より行われる。
Next, at time t 1 in FIG. 4, an operation to significantly increase the flow rate from the flow rate set value S 1 to S 2 is performed according to the following procedure.

ガスAの流量が流量設定値S2になつた時の羽口
12の予想圧力は、第3図に示されるTuyere
chartを用いて、F-1(S2)として求まるので、
{F-1(S2)−σ}を羽口背圧の域値として定める。
なお、ここでF-1(S2)そのものを、域値として
も定めることができるが、ここでは制御系の時定
数を考慮し、安全をみて羽口背圧の域値を{F-1
(S2)−σ}とする。
The expected pressure at the tuyere 12 when the flow rate of gas A reaches the set flow rate S2 is the Tuyere pressure shown in FIG.
Using the chart, it can be found as F -1 (S 2 ), so
Define {F −1 (S 2 ) − σ} as the threshold of tuyere back pressure.
Note that F -1 (S 2 ) itself can also be determined as a threshold value, but here we consider the time constant of the control system and, for safety, set the threshold value of the tuyere backpressure as {F -1
(S 2 )−σ}.

切替え後のガスAの流量設定値はS2であるが、
トリガータイミングとしての時刻t1に切替え指令
により信号切替回路26Aが切替わり、ガスAの
流量制御は、流量調節計22Aによる定流量制御
から圧力調節計24Aによる定圧力制御へ切替わ
る。このようにして、圧力調節計24Aは{F-1
(S2)−σ}を羽口背圧域値として、圧力計20A
によつて測定された圧力を流量調節弁16Aにフ
イードバツクする定圧力制御に入る。この結果、
第4図に示すような圧力推移により羽口背圧は
F-1(S1)から{F-1(S2)−σ}に上昇する。これ
に伴なつて流量計14Aによつて測定されるガス
Aの流量は、第4図aに示す如く、急激に立ち上
がる。この圧力上昇過程において、ガスAの流量
は流量設定値S2をオーバーした後一定値を示すよ
うになり、一方、羽口背圧は域値{F-1(S2)−
σ}に達する。このことは、流量調節弁16Aと
羽口12との間のバツフアボリユームにガスAが
充圧されたことを示すものに他ならない。この立
ち上がり期間t1〜t2の圧力立ち上がり曲線DEをg
(t−t1)で表わすと、実際に羽口12から精錬
炉10内に吹込まれるガスAの流量は、F{g(t
−t1)}となる。この流量は、目的とする流量設
定値S2より少ないけれども、従来の流量制御と比
較すると、吹込み流量の立ち上がりははるかに早
くなる。
The flow rate setting value of gas A after switching is S2 , but
At time t1 as the trigger timing, the signal switching circuit 26A is switched by the switching command, and the flow rate control of the gas A is switched from constant flow rate control by the flow rate regulator 22A to constant pressure control by the pressure regulator 24A. In this way, the pressure regulator 24A becomes {F -1
(S 2 )-σ} is the tuyere back pressure range value, pressure gauge 20A
Constant pressure control is entered in which the pressure measured by is fed back to the flow control valve 16A. As a result,
Due to the pressure transition as shown in Figure 4, the tuyere back pressure is
It increases from F -1 (S 1 ) to {F -1 (S 2 )−σ}. Along with this, the flow rate of gas A measured by the flow meter 14A rises rapidly, as shown in FIG. 4a. In this pressure increase process, the flow rate of gas A reaches a constant value after exceeding the flow rate set value S 2 , while the tuyere back pressure reaches the threshold value {F -1 (S 2 ) -
σ} is reached. This only indicates that the buffer volume between the flow control valve 16A and the tuyere 12 is filled with gas A. The pressure rise curve DE during this rise period t 1 to t 2 is expressed as g
(t-t 1 ), the flow rate of gas A actually blown into the refining furnace 10 from the tuyere 12 is F{g(t
−t 1 )}. Although this flow rate is less than the target flow rate set value S2 , the rise in the blowing flow rate is much faster when compared with conventional flow rate control.

