JPS6129143A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6129143A
JPS6129143A JP14954484A JP14954484A JPS6129143A JP S6129143 A JPS6129143 A JP S6129143A JP 14954484 A JP14954484 A JP 14954484A JP 14954484 A JP14954484 A JP 14954484A JP S6129143 A JPS6129143 A JP S6129143A
Authority
JP
Japan
Prior art keywords
chip
electrode
resin
source electrode
beryllia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14954484A
Other languages
Japanese (ja)
Inventor
Akira Masuda
章 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14954484A priority Critical patent/JPS6129143A/en
Publication of JPS6129143A publication Critical patent/JPS6129143A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Landscapes

  • Wire Bonding (AREA)

Abstract

PURPOSE:To reduce a floating capacity between a parasitic inductance between a chip and a GND, and electrodes by providing a hold in a beryllia resin, and bonding a semiconductor chip on a metal projection to be inserted. CONSTITUTION:The opposed side and bottom of a beryllia resin 11 are coated with a metal plate 12 to become a source electrode, and a gate electrode 13 and a drain electrode 14 are secured. A hole 15 is opened at the center, and a MOSFET chip 16 is soldered onto the projection 12a inserted into the hole. The electrode 12 is soldered by a solder 23 to an earth pattern 22 on a printed board 21, the chip 16 and the pattern 22 are connected at the shortest distance, and a distance between the source electrode and other electrodes becomes large.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、バイポーラトランジスタ、MO8電界効果ト
ランジスタ(以下においてMOSFETという)などの
半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to semiconductor devices such as bipolar transistors and MO8 field effect transistors (hereinafter referred to as MOSFETs).

〔背景技術〕[Background technology]

バイポーラトランジスタ、MOSFETとも、数百MH
z〜数GHzもの高周波回路に使用されるようになっ℃
きた。特にMOSFETについては、[エレクトロニク
ス全書J[3](1978年5月28日第4版MOSデ
バイス、工業調査会発行、P12〜P17)には、バイ
ポーラトランジスタと比較したMOSFETの種々の利
点が記載されている。
Both bipolar transistor and MOSFET have several hundred MH
Became used in high frequency circuits ranging from z to several GHz℃
came. Regarding MOSFETs in particular, [Electronics Complete Book J [3] (May 28, 1978, 4th edition MOS devices, published by Kogyo Kenkyukai, pages 12-17) describes various advantages of MOSFETs compared to bipolar transistors. ing.

本発明者は、バイポーラトランジスタはもとより上記M
O8FETをUHF (Ultra Highpreq
uency )帯以上(例えば数100MHz以上)の
周波数を扱う無線通信機用増幅器として使用することを
検討し、MOSFETの高周波特性改善、     ′
高出力化のために各種の技術的検討を行った。
The present inventor has developed not only the bipolar transistor but also the above-mentioned M
O8FET to UHF (Ultra High preq)
We are considering using it as an amplifier for wireless communication equipment that handles frequencies above the frequency range (for example, several hundred MHz or more), and improving the high frequency characteristics of MOSFETs.
Various technical studies were conducted to increase output.

ここで、上記無線通信機として検討された送信システム
の概要を第5図及び第6図を参照して説明する。
Here, an overview of the transmission system considered as the wireless communication device will be explained with reference to FIGS. 5 and 6.

搬送波信号(例えば80MHz〜900MHz)e7と
変調信号(例えばオーディオ信号)eaとは、変調回路
1によってFM変調される。2はバンドパスフィルタ、
3. 4. 5は多段接続された増幅器であり、そのう
ち増幅器5は第2図に示す如く帯域増幅器の形態になさ
れ・ている。また、6はバンドパスフィルタであり、出
力回路7は出力5W〜10W程度の電波をアンテナ8か
ら放射し得るよ5に構成されている。
A carrier wave signal (for example, 80 MHz to 900 MHz) e7 and a modulation signal (for example, an audio signal) ea are subjected to FM modulation by the modulation circuit 1. 2 is a band pass filter,
3. 4. Reference numeral 5 designates amplifiers connected in multiple stages, of which amplifier 5 is in the form of a band amplifier as shown in FIG. Further, 6 is a band pass filter, and the output circuit 7 is configured as 5 to be able to radiate radio waves with an output of about 5 W to 10 W from the antenna 8.

