JPS61290767A - Mos field-effect transistor - Google Patents

Mos field-effect transistor

Info

Publication number
JPS61290767A
JPS61290767A JP60131858A JP13185885A JPS61290767A JP S61290767 A JPS61290767 A JP S61290767A JP 60131858 A JP60131858 A JP 60131858A JP 13185885 A JP13185885 A JP 13185885A JP S61290767 A JPS61290767 A JP S61290767A
Authority
JP
Japan
Prior art keywords
effect transistor
mos field
field effect
source region
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60131858A
Other languages
Japanese (ja)
Inventor
Tatsutoshi Takagi
高木 辰逸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60131858A priority Critical patent/JPS61290767A/en
Publication of JPS61290767A publication Critical patent/JPS61290767A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To form a MOS field-effect transistor having large W/L in a comparatively small-sized layout space having a fine shape by shaping a gate electrode in the two-dimensional directions to a source region. CONSTITUTION:A MOS field-effect transistor takes an N-channel type, and is formed to a P<-> type semiconductor base body 1. The N-channel MOS field- effect transistor has a drain region 2 and a source region 3 by N<+> type diffusion layers and a gate electrode 4 shaped extending over both regions 2 and 3. With the MOS field-effect transistor M1, the drain region 2 is arranged so as to surround the periphery of the source region 3 from all directions while the gate electrode 4 is shaped annularly along a section between both regions 2 and 3. That is, the source region 3 and the drain region 2 are disposed so as to be adjoined mutually from the plural directions while the gate electrode 4 is formed in the plural directions to the source region 3.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、半導体素子技術さらにはMOS電“界効果
トランジスタに適用して特に有効な技術に関するもので
1例えば半導体集積回路装置内に形成されるMOS電界
効果トランジスタに適用して有効な技術に関するもので
ある。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a technology that is particularly effective when applied to semiconductor device technology and MOS field effect transistors. The present invention relates to a technique that is effective when applied to effect transistors.

〔背景技術〕[Background technology]

一般に、MOS電界効果トランジスタは、単体の能動素
子としてのほかに、半導体集積回路装置内の能動素子と
して多用されている。例えば、マイクロ・プロセンサな
どのデジタル半導体集積回路装置の分野でも、能動素子
としてMOS電界効果トランジスタを採用しているもの
が多い。
In general, MOS field effect transistors are frequently used not only as single active elements but also as active elements in semiconductor integrated circuit devices. For example, in the field of digital semiconductor integrated circuit devices such as micro processors, many devices employ MOS field effect transistors as active elements.

ところで、従来のMO5電界効果トランジスタでは、第
7図にそのレイアウト状態を示すように、ドレイン領域
2とソース領域3を互いに平行に並べて配置し1両領域
2と3の間を跨ぐようにしてゲート電極4が形成されて
いた。この場合、同図に示すごとく、各領域2.3は互
いに単一の方向からのみ隣り合うべく配置され、その間
を跨ぐ形でゲート電極4が形成されていた。なお、Dは
ソース、Gはゲート、Sはソースをそれぞれ示す。
By the way, in a conventional MO5 field effect transistor, as shown in the layout state in FIG. Electrode 4 was formed. In this case, as shown in the figure, the regions 2.3 are arranged so as to be adjacent to each other only from a single direction, and the gate electrode 4 is formed to straddle the regions. Note that D represents a source, G represents a gate, and S represents a source.

ここで、この種のMOS電界効果トランジスタの特性、
%に入力しきい値やドレイン電流など重要な特性は、ド
レイン領域2とソース領域30間に形成されるチャンネ
ルの長さLと、ゲート電極40幅Wに大きく依存する。
Here, the characteristics of this type of MOS field effect transistor,
%, important characteristics such as input threshold and drain current largely depend on the length L of the channel formed between the drain region 2 and the source region 30 and the width W of the gate electrode 40.

入力しきい値を高くせず、かつ大きなドレイン電流を得
るためKは、そのチャンネル長りとゲート幅Wの比、い
わゆるW/Lをできるだけ大きくしなければならない。
In order to obtain a large drain current without increasing the input threshold, the ratio of the channel length to the gate width W, so-called W/L, must be made as large as possible.