羽口背圧が上昇して域値{F-1(S2)−σ}にな
つたことが圧力計20によつて検出されると、信
号切替回路26Aが切替り、流量調節計22Aは
流量設定値をS2とした定流量制御に戻る。
When the pressure gauge 20 detects that the tuyere back pressure has increased to the threshold value {F -1 (S 2 ) - σ}, the signal switching circuit 26A switches, and the flow rate controller 22A changes. Return to constant flow control with flow rate set value S2 .

このようにして、流量調節弁16Aは流量計1
4Aの測定値をフイードバツクして流量が設定値
S2になるように定流量制御されることになる。こ
れに伴なつて羽口背圧もF-1(S2)近傍で安定し、
以後、設定値S2で羽口からガスAが継続的に吹出
される。
In this way, the flow rate control valve 16A is controlled by the flow meter 1.
Feedback the measured value of 4A and set the flow rate.
The constant flow rate will be controlled so that S2 . Along with this, the tuyere backpressure stabilizes around F -1 (S 2 ),
Thereafter, gas A is continuously blown out from the tuyeres at the set value S2 .

以上、ガスAをステツプ的に大幅に増加する場
合について説明したが、ステツプ的に大幅に減少
する時にも、前記羽口の圧力流量特性から求めた
流量の少ないレベルでの圧力域値により、同様な
操作で適用が可能である。
Above, we have explained the case where gas A is significantly increased in steps, but even when it is significantly decreased in steps, the same applies based on the pressure range value at a low flow rate level determined from the pressure flow characteristics of the tuyere. It can be applied with simple operations.

次に、ガスAからガスBに切替える場合を説明
する。
Next, the case of switching from gas A to gas B will be described.

ガスAは、流量調節計22Aによつて流量調節
弁16Aを制御することで、定流量制御されてい
る。次に、切替えトリガータイミングでガスBの
遮断弁18Bに開の駆動指令を出力し、この遮断
弁18Bが開になつたことを確認してから、先行
ガスAの遮断弁18Aを閉にして、ガスAからガ
スBに切替える。この切替えトリガータイミング
で、信号切替回路26Bの指令により、圧力調節
計24による流量調節弁16Bの定圧力制御に入
る。
The gas A is controlled to have a constant flow rate by controlling the flow rate control valve 16A using the flow rate controller 22A. Next, at the switching trigger timing, an open drive command is output to the gas B cutoff valve 18B, and after confirming that the cutoff valve 18B is open, the preceding gas A cutoff valve 18A is closed. Switch from gas A to gas B. At this switching trigger timing, the pressure regulator 24 enters constant pressure control of the flow rate regulating valve 16B in response to a command from the signal switching circuit 26B.

次に、羽口背圧が域値に達したら、信号切替回
路26Bの指令により、流量調節弁16Bは流量
調節計22Bによる切替え後の設定流量値によつ
て定流量制御に切替えられる。
Next, when the tuyere back pressure reaches the threshold value, the flow rate control valve 16B is switched to constant flow rate control according to the set flow rate value after switching by the flow rate controller 22B in response to a command from the signal switching circuit 26B.

以上のように、ガスAからガスBに切替える場
合も、基本的には前述したガスAを大幅に増加す
る時の操作と同じものとなる。
As described above, when switching from gas A to gas B, the operation is basically the same as the operation when significantly increasing the amount of gas A described above.

以下、180t転炉により溶鋼撹拌のため羽口から
不活性ガスを吹込んだ時の、本発明の実施結果を
説明する。第5図は、N2ガスで流量設定値を5N
m3から20Nm3に変えた場合の実際に羽口から吹込
まれるガス流量の推移を示したものである。図中
の破線Fは従来の方式の結果を示すものであり、
実線Gは本発明を適用した場合の結果を示すもの
である。なお、バツフアボリユームは0.233m3
ある。又、域値は19Nm3/minとしている。この
第5図からも明らかなように、従来方式の場合、
設定値の95%に流量が到達するまで36.1秒の時間
を要しているが、本発明によれば、その約1/3の
13.5秒の時間で95%に到達しており、実吹込み流
量の立ち上がりが早くなつていることがわかる。
Hereinafter, the results of implementing the present invention when inert gas was blown from the tuyere to stir molten steel in a 180t converter will be explained. Figure 5 shows the flow rate setting value of 5N using N2 gas.
This figure shows the change in the gas flow rate actually blown from the tuyere when changing from m3 to 20Nm3 . The broken line F in the figure shows the results of the conventional method,
A solid line G shows the result when the present invention is applied. The area of Batufu Aboruium is 0.233m3 . Also, the threshold value is set to 19Nm 3 /min. As is clear from Fig. 5, in the case of the conventional method,
It takes 36.1 seconds for the flow rate to reach 95% of the set value, but according to the present invention, it takes about 1/3 of that time.
It reaches 95% in 13.5 seconds, which shows that the actual blowing flow rate rises quickly.