増幅器5において、QlはMOSFETでありゲー)G
には結合コンデンサC8を介して入力信号が供給される
。コイルIJI+ コンデンサC2は入力同調回路を構
成し、ドレインDにはコイルL、l  コンデンサC4
で構成された出力同調回路。
In the amplifier 5, Ql is a MOSFET and G
is supplied with an input signal via a coupling capacitor C8. Coil IJI + capacitor C2 constitutes an input tuning circuit, and drain D has coils L, l and capacitor C4.
Output tuning circuit consisting of.

直流阻止用コンデンサC8とが設けられている。A DC blocking capacitor C8 is provided.

本発明者は、上述の如く使用されるMOSFET 0.
1の構造に関し、以下に述べる如き技術を開発した。
The inventor has proposed a MOSFET 0.0 to be used as described above.
Regarding the structure of No. 1, we have developed the following technology.

すなわち、導電体層となるAuメッキを施こした絶縁体
のステム(パッケージのベース)中央表面部に、ソース
電極Sをチップ下面から導出する構造の51M08FE
Tを導電性ペーストを用いて接合スる。上記ステムのA
uメッキは、顧客使用時にはGNDに接続される。
In other words, the 51M08FE has a structure in which the source electrode S is led out from the bottom surface of the chip at the center surface of the insulator stem (base of the package) plated with Au to serve as the conductor layer.
Connect the T using conductive paste. A of the above stem
The u-plating is connected to GND during customer use.

そして、ゲートGとドレインDとは、互いに対向し合う
くし形電極とし、この電極とノくソケージの両端部に設
けられたリードとをAuワイヤーを用いてワイヤーボン
ディングを行う。次に上記ステムをセラミック等の材料
よりなる封止体を用いて上面から封止し、気密封止パッ
ケージを形成するものである。
The gate G and drain D are comb-shaped electrodes facing each other, and wire bonding is performed between these electrodes and leads provided at both ends of the cross cage using Au wires. Next, the stem is sealed from above using a sealing body made of a material such as ceramic to form a hermetically sealed package.

しかし、かかる技術においては、増幅度を上げるために
MOSFETのチップサイズを大にしたり、或いは複数
のMO8FETチップを上記ステム上に設ける場合、A
uメッキを施こしたステム面積も大になり、ソースSと
GNDとの間、言(・換えればチップ下面から接地面ま
での距離が長くなり、第2図に点線で示した寄生イイダ
クタンスL、が太になることが判明した。また、ソース
面とゲート面、ソース面とドレイン面とが近接している
ため、不要な浮遊容量COが形成されてしまうことも判
明した。
However, in this technology, when increasing the MOSFET chip size to increase the amplification degree or when providing multiple MO8FET chips on the stem, A
The U-plated stem area also becomes larger, and the distance between the source S and GND (in other words, the distance from the bottom surface of the chip to the ground plane becomes longer), which increases the parasitic inductance L shown by the dotted line in Figure 2. It was also found that unnecessary stray capacitance CO was formed because the source surface and the gate surface and the source surface and the drain surface were close to each other.

ところで、「高周波回路の設計」(昭和50年11月2
5日第7版発行、発行所CQ出版株式会社、P2O)に
は、電子回路において導体のインダクタンスで信号の帰
還が生じないようにする必要がある旨の記述がみられる
By the way, "High Frequency Circuit Design" (November 2, 1975)
The 7th edition published on the 5th, published by CQ Publishing Co., Ltd., P2O) states that it is necessary to prevent signal feedback from occurring due to the inductance of conductors in electronic circuits.

これと同様に、上記MO8FETにおいても、上記寄生
インダクタンスが犬になることによって、入出力マツチ
ングを行うときに寄生インダクタンスに影響(周波数変
化に応答したインピーダンス変化等)されて、出力電力
が低下し、かつ帰還量の増加が発生し、安定動作ができ
ずに異常発振が発生する可能性が大になる、などの問題
点が明らかにされた。
Similarly, in the MO8FET, the parasitic inductance becomes a dog, and when input/output matching is performed, the parasitic inductance is affected (impedance change in response to frequency change, etc.), and the output power decreases. In addition, problems such as an increase in the amount of feedback, making stable operation impossible and increasing the possibility of abnormal oscillations occurring, were identified.

また、浮遊容量Coについては、コンデンサC2,C4
との合成容量が変化することになり、入力同調回路や出
力同調回路の同調周波数が変動する一因となる、などの
問題点が本発明者によって明らかにされた。
Also, regarding stray capacitance Co, capacitors C2 and C4
The inventor of the present invention has clarified the problem that the combined capacitance between the input and output tuning circuits changes, which causes the tuning frequencies of the input tuning circuit and the output tuning circuit to fluctuate.