この場合、チャンネル長りは、最小加工寸法によってそ
の下限値が決められてしまう。従って、W/Lを大きく
するためには、ゲート幅Wの方を太き(しなければなら
ない。
In this case, the lower limit of the channel length is determined by the minimum processing dimension. Therefore, in order to increase W/L, the gate width W must be made thicker.

しかしながら、第7図に示したごとき従来のレイアウト
形状のMOS電界効果トランジスタでもって、W/Lを
大きくするためにゲート幅Wを大きくして行くと、その
MOS電界効果トランジスタのレイアウト形状が、縦あ
るいは横のいずれか一方だけに極端に長くなってしまう
、このような不整形状の素子は、レイアウトの合理的な
設計を困難にするとともK、半導体チップの限られた素
子形成面積の有効利用を妨げるといったような種々の弊
害をもたらす、という問題のあることが本発明者らたよ
って明らかとされた。
However, when the gate width W is increased in order to increase W/L with a MOS field effect transistor having a conventional layout shape as shown in FIG. 7, the layout shape of the MOS field effect transistor becomes vertical. Alternatively, such irregularly shaped elements, which are extremely long on one side only, make it difficult to rationally design the layout and make effective use of the limited element formation area of the semiconductor chip. The inventors of the present invention have clarified that there is a problem in that it causes various adverse effects such as interference.

なお、MOS電界効果トランジスタについては。Regarding MOS field effect transistors.

例えば、コロナ社発行「集積回路工学(1)」柳井久義
、永田穣共著、昭和54年4月5日発行、138〜14
8頁(MOSトランジスタ)などに記載されている、 〔発明の目的〕 この発明の目的は、W/Lの大きなMOS電界効果トラ
ンジスタを比較的小サイズで整形な形状のレイアウトス
ペースでもって形成できるようにし、これによりレイア
ウトの合理的な設計を容易にするとともに、半導体チッ
プの限られた素子形成面積を有効に活用できるようにす
る技術を提供することKある。
For example, "Integrated Circuit Engineering (1)" published by Corona Publishing Co., Ltd., co-authored by Hisayoshi Yanai and Minoru Nagata, published April 5, 1970, 138-14.
[Object of the Invention] The object of the invention is to form a MOS field effect transistor with a large W/L in a relatively small size and a well-shaped layout space. It is an object of the present invention to provide a technology that facilitates rational layout design and makes effective use of the limited element formation area of a semiconductor chip.

この発明の前記゛ならびKそのほかの目的と新規な特徴
については、本明細書の記述および添付図面から明らか
kなるであろう。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的なものを簡単
に説明すれば、下記のとおりである。
A brief description of typical inventions disclosed in this application is as follows.

すなわち、ソース領域に対してゲート電極を二次元方向
に形成することにより、W/Lの大きなMOS電界効果
トランジスタを比較的小サイズで整形な形状のレイアウ
トスペースでもりて形成できるようにし、これによりレ
イアウトの合理的な設計を容易にするとともに、半導体
チップの限られた素子形成面積を有効に活用できるよう
にする。
That is, by forming the gate electrode in two dimensions with respect to the source region, it is possible to form a MOS field effect transistor with a large W/L in a relatively small size and well-shaped layout space. To facilitate rational layout design and to effectively utilize the limited element formation area of a semiconductor chip.

という目的を達成するものである。This goal is achieved.

〔実施例〕〔Example〕

以下、この発明の代表的な実施例を図面を参照しながら
説明する。
Hereinafter, typical embodiments of the present invention will be described with reference to the drawings.

なお1図面において同一符号は同一あるいは相当部分を
示す。
Note that in one drawing, the same reference numerals indicate the same or corresponding parts.

第1図はこの発明によるMOS電界効果トランジスタの
一実施例を示す。
FIG. 1 shows an embodiment of a MOS field effect transistor according to the invention.

同図において、(a)はその平面レイアウト形状を。In the figure, (a) shows the planar layout shape.

(b)はそのB−8部分の断面状態を、(C)はその等
価回路をそれぞれ示す。
(b) shows the cross-sectional state of the B-8 portion, and (C) shows its equivalent circuit.

