JPS61288348A - Ion source device - Google Patents

Ion source device

Info

Publication number
JPS61288348A
JPS61288348A JP12984785A JP12984785A JPS61288348A JP S61288348 A JPS61288348 A JP S61288348A JP 12984785 A JP12984785 A JP 12984785A JP 12984785 A JP12984785 A JP 12984785A JP S61288348 A JPS61288348 A JP S61288348A
Authority
JP
Japan
Prior art keywords
ion source
anode
source device
plasma
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12984785A
Other languages
Japanese (ja)
Other versions
JPH0740469B2 (en
Inventor
Tadashi Sato
忠 佐藤
Yasunori Ono
康則 大野
Tomoe Kurosawa
黒沢 巴
Shinya Sekimoto
関本 信也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60129847A priority Critical patent/JPH0740469B2/en
Publication of JPS61288348A publication Critical patent/JPS61288348A/en
Publication of JPH0740469B2 publication Critical patent/JPH0740469B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To prevent discharge from becoming unstable, by providing an anode member inside the inner circumferential surface of a plasma generation container which also serves as an anode and is fitted with a plurality of permanent magnets on the outer circumferential surface of the container, to keep the anode member at a high temperature to prevent a high-molecular product from clinging thereto. CONSTITUTION:A cylindrical plasma generation container 2A, which also serves as an anode and is fitted with permanent magnets 7A on the outer circumferential surface of the container, and a lid 2B, which is provided with an inlet port 1 for introducing a gas including a CF4 gas or the like and is fitted with a cathode 3 made of a hairpin-shaped tungsten filament, are combined with each other to constitute an ion source device. A cylindrical anode member 4 made of stainless steel or the like is spot-welded to a magnetic member 9, which is held on the inner circumferential surface of the container 2A by the attractive forces of the permanent magnets 7A. As a result, the anode member 4 can be caused to act at a high temperature so that an electrically-insulating high-molecular substance produced by discharge is prevented from clinging to the anode member. The discharge can thus be stabilized.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はイオン源装置に係り、特に、化学反応とスパッ
タを利用して被加工物表面を微細加工する反応性イオン
ビームエツチング装置に好適なイオン源装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an ion source device, and particularly to an ion source device suitable for a reactive ion beam etching device that microfabricates the surface of a workpiece using chemical reactions and sputtering. Regarding the source device.

〔発明の背景〕[Background of the invention]

一般にイオン源装置、特に大出力のイオン源装置は、低
圧放電室内でグロー放電、アーク放電、高周波放電など
の種々の放電を起こさせ、この放電によって放電室内の
ガスをプラズマ化させ、このプラズマからイオンを取り
出すように構成されている。
In general, ion source devices, especially high-output ion source devices, generate various discharges such as glow discharge, arc discharge, and high-frequency discharge in a low-pressure discharge chamber, and the gas in the discharge chamber is turned into plasma by this discharge, and the plasma is It is configured to extract ions.

ところで、このようなイオン源装置にあって、空間的に
均一性の高いプラズマを生成するために放電室内にカス
プ磁場を形成するようにしたものが、例えば特開昭56
−79900号公報、特開昭57−185653号公報
等に開示されている。
By the way, among such ion source devices, one in which a cusp magnetic field is formed within the discharge chamber in order to generate highly spatially uniform plasma is disclosed in, for example, Japanese Patent Laid-Open No. 56
It is disclosed in Japanese Patent Application Laid-Open No. 57-185653, etc.

しかしながら、上記したカスプ磁場を利用したイオン源
装置で化合物ガス(弗素、あるいは塩素化合物等)を電
離してプラズマを作ると、化合物ガスのプラズマ重合反
応により、高分子量の絶縁性の生成物がプラズマ発生容
器の壁面に堆積し。
However, when a plasma is created by ionizing a compound gas (fluorine, chlorine compound, etc.) using an ion source device that uses the cusp magnetic field described above, high molecular weight insulating products are generated in the plasma due to the plasma polymerization reaction of the compound gas. Deposits on the walls of the generation container.

プラズマ発生容器が直流アーク放電の正電極であるアノ
ードであるため、放電が不安定になったり、放電しなく
なる等イオン源の基本的な動作に問題になることがわか
り、化合物ガスに対して安定な放電を維持できなくなる
恐れがある。
Because the plasma generation vessel is the anode, which is the positive electrode of DC arc discharge, it has been found that there are problems with the basic operation of the ion source, such as unstable discharge or no discharge, and it is stable against compound gases. There is a risk that it will not be possible to maintain a constant discharge.