〔発明の目的] 本発明は上述の如き実状からなされたものであり、その
目的とするところは、高周波数帯域において安定した増
幅動作を行ない、かつ高出力を得ることのできる半導体
装置を提供することにある。
[Object of the Invention] The present invention was made in view of the above-mentioned circumstances, and its purpose is to provide a semiconductor device that can perform stable amplification operation in a high frequency band and obtain high output. There is a particular thing.

本発明の上記ならびにその他の目的と新規な特徴は、本
明細書の記述および添付図面から明らかになるであろう
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

〔発明の概要〕[Summary of the invention]

本願において開示される発明の概要を簡単と述べれば、
下記のとおりである。
A brief summary of the invention disclosed in this application is as follows:
It is as follows.

すなわち、絶縁体であるべIJ I)ア樹脂に開口部を
設け、この開口部を挿通する金属凸部上に半導体チップ
、例えばMO8FETチップを接合し、MO8FETチ
ップのソースを上記金属凸部と一体のソース電極を介し
て接地し、上記MO8FETチップとGNDとの間の寄
生インダクタンス、更に他の電極との間の浮遊容量を低
減する、という本発明の目的を達成するものである。
That is, an opening is provided in the insulating resin, a semiconductor chip, for example, an MO8FET chip, is bonded onto the metal protrusion that is inserted through the opening, and the source of the MO8FET chip is integrated with the metal protrusion. The object of the present invention is to reduce the parasitic inductance between the MO8FET chip and GND as well as the stray capacitance between the MO8FET chip and other electrodes.

〔実施例1〕 次に、本発明を適用した半導体装置の第1実施例を第1
図〜第3図を参照して説明する。なお、第1図はステム
上にMO3FETチップを接合した状態の斜視図、第2
図は実装時における半田付は状況を示す側面図、第3図
(5)[F])(C)はステムの構造を示す要部の断面
図である。
[Example 1] Next, a first example of a semiconductor device to which the present invention is applied will be described.
This will be explained with reference to FIGS. Note that Fig. 1 is a perspective view of the MO3FET chip bonded to the stem, and Fig. 2 is a perspective view of the MO3FET chip attached to the stem.
The figure is a side view showing the soldering situation during mounting, and FIG. 3 (5) [F]) (C) is a sectional view of the main part showing the structure of the stem.

本実施例の特徴は、ステムを構成するべIJ IJア樹
脂、又はセラミックにソース電極を嵌合する開口部を設
け、ソース電極上にMO8FETチップを接合するとと
も忙、ソース電極とドレイン電極、ソース電極とゲート
電極間の距離を大にして、上記寄生インダクタンス、浮
遊容量を低減するようにしたものである。
The feature of this embodiment is that an opening for fitting the source electrode is provided in the resin or ceramic constituting the stem, and the MO8FET chip is bonded onto the source electrode. The distance between the electrode and the gate electrode is increased to reduce the parasitic inductance and stray capacitance.

第1図及び第2図に示すように、ベリリア樹脂12の互
いに対向する側面と低部とはソース電極となる金属板1
2によって覆われ、べIJ IJア樹脂12上にはゲー
ト電極13、ドレイン電極14が固定されている。そし
て、ベリリア樹脂12のほぼ中央部には開口部15が設
けられ、これを挿通した金属凸部(ソース電極12と一
体)12a上にはMO8FETチップ16が半田付は等
により取付けられている。
As shown in FIGS. 1 and 2, the opposing sides and lower part of the beryllia resin 12 are connected to the metal plate 1 which becomes the source electrode.
A gate electrode 13 and a drain electrode 14 are fixed on the base IJ resin 12. An opening 15 is provided approximately in the center of the beryllia resin 12, and an MO8FET chip 16 is attached to the metal protrusion 12a (integrated with the source electrode 12) through the opening 15 by soldering or the like.

上記構造は、第3図(Alの)(Qによって更に明らか
にされる。
The above structure is further clarified by FIG. 3 (Al) (Q).