第1図に示すMOSO8電界効果トランジスタケ1チャ
ンネル型であって、p−型半導体基体1に形成されてい
る。このnチャンネ+MOSt界効果トランジスタは、
n+型型数散層よるドレイン領域2とソース領域、およ
び両領域2と3に跨がって形成されたゲート電極4を有
する。5はアルミニウムなどKよる配線用の電極の取り
出し部分を示す。また、Dはドレイン、Sはソース、G
はゲートをそれぞれ示す。
The MOSO8 field effect transistor shown in FIG. 1 is a one-channel type, and is formed on a p-type semiconductor substrate 1. This n-channel +MOSt field effect transistor is
It has a drain region 2 and a source region made of an n+ type scattering layer, and a gate electrode 4 formed across both regions 2 and 3. Reference numeral 5 indicates a lead-out portion of an electrode for wiring made of K such as aluminum. Also, D is the drain, S is the source, and G
indicate the respective gates.

ここで、実施例のMOSO8電界効果トランジスタケ1
同図(a)に示すように、ドレイン領域2をソース領域
30周りを四方からとり囲むように配置するとともに1
両領域2と3の間に沿ってゲート電極4を環状に形成し
ている。つまり、ソース領域3とドレイン傾城2を互い
に複数方向から隣り合うべく配置するとともに、ゲート
電極4をソース領域3に対して複数方向に形成している
Here, MOSO8 field effect transistor case 1 of the example
As shown in FIG. 2(a), the drain region 2 is arranged to surround the source region 30 from all sides, and
A gate electrode 4 is formed in an annular shape along between both regions 2 and 3. That is, the source region 3 and the drain ramp 2 are arranged adjacent to each other in multiple directions, and the gate electrode 4 is formed in multiple directions with respect to the source region 3.

以上のような構成によって、第1図(a)からも明らか
なように、縦横のいずれKも極端に長いところがない整
形のレイアウト形状の中にて、ゲート幅(W)の長いM
OSO8電界効果トランジスタケ1成することができる
。これkより、しきい値やドレイン電流などの特性が良
好なMOS電界効果トランジスタを比較的小サイズで整
形な形状のレイアウトスペースでもって形成できる。ま
た。
With the above configuration, as is clear from FIG. 1(a), M with a long gate width (W) can be arranged in a well-shaped layout shape where neither K in the vertical or horizontal directions is extremely long.
An OSO8 field effect transistor can be constructed. From this, a MOS field effect transistor with good characteristics such as threshold voltage and drain current can be formed in a relatively small size and well-shaped layout space. Also.

レイアウトの合理的な設計を容易にするとともに。As well as facilitating the rational design of the layout.

半導体チップの限られた素子形成面積を有効に活用でき
るようになる。
It becomes possible to effectively utilize the limited element formation area of a semiconductor chip.

第2図はこの発明の別の実施例を示す。FIG. 2 shows another embodiment of the invention.

同図において、(a)はその平面レイアウト形状を。In the figure, (a) shows the planar layout shape.

(b)はその等価回路を、(C)はその等価回路を記号
化したものをそれぞれ示す。
(b) shows the equivalent circuit, and (C) shows the equivalent circuit symbolized.

この実施例は、基本的には前述した実施例と同様である
。従って、以下の説明は前述した実施例との相違点につ
いて行い、そのほかは図中に同一符号を用いて示す。
This embodiment is basically similar to the embodiment described above. Therefore, the following explanation will focus on the differences from the above-described embodiment, and the other parts will be indicated using the same reference numerals in the drawings.

同図に示すMOS電界効果トランジスタでは、(a)に
示すように、ドレイン領域2が複数(4つに)分割され
ている。これkより、1つのMOS電界効果トランジス
タ内に4つのドレインDI、D2゜D3.D4を有する
多電極構造のMOS電界効果トランジスタが構成されて
いる。この場合、その複数のドレインDI 、D2 、
D3 、D4はそれぞれ電気的に独立している。従って
、機能的には、伽)K示すように、複数のMO5電界効
果トランジスタMl 、M2 、M3 、M4のゲート
GおよびソースSをそれぞれ共通接続してなる回路ユニ
ットと同等の機能をもりている。この回路ユニットの記
号を提晶すれば、(C)のようになるであろう。
In the MOS field effect transistor shown in the figure, the drain region 2 is divided into a plurality (four) as shown in (a). From this k, one MOS field effect transistor has four drains DI, D2°D3 . A MOS field effect transistor with a multi-electrode structure having D4 is constructed. In this case, the plurality of drains DI, D2,
D3 and D4 are electrically independent. Therefore, functionally, it has the same function as a circuit unit formed by commonly connecting the gates G and sources S of a plurality of MO5 field effect transistors M1, M2, M3, and M4, respectively, as shown in FIG. . If the symbol of this circuit unit were to be expressed, it would look like (C).