なお、前記実施例は転炉10に採用したもので
あるが、本発明はこれに限定されることなく、転
炉以外の精錬炉に採用するようにしてもよい。
In addition, although the said Example was employ|adopted to the converter 10, this invention is not limited to this and may be made to employ|adopt to a refining furnace other than a converter.

又、前記実施例においては、ガスを底吹きとし
たが、本発明はこれに限定されることなく、底吹
き以外であつても適用が可能である。
Further, in the above embodiments, the gas is bottom blown, but the present invention is not limited to this, and can be applied to other types of gas than bottom blown.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、本発明によれば、吹込ガス
流量制御系で、ガスの吹込み流量設定値をステツ
プ的に大幅に変更する場合や、吹込みガスの種類
を切替える場合等において、実際に羽口から炉内
に吹込まれるガス流量の過渡応答特性を著しく改
善することができるという優れた効果を有する。
As explained above, according to the present invention, when the blowing gas flow rate control system significantly changes the gas blowing flow rate set value stepwise or when changing the type of blowing gas, etc. This has the excellent effect of significantly improving the transient response characteristics of the gas flow rate blown into the furnace through the mouth.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る精錬炉の吹込ガス流量
制御方法の要旨を示す流れ図、第2図は、本発明
が採用された転炉の底吹きガス流量制御装置の実
施例の全体構成を示す、一部ブロツク線図を含む
正面図及び断面図、第3図は、前記実施例におけ
る羽口の圧力流量特性(Tuyere chart)の例を
示す線図、第4図は、前記実施例における流量推
移及び圧力推移の例を示す線図、第5図は、前記
実施例の実施結果を従来法と比較して示す線図、
第6図は、従来の転炉の底吹きガス流量制御装置
の全体構成を示す、一部ブロツク線図を含む正面
図及び断面図、第7図は、同じくガス切替えのタ
イムチヤートを示す線図、第8図は、同じく、流
量過渡特性を示す線図である。 10……転炉、12……羽口、14A,14B
……流量計、16A,16B……流量調節弁、1
8A,18B……遮断弁、20……圧力計、22
A,22B……流量調節計、24A……圧力調節
計、26A…26B……信号切替回路。
FIG. 1 is a flowchart showing the gist of the method for controlling the flow rate of blown gas in a refining furnace according to the present invention, and FIG. 2 shows the overall configuration of an embodiment of a bottom-blown gas flow rate control device for a converter in which the present invention is adopted. 3 is a diagram showing an example of the pressure flow characteristics (Tuyere chart) of the tuyere in the above embodiment, and FIG. 4 is a front view and a sectional view including a partial block diagram. A diagram illustrating an example of a flow rate transition and a pressure transition; FIG.
Fig. 6 is a front view and a sectional view including a partial block diagram showing the overall configuration of a conventional bottom blowing gas flow rate control device for a converter, and Fig. 7 is a diagram showing a time chart of gas switching. , FIG. 8 is a diagram similarly showing flow rate transient characteristics. 10... Converter, 12... Tuyere, 14A, 14B
...Flowmeter, 16A, 16B...Flow rate control valve, 1
8A, 18B...Shutoff valve, 20...Pressure gauge, 22
A, 22B...Flow rate controller, 24A...Pressure regulator, 26A...26B...Signal switching circuit.