すなわち、第3図囚に示すように、ベリリア樹脂11の
ほぼ中央部に開口部15が設けられ、第3図(B)に示
すようにベリリア樹脂11の下部からソース電極12と
一体の金属凸部12aを挿通する。そして、ベリリア樹
脂11の下部とソース電極12とは、接合面において接
着され、両者は一体に構成される。
That is, as shown in FIG. 3, an opening 15 is provided at approximately the center of the beryllia resin 11, and a metal protrusion integral with the source electrode 12 is formed from the bottom of the beryllia resin 11, as shown in FIG. 3(B). Insert the portion 12a. The lower part of the beryllia resin 11 and the source electrode 12 are bonded to each other at the bonding surface, and the two are integrally formed.

また、金属凸部12a上にはMO8FETチップ16が
第3図(Qの如く半田17によって半田付けされ、MO
8FETチップ12のソース端子がソース電極12に接
続されることになる。なお、MO8FETチップ16の
各ゲートはゲート端子13に、ドレインはドレイン端子
14にそれぞれワイヤ23により接続されるのである。
Moreover, the MO8FET chip 16 is soldered on the metal protrusion 12a with solder 17 as shown in FIG.
The source terminal of the 8FET chip 12 will be connected to the source electrode 12. Note that each gate of the MO8FET chip 16 is connected to the gate terminal 13 and the drain is connected to the drain terminal 14 by a wire 23, respectively.

ソース電極12は、第2図に示すようにブリ、ント基板
21上のアースパターン22に半田23によって半田付
けされる。この結果、MO3FETチップ16とアース
パターン22とは最短距離で接続されることになり、ソ
ース電極]2とゲート電極13、更にソース電極12と
ドレイン電極14との間の距離も大になる。     
            1従って、上記寄生インダク
タンスL5、浮遊容量Coも大幅に減少することになり
、この半導体装置を上記Q1と同様に使用した場合、上
述の如き欠陥の是正を行うことができ、極めて安定した
増幅動作を行い得る。
The source electrode 12 is soldered to a ground pattern 22 on a printed substrate 21 with solder 23, as shown in FIG. As a result, the MO3FET chip 16 and the ground pattern 22 are connected by the shortest distance, and the distances between the source electrode] 2 and the gate electrode 13, and further between the source electrode 12 and the drain electrode 14 are also increased.
1. Therefore, the parasitic inductance L5 and stray capacitance Co are also significantly reduced, and when this semiconductor device is used in the same manner as Q1, the defects described above can be corrected and extremely stable amplification operation can be achieved. can be done.

また、ソース電極12の両側面が上方に延長されている
ので、実装時における半田23ののび具合を容易に確認
することもできる。
Furthermore, since both side surfaces of the source electrode 12 extend upward, it is also possible to easily check the extent to which the solder 23 is spread during mounting.

〔実施例2〕 次に、第4図を参照して本発明の第2実施例を述べる。[Example 2] Next, a second embodiment of the present invention will be described with reference to FIG.

本実施例と上記第1実施例との相違点は、ソース電極1
2の側面をべIJ IJア樹脂11の低部においてカッ
トしたものであり、他の構造は同一であるので同一の符
号を付して説明を省略する。
The difference between this embodiment and the first embodiment is that the source electrode 1
2 is cut at the bottom of the resin 11, and the other structures are the same, so the same reference numerals are given and the explanation will be omitted.

第4図に示すよ5に、ソースを極12とゲート電極13
、更にソース電極12とドレイン電極14との距離は、
上記第1実施例に示した距離よりも大となる。
As shown in FIG.
, Furthermore, the distance between the source electrode 12 and the drain electrode 14 is
The distance is larger than the distance shown in the first embodiment.

従って、少なくとも浮遊容量は更に低減することになる
。そして、本実施例に示した半導体装置を上記MO8F
ETQI として用いた場合、寄生インダクタンスL3
の低減と相まって、極めて安定した増幅動作を行い得る
Therefore, at least the stray capacitance will be further reduced. Then, the semiconductor device shown in this example was manufactured using the MO8F
When used as ETQI, the parasitic inductance L3
Coupled with this reduction, extremely stable amplification operation can be performed.

なお、上記各実施例に示したべIJ IJア樹脂11と
シリコンとの熱はう張係数とはほぼ同一である。
Note that the thermal expansion coefficients of the resin 11 and silicon shown in each of the above embodiments are almost the same.

そして、ベリリア樹脂11の熱による変形等からMO8
FET16のわれ等を防止する目的で、ベリリア樹脂1
1が多用されていた。
Then, due to the deformation of beryllia resin 11 due to heat, MO8
For the purpose of preventing cracks in FET16, beryllia resin 1
1 was frequently used.