また、各ドレインDI 、D2 、D3 、D4を互い
に共通に接続すれば、W/Lの大きなMOS電界効果ト
ランジスタとして使うことができる。
Furthermore, if the drains DI, D2, D3, and D4 are commonly connected to each other, it can be used as a MOS field effect transistor with a large W/L.

第3図はこの発明のさらに別の実施例を示す。FIG. 3 shows yet another embodiment of the invention.

同図において、(a)はその平面レイアウト形状を、Φ
)はその等価回路をそれぞれ示す。
In the same figure, (a) shows the planar layout shape of Φ
) indicate their equivalent circuits.

同図に示す実施例のMOS電界効果トランジスタでは、
(a)K示すよ5K、ドレイン領域2が複数(4つに)
分割されるとともK、ゲート電極4も複数(4つ)に分
割されている。これKより、1つのMOS電界効果トラ
ンジスタ内に4つのドレインDI 、D2.D3.D4
および複数のゲートGl、G2.G3.G4を有する多
電極構造のMOS電界効果トランジスタが構成されてい
る。この場合、その複数のドレインD1.D2.D3゜
D4および複数のゲートG1.G2.G3.G4はそれ
ぞれ電気的に独立し、共通なのはソースSだけである。
In the MOS field effect transistor of the embodiment shown in the figure,
(a) K shows 5K, multiple drain regions 2 (four)
In addition to being divided, the gate electrode 4 is also divided into a plurality of parts (four parts). From this K, there are four drains DI, D2 . D3. D4
and a plurality of gates Gl, G2 . G3. A MOS field effect transistor with a multi-electrode structure having G4 is constructed. In this case, the plurality of drains D1. D2. D3°D4 and a plurality of gates G1. G2. G3. G4 are electrically independent, and only the source S is common to them.

従って、機能的には、(b)K示すように、はとんど独
立した複数(4つ)のMOS電界効果トランジスタMl
 、M2 、M3 、M4と同等の回路機能をもってい
る。なお、符号6で示す部分にはチャンネルストッパー
を形成する。
Therefore, functionally, as shown in (b)K, there are a plurality of (four) independent MOS field effect transistors Ml.
, M2, M3, and M4. Note that a channel stopper is formed in the portion indicated by reference numeral 6.

また、各ドレインDI 、D2 、D3 、D4および
各ゲートG1.G2.G3.G4をそれぞれ互いに共通
接続すれば、W/Lの大きなMO5電界効果トランジス
タとして使うことができる。
Also, each drain DI, D2, D3, D4 and each gate G1. G2. G3. If G4 are commonly connected to each other, it can be used as an MO5 field effect transistor with a large W/L.

第4図は第2図に示したMOS電界効果トランジスタの
応用例を示す。
FIG. 4 shows an example of application of the MOS field effect transistor shown in FIG.

同図に示すよ5K、前述したMOS電界効果トランジス
タを用いることにより、例えばスイッチS1゜S2.S
3.S4の各動作状態を論理処理(論理積あるいは論理
和)する回路を簡単に構成することができる。同図にお
いて、Vddは電源、Vcsは定電源、Roは負荷抵抗
、outは出力をそれぞれ示す。
As shown in the figure, for example, switches S1, S2, 5K, etc. are connected by using the aforementioned MOS field effect transistors. S
3. A circuit that performs logical processing (logical product or logical sum) on each operating state of S4 can be easily configured. In the figure, Vdd represents a power source, Vcs represents a constant power source, Ro represents a load resistance, and out represents an output.

第5図は第3図に示したMOS電界効果トランジスタの
別の応用例を示す。
FIG. 5 shows another example of application of the MOS field effect transistor shown in FIG.