Claims (1)

【特許請求の範囲】 1 測定ガス流量を調節弁にフイードバツクして
設定流量となるようにガス流量を制御する定流量
制御によつて、羽口から精錬炉内に吹込まれるガ
ス流量を制御する精錬炉の吹込ガス流量制御方法
において、 ガスの吹込流量設定値をステツプ的に大幅に変
更、若しくは、ガス種類を変更する際に、 まず、前記定流量制御から、測定羽口背圧を前
記調節弁にフイードバツクしてガス圧力を制御す
る定圧力制御へと切替え、 次いで、前記羽口背圧が、流量圧力特性曲線に
基づき変更後の流量設定値に関連させて定めた圧
力設定値に達した時に、該羽口背圧による定圧力
制御から前記定流量制御へと復帰することを特徴
とする精錬炉の吹込ガス流量制御方法。
[Claims] 1. The gas flow rate blown into the refining furnace from the tuyere is controlled by constant flow control, which controls the gas flow rate to a set flow rate by feeding back the measured gas flow rate to the control valve. In the blowing gas flow rate control method for a refining furnace, when significantly changing the gas blowing flow rate set value in steps or changing the gas type, first, from the constant flow rate control, the measured tuyere back pressure is adjusted as described above. Switching to constant pressure control in which gas pressure is controlled by feedback to the valve, and then the tuyere back pressure reaches a pressure set value determined in relation to the changed flow rate set value based on the flow rate pressure characteristic curve. A blowing gas flow rate control method for a refining furnace, characterized in that, at times, the constant pressure control using the tuyere back pressure returns to the constant flow rate control.
JP13135385A 1985-06-17 1985-06-17 Method for controlling flow rate of gas to be blown to refining furnace Granted JPS61291910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13135385A JPS61291910A (en) 1985-06-17 1985-06-17 Method for controlling flow rate of gas to be blown to refining furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13135385A JPS61291910A (en) 1985-06-17 1985-06-17 Method for controlling flow rate of gas to be blown to refining furnace

Publications (2)

Publication Number Publication Date
JPS61291910A JPS61291910A (en) 1986-12-22
JPS6315324B2 true JPS6315324B2 (en) 1988-04-04

Family

ID=15055943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13135385A Granted JPS61291910A (en) 1985-06-17 1985-06-17 Method for controlling flow rate of gas to be blown to refining furnace

Country Status (1)

Country Link
JP (1) JPS61291910A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559246U (en) * 1992-01-20 1993-08-06 オーバル機器工業株式会社 Bearing structure of positive displacement flowmeter
JP2527738Y2 (en) * 1990-05-15 1997-03-05 日本精工株式会社 Bearing device for semi-floating axle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2527738Y2 (en) * 1990-05-15 1997-03-05 日本精工株式会社 Bearing device for semi-floating axle
JPH0559246U (en) * 1992-01-20 1993-08-06 オーバル機器工業株式会社 Bearing structure of positive displacement flowmeter

Also Published As

Publication number Publication date
JPS61291910A (en) 1986-12-22

Similar Documents

Publication Publication Date Title
US6688532B2 (en) Controller, temperature controller and heat processor using same
US5901758A (en) Method of filling gas containers
US11340635B2 (en) Flow rate control apparatus, flow rate control method, and program recording medium having recorded therein program for flow rate control apparatus
JPS6315324B2 (en)
JPS6315323B2 (en)
JPS6317888B2 (en)
JP3404847B2 (en) Flow control method
US5028258A (en) Process of controlling the slag in a top-blowing steelmaking converter
JPH0994451A (en) Gas mixer
KR100328949B1 (en) Apparatus for controlling cooling water of wire rod water quenching
JPS59157433A (en) Method of controlling water temperature
JPH01118034A (en) Mixer for hot water and water
CN207619478U (en) A kind of abrasion-proof steel ball quenching bath temperature regulating device
GB1167873A (en) Method for the Automatic Control and Regulation of the Basic-Oxygen Process.
SU1301845A1 (en) Device for controlling gas supply to converter tuyeres
JPH01234700A (en) Steam tracing device
SU1093706A1 (en) Device for controlling metal blowing
JP2737139B2 (en) Blast furnace heat control system
JP3546121B2 (en) Fluid pressure control device in pipeline
JPH03236422A (en) Method for controlling sheet temperature in continuous annealing furnace
JPS5881547A (en) Level controlling system of molten metal
RU2106411C1 (en) System of automatic regulation of pressure of blast-furnace gas
SU1575158A1 (en) Method of controlling the process of emulsion polymerization of styrene
SU1155350A2 (en) Method of regulating secondary cooling of ingots in continuous metal casting
JPS626602B2 (en)