しかし、上記構造によれば、べIJ IJア樹脂11の
変形がMO8FETチップ16に与える影響は殆んどな
く、ベリリア樹脂11に代えてセラミック、或いは誘電
率の低い物質を使用することができる。このようにすれ
ば、上記浮遊容量を更に低減することができ、半導体装
置を製造する際の材料選択の自由度が向上する。23は
ワイヤを示す。
However, according to the above structure, the deformation of the beryllia resin 11 has almost no effect on the MO8FET chip 16, and instead of the beryllia resin 11, ceramic or a material with a low dielectric constant can be used. In this way, the stray capacitance can be further reduced, and the degree of freedom in material selection when manufacturing a semiconductor device is improved. 23 indicates a wire.

〔効果] (1)、誘電体に形成された開口部を挿通する導電体、
例えば金属上に半導体チップを接合し、上記金属を最短
距離で接地するように構成したので、実装時における半
導体チップの接地される電極と接地との間の寄生インダ
クタンスを低減させることができ(2)、上記接地され
る電極と他の電極との距離を大にしたので、両者の間の
浮遊容量を低減させることができる。
[Effects] (1) A conductor passing through an opening formed in a dielectric,
For example, since a semiconductor chip is bonded to a metal and the metal is grounded at the shortest distance, the parasitic inductance between the grounded electrode of the semiconductor chip and the ground during mounting can be reduced (2 ), since the distance between the grounded electrode and other electrodes is increased, stray capacitance between the two can be reduced.

(3)、上記(11(2+により、上記構造の半導体装
置を用いた増幅器等は、高周波数帯域においても信号の
帰還、共振周波数の変動等がな(、極めて安定した回路
動作を行うことができる。
(3), above (11 (2+), amplifiers etc. using semiconductor devices with the above structure can perform extremely stable circuit operation without signal feedback, fluctuations in resonance frequency, etc. even in high frequency bands. can.

(4)、上記(3)により、金属上に複数の半導体チッ
プを設け、これらを電気的に並列に駆動することができ
るので、高出力増幅器を容易に構成することができる。
(4) According to (3) above, a plurality of semiconductor chips can be provided on metal and these can be electrically driven in parallel, so that a high-output amplifier can be easily constructed.

(5)、上記(4)により、新規に新チップを作る必要
がなく、製品の種類を充実することができる。
(5) With (4) above, there is no need to create new chips, and the variety of products can be expanded.

以上K、本発明者によってなされた発明を実施例にもと
づき具体的に説明したが、本発明は上記実施例に限定さ
れるものではなく、その要旨を逸脱しない範囲で種々変
更可能であることはいうまでもない。
Although the invention made by the present inventor has been specifically explained based on the examples above, the present invention is not limited to the above examples, and it is understood that various changes can be made without departing from the gist of the invention. Needless to say.

例えば、金属凸部上に設けられるMO8FBTチップは
l個に限定されず、複数個あってよ℃・。
For example, the number of MO8FBT chips provided on a metal protrusion is not limited to one, but may be multiple.

また、半導体チップとしてはM OS F E Tチッ
プに限定されず、バイポーラトランジスタであってもよ
い。
Further, the semiconductor chip is not limited to a MOS FET chip, but may be a bipolar transistor.

更に、上記金属凸部の形状は丸型、正方形等に変形して
もよく、この場合も上記各実施例と同様の効果が得られ
る。
Further, the shape of the metal convex portion may be changed to a round shape, a square shape, etc. In this case as well, the same effects as in each of the above embodiments can be obtained.

〔利用分野〕[Application field]

以上の説明では、主として本発明者によってなされた発
明をその背景となった利用分野である半導体装置につい
て説明したが、それに限定されるものではな(・。
In the above explanation, the invention made by the present inventor has mainly been explained in relation to semiconductor devices, which is the field of application behind the invention, but the invention is not limited thereto.

例えば、パーソナル無線機、自動車電話などの高周波数
の信号を送信または受信する機器のパワー増幅器に利用
することができる。
For example, it can be used in power amplifiers for devices that transmit or receive high frequency signals, such as personal radios and car phones.