同図に示すように、前述したMOS電界効果トランジス
タは、例えばA/D変換器の主要部を構成するのに利用
することができる。同図において、IR,2R,4R,
8Rはそれぞれに重み付けされた抵抗を示す、、マた。
As shown in the figure, the above-described MOS field effect transistor can be used to constitute the main part of an A/D converter, for example. In the same figure, IR, 2R, 4R,
8R indicates each weighted resistance.

Roは負荷抵抗を示す。Ro indicates load resistance.

このA/D変換器では複数ビット(4ビツト)からなる
デジタル信号を複数(4つ)のゲー)Gl。
This A/D converter converts a digital signal consisting of multiple bits (4 bits) into multiple (4) gates (G1).

G2 、G3 、G4に並列に与えることにより、その
デジタル信号の値に応じたレベルのアナログ信号を出力
outから取り出すことができる。
By applying it to G2, G3, and G4 in parallel, an analog signal of a level corresponding to the value of the digital signal can be extracted from the output out.

第6図はこの発明のさらに別の実施例を示す。FIG. 6 shows yet another embodiment of the invention.

同図に示すように、多数のソース・ドレイン領域23を
予め規則的に配列し、ゲート電極4の形成箇所と多層配
線(図示略)のパターンだけを任意に設計できるように
することにより、あたかもゲートアレイのように、顧客
の注文などFC応じて二次元状の回路網を任意に構成す
ることができるよ5Vcなる。
As shown in the figure, by arranging a large number of source/drain regions 23 regularly in advance and making it possible to arbitrarily design only the formation location of the gate electrode 4 and the pattern of the multilayer wiring (not shown), it is possible to Like a gate array, a two-dimensional circuit network can be arbitrarily configured according to customer orders and other FCs.It is 5Vc.

〔効果〕〔effect〕

(11ソース領域に対してゲート電極を二次元方向に形
成すること忙より、W/Lの大きなMOS電界効果トラ
ンジスタを比較的小サイズで整形な形状のレイアウトベ
ースでもって形成できるようになり、これによりレイア
ウトの合理的な設計を容易にするとともに、半導体チッ
プの限られた素子形成面積を有効に活用できるようにな
る。という効果が得られる。
(11) By forming the gate electrode in two dimensions for the source region, it has become possible to form a MOS field effect transistor with a large W/L using a relatively small size and well-shaped layout base. This makes it easy to rationally design the layout, and makes effective use of the limited element formation area of the semiconductor chip.

以上本発明者によってなされた発明を実施例に基づき具
体的に説明したが、この発明は上記実施例に限定される
ものではなく、その要旨を逸脱しない範囲で種々変更可
能であることはいうまでもない。例えば、上記MOS電
界効果トランジスタはpチャンネル型のものであっても
よい。また、ソース領域3の方をドレイン領域2の周り
に形成し、さらにそのソース領域を分割するようにして
もよい。
Although the invention made by the present inventor has been specifically explained above based on Examples, it goes without saying that this invention is not limited to the above Examples and can be modified in various ways without departing from the gist thereof. Nor. For example, the MOS field effect transistor may be of a p-channel type. Alternatively, the source region 3 may be formed around the drain region 2, and the source region may be further divided.

〔利用分野〕[Application field]

以上、本発明者によってなされた発明をその背景となっ
た利用分野であるデジタルMOS技術に適用した場合に
ついて説明したが、それに限定されるものではなく、例
えばアナログMOS技術などにも適用できる。
Although the invention made by the present inventor is applied to digital MOS technology, which is the background field of application, the present invention is not limited thereto, and can be applied to, for example, analog MOS technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) = (b) 、 (c)はこの発明によ
るMOS電界効果トランジスタの一実施例を示す図。 第2図(a) 、 (b) 、(c)はこの発明による
MOS電界効果トランジスタの別の実施例を示す図、第
3図(a) 、 (b)はこの発明によるMOS電界効
果トランジスタの別の実施例を示す図。 第4図は第2図のMOS電界効果トランジスタの応用例
を示す回路図。 第5図は第3図゛のMOS電界効果トランジスタの応用
例を示す回路図。 第6図はこの発明のさらに別の実施例を示すレイアウト
状態図。 第7図は従来のMOS電界効果トランジスタの゛構成を
示すレイアウト状態図である。 1・・・半導体基体、2・・・ドレイン領域、3・・・
ソース領域、4・・・ゲート電極、23・・・ソース・
ドレイン領域、25・・・アイソレーション領域。 パ・) 第  1  図 (C) 第  2  図 (ユン (泪                       
    (Cン第  3  図 (乙巳ン r>7 第  4  図 第  5  図 第  6  図 第  7  図
FIGS. 1(a) = (b) and (c) are diagrams showing an embodiment of a MOS field effect transistor according to the present invention. FIGS. 2(a), (b), and (c) are views showing another embodiment of the MOS field effect transistor according to the present invention, and FIGS. 3(a) and (b) are views showing another embodiment of the MOS field effect transistor according to the present invention. The figure which shows another Example. FIG. 4 is a circuit diagram showing an application example of the MOS field effect transistor shown in FIG. 2. FIG. 5 is a circuit diagram showing an application example of the MOS field effect transistor shown in FIG. 3. FIG. 6 is a layout state diagram showing still another embodiment of the present invention. FIG. 7 is a layout state diagram showing the configuration of a conventional MOS field effect transistor. DESCRIPTION OF SYMBOLS 1... Semiconductor base, 2... Drain region, 3...
Source region, 4... Gate electrode, 23... Source
Drain region, 25... Isolation region. Pa.) Figure 1 (C) Figure 2 (Yun (tears)
(Cn Fig. 3 (Etsumi n r > 7 Fig. 4 Fig. 5 Fig. 6 Fig. 7

Claims (1)

【特許請求の範囲】 1、ドレイン領域、ソース領域、および両領域に跨がっ
て形成されたゲート電極を有するMOS電界効果トラン
ジスタであって、ソース領域とドレイン領域を互いに複
数方向から隣り合うべく配置するとともに、ゲート電極
をソース領域あるいはドレイン領域に対して複数方向に
形成したことを特徴とするMOS電界効果トランジスタ
。 2、ドレイン領域が複数に分割形成されていることを特
徴とする特許請求の範囲第1項記載のMOS電界効果ト
ランジスタ。
[Claims] 1. A MOS field effect transistor having a drain region, a source region, and a gate electrode formed across both regions, the source region and the drain region being adjacent to each other from multiple directions. A MOS field effect transistor characterized in that a gate electrode is formed in a plurality of directions with respect to a source region or a drain region. 2. The MOS field effect transistor according to claim 1, wherein the drain region is divided into a plurality of parts.
JP60131858A 1985-06-19 1985-06-19 Mos field-effect transistor Pending JPS61290767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60131858A JPS61290767A (en) 1985-06-19 1985-06-19 Mos field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60131858A JPS61290767A (en) 1985-06-19 1985-06-19 Mos field-effect transistor

Publications (1)

Publication Number Publication Date
JPS61290767A true JPS61290767A (en) 1986-12-20

Family

ID=15067764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60131858A Pending JPS61290767A (en) 1985-06-19 1985-06-19 Mos field-effect transistor

Country Status (1)