更に、多層プリント基板に発生しがちな蚕生インダクタ
ンス、浮遊容量の低減をしたい場合にも利用することが
できる。
Furthermore, it can also be used when it is desired to reduce the inductance and stray capacitance that tend to occur in multilayer printed circuit boards.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示ず¥・導体装置の斜視
図を示し、 第2図は上記半導体装置の実装時の状況を示す側面図を
示し、 第3図(A)(B)(C)は上記半導体装置の構造を説
明する要部の断面図を示し、 第4図は本発明の第2実施例を示す半導体装置の斜視図
を示し、 第5図は本発明に先立ち本発明者によって検討された送
信システムのブロックダイアグラムを示し、 第6図は上記送信システムの一部を構成する増幅器の回
路図を示す。 11・・・ベリリア樹脂、12・・・ソース電極、12
a・・・金属凸部、13・・・ゲート電極、14・・・
ドレイン電極、15・・・開口部、16・・・MOS 
F E Tチップ、17.23・・・半田、21・・・
プリント基板、22・・・配線パターン、23・・・ワ
イヤ。 代理人 弁理士  高 橋 明 夫 第  1  図
FIG. 1 does not show the first embodiment of the present invention but shows a perspective view of the conductor device, FIG. 2 shows a side view showing the situation when the semiconductor device is mounted, and FIG. B) and (C) show cross-sectional views of essential parts explaining the structure of the semiconductor device, FIG. 4 shows a perspective view of the semiconductor device showing a second embodiment of the present invention, and FIG. A block diagram of a transmission system previously studied by the present inventor is shown, and FIG. 6 shows a circuit diagram of an amplifier forming a part of the above transmission system. 11... Bereria resin, 12... Source electrode, 12
a...Metal convex portion, 13...Gate electrode, 14...
Drain electrode, 15...opening, 16...MOS
FET chip, 17.23...Solder, 21...
Printed circuit board, 22... wiring pattern, 23... wire. Agent Patent Attorney Akio Takahashi Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、絶縁体に開口部を設け、この開口部内を挿通する導
電体上に半導体チップを設けるとともに、この半導体チ
ップの1の電極が上記導電体及びこの導電体と電気的に
一体に形成された外部接続用の電極を介して外部に接続
されることを特徴とする半導体装置。
1. An opening is provided in the insulator, a semiconductor chip is provided on a conductor that passes through the opening, and one electrode of the semiconductor chip is electrically integrated with the conductor and the conductor. A semiconductor device characterized in that it is connected to the outside via an electrode for external connection.
JP14954484A 1984-07-20 1984-07-20 Semiconductor device Pending JPS6129143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14954484A JPS6129143A (en) 1984-07-20 1984-07-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14954484A JPS6129143A (en) 1984-07-20 1984-07-20 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6129143A true JPS6129143A (en) 1986-02-10

Family

ID=15477466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14954484A Pending JPS6129143A (en) 1984-07-20 1984-07-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6129143A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02142154A (en) * 1988-11-22 1990-05-31 Toshiba Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02142154A (en) * 1988-11-22 1990-05-31 Toshiba Corp Semiconductor device
JPH0573342B2 (en) * 1988-11-22 1993-10-14 Tokyo Shibaura Electric Co

Similar Documents

Publication Publication Date Title
US6424223B1 (en) MMIC power amplifier with wirebond output matching circuit
EP0110997B1 (en) Semiconductor device package
US6456172B1 (en) Multilayered ceramic RF device
US6177834B1 (en) Output matched LDMOS power transistor device
US10950569B2 (en) High frequency module and communication device
EP0949754A2 (en) High-frequency power amplifier circuit and high-frequency power amplifier module
CN108206677B (en) Multi-baseband termination assembly for RF power amplifier with enhanced video bandwidth
EP1490907A1 (en) Power amplifier device
US6396342B1 (en) Microwave amplifier generating distortion-reduced high output microwave power
US6414387B1 (en) Semiconductor device including a chip having high-frequency circuit blocks
JP2003115732A (en) Semiconductor device
US11588441B2 (en) Semiconductor amplifier
JPH05167302A (en) High frequency power amplifier circuit device and high frequency module including said circuit device
WO2000075990A1 (en) High impedance matched rf power transistor
EP0117434A1 (en) Hybrid microwave subsystem
JP3515854B2 (en) High frequency power amplifier circuit device
US6049126A (en) Semiconductor package and amplifier employing the same
JP3850325B2 (en) Microwave integrated circuit
US6642617B2 (en) Semiconductor device
US11483023B2 (en) Radio-frequency module and communication device
US10332847B2 (en) Semiconductor package with integrated harmonic termination feature
JPS6129143A (en) Semiconductor device
CN113130429A (en) Semiconductor device with a plurality of semiconductor chips
JP2003078102A (en) Flip-chip amplifier
JPS60223145A (en) Semiconductor device