Country Link
JP (1) JPS61290767A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168673A (en) * 1988-12-21 1990-06-28 Nec Corp Mis transistor
JPH0387071A (en) * 1989-06-15 1991-04-11 Matsushita Electron Corp Semiconductor device
JPH03257861A (en) * 1990-03-07 1991-11-18 Toshiba Corp Semiconductor device
JPH04326570A (en) * 1991-04-26 1992-11-16 Nec Corp Mos integrated circuit
US5204543A (en) * 1990-03-29 1993-04-20 Fujitsu Limited Lateral type semiconductor device having a structure for eliminating turning-on of parasitic mos transistors formed therein
US5389810A (en) * 1992-03-27 1995-02-14 Matsushita Electric Industrial Co., Ltd. Semiconductor device having at least one symmetrical pair of MOSFETs
US5510639A (en) * 1993-02-02 1996-04-23 Matsushita Electric Industrial Co., Ltd. Non-volatile semiconductor memory having a ring-shaped floating gate
US5808317A (en) * 1996-07-24 1998-09-15 International Business Machines Corporation Split-gate, horizontally redundant, and self-aligned thin film transistors
KR100520624B1 (en) * 1996-11-28 2005-12-21 마츠시타 덴끼 산교 가부시키가이샤 Semiconductor device, method of designing the same and semiconductor integrated circuit device
JP4836796B2 (en) * 2003-10-14 2011-12-14 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー Power supply system suppression method and apparatus and structure thereof
JP2012078843A (en) * 2011-11-14 2012-04-19 Semiconductor Energy Lab Co Ltd Light-emitting device
JP2013179336A (en) * 2006-12-28 2013-09-09 Marvell World Trade Ltd Mos device arrangement with low on-resistance
US9117913B2 (en) 2001-11-09 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element, electric circuit, display device and light-emitting device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168673A (en) * 1988-12-21 1990-06-28 Nec Corp Mis transistor
JPH0387071A (en) * 1989-06-15 1991-04-11 Matsushita Electron Corp Semiconductor device
JPH03257861A (en) * 1990-03-07 1991-11-18 Toshiba Corp Semiconductor device
US5204543A (en) * 1990-03-29 1993-04-20 Fujitsu Limited Lateral type semiconductor device having a structure for eliminating turning-on of parasitic mos transistors formed therein
JPH04326570A (en) * 1991-04-26 1992-11-16 Nec Corp Mos integrated circuit
US5389810A (en) * 1992-03-27 1995-02-14 Matsushita Electric Industrial Co., Ltd. Semiconductor device having at least one symmetrical pair of MOSFETs
US5510639A (en) * 1993-02-02 1996-04-23 Matsushita Electric Industrial Co., Ltd. Non-volatile semiconductor memory having a ring-shaped floating gate
US5808317A (en) * 1996-07-24 1998-09-15 International Business Machines Corporation Split-gate, horizontally redundant, and self-aligned thin film transistors
KR100520624B1 (en) * 1996-11-28 2005-12-21 마츠시타 덴끼 산교 가부시키가이샤 Semiconductor device, method of designing the same and semiconductor integrated circuit device
US9117913B2 (en) 2001-11-09 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element, electric circuit, display device and light-emitting device
JP4836796B2 (en) * 2003-10-14 2011-12-14 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー Power supply system suppression method and apparatus and structure thereof
JP2013179336A (en) * 2006-12-28 2013-09-09 Marvell World Trade Ltd Mos device arrangement with low on-resistance
US9466596B2 (en) 2006-12-28 2016-10-11 Marvell World Trade Ltd. Geometry of MOS device with low on-resistance
JP2012078843A (en) * 2011-11-14 2012-04-19 Semiconductor Energy Lab Co Ltd Light-emitting device

Similar Documents

Publication Publication Date Title
US4868705A (en) Insulated-gate semicustom integrated circuit
US7294892B2 (en) Multi-transistor layout capable of saving area
JPS61290767A (en) Mos field-effect transistor
JPH02161769A (en) Transmission gate
KR100497711B1 (en) Semiconductor device
US20080265339A1 (en) Semiconductor integrated circuit
JP2010278450A (en) Analog-digital converter
US5539246A (en) Microelectronic integrated circuit including hexagonal semiconductor &#34;gate &#34; device
JP4927494B2 (en) Analog-digital converter and design method of analog-digital converter
US5444411A (en) Functional MOS transistor with gate-level weighted sum and threshold operations
JPH03235368A (en) Semiconductor device
US5182621A (en) Input protection circuit for analog/digital converting semiconductor
US5481125A (en) Compact CMOS analog crosspoint switch matrix
JPS61144875A (en) Mos integrated circuit
JP2602974B2 (en) CMOS semiconductor integrated circuit device
US4868627A (en) Complementary semiconductor integrated circuit device capable of absorbing noise
JPS61283157A (en) Cmos semiconductor integrated circuit device
JP3002096B2 (en) Output buffer circuit
US20050040437A1 (en) Cascaded transistors in one well
JPS5844601Y2 (en) Dual field effect transistor
JP4389303B2 (en) Power MOS transistor
JPH03101162A (en) Semiconductor integrated circuit device
JPH04260365A (en) Opposed gate type transistor
JPH05175439A (en) Semiconductor electrostatic protection circuit
JPH01238225A (en) D/a converting circuit