〔発明の目的〕[Purpose of the invention]

本発明は上述の点に鑑み成されたもので、その目的とす
るところは、プラズマ発生容器がアノードを兼用したも
のであっても、放電が不安定になったり、放電しなくな
ることはなく、化合物ガスに対して安定な放電が維持で
きるイオン源装置を提供するにある。
The present invention has been made in view of the above points, and its purpose is to prevent the discharge from becoming unstable or stopping even if the plasma generation container also serves as an anode. An object of the present invention is to provide an ion source device that can maintain stable discharge against a compound gas.

〔発明の概要〕[Summary of the invention]

本発明はアノードを兼ね、かつ、その外周に複数の永久
磁石を有するプラズマ発生容器の内周にアノード電極を
設けることにより、所期の目的を達成するように成した
ものである。
The present invention achieves the intended purpose by providing an anode electrode on the inner periphery of a plasma generation container which also serves as an anode and has a plurality of permanent magnets on its outer periphery.

〔発明の実施例〕[Embodiments of the invention]

以下、図面の実施例に基づいて本発明の詳細な説明する
Hereinafter, the present invention will be described in detail based on embodiments of the drawings.

第1図に本発明のイオン源装置の一実施例を示す。FIG. 1 shows an embodiment of the ion source device of the present invention.

該図の如く、通常のイオン源装置は、アノードを兼ね、
かつ、その外周に複数の永久磁石7Aを有するほぼ円筒
状のプラズマ発生容器2Aと、このプラズマ発生容器2
Aの一部を形成し、その外周の複数の永久磁石7Bを有
すると共に、CF4、あるいはCF4とArの混合ガス
等の化合物ガスを含む気体を導入するためのガス導入口
1を有するプラズマ発生容器上蓋2Bと、該プラズマ発
生容器上蓋2Bに支持され、プラズマ発生容器2Aの中
心軸上に配置されたヘアピン状のタングステンフィラメ
ントを利用したカソード3と、形成されたプラズマから
イオンを引き出し、これをイオンビームとして矢印の如
く被加工物に照射する多数の小穴をあけた引き出し電極
5,6とから概略構成される。上記の複数の永久磁石7
A、7Bは、容器の外周に沿って、N極とS極が円筒の
中心軸に向くように設けられ、ラインカスプ磁界を容器
の内側に作るようになっている。更に、永久磁石7A、
7Bの列間には水冷パイプ8が設置され、永久磁石7A
、7Bの温度上昇による性能の劣化を防止している。そ
して、本実施例では、プラズマ発生容器2Aの内周にア
ノード電極4を設けている。このアノード電極4は、板
厚0.5 mmの非磁性ステンレス鋼製で、長さ150
+++11の円筒を中心軸に沿った方向で半割りにした
構造となっており、鉄製の磁性材9の一端に点溶接によ
り取付は支持され、磁性材9の他端が永久磁石7Aによ
り吸引されることにより、プラズマ発生容器2Aの内部
に保持固定されている。
As shown in the figure, a normal ion source device also serves as an anode,
and a substantially cylindrical plasma generation container 2A having a plurality of permanent magnets 7A on its outer periphery, and this plasma generation container 2.
A plasma generating container which forms a part of A, has a plurality of permanent magnets 7B on its outer periphery, and has a gas inlet 1 for introducing a gas containing a compound gas such as CF4 or a mixed gas of CF4 and Ar. An upper lid 2B, a cathode 3 using a hairpin-shaped tungsten filament supported by the plasma generation container upper lid 2B and arranged on the central axis of the plasma generation container 2A, and extracting ions from the formed plasma. It is roughly composed of extraction electrodes 5 and 6 having a large number of small holes which irradiate the workpiece as a beam as shown by the arrow. The above plurality of permanent magnets 7
A and 7B are provided along the outer periphery of the container so that the north and south poles face the central axis of the cylinder, creating a line cusp magnetic field inside the container. Furthermore, permanent magnet 7A,
A water cooling pipe 8 is installed between the rows of permanent magnets 7A and 7B.
, 7B is prevented from deteriorating in performance due to temperature rise. In this embodiment, an anode electrode 4 is provided on the inner periphery of the plasma generation container 2A. This anode electrode 4 is made of non-magnetic stainless steel with a plate thickness of 0.5 mm and a length of 150 mm.
It has a structure in which a cylinder of +++11 is divided in half in the direction along the central axis, and the installation is supported by spot welding to one end of a magnetic material 9 made of iron, and the other end of the magnetic material 9 is attracted by a permanent magnet 7A. By doing so, it is held and fixed inside the plasma generation container 2A.

このような構成において、ガス導入口1よりCF4、あ
るいはCF、とArの混合ガス等の化合物ガスを含む気
体を導入し、タングステンフィラメントから成るカソー
ド3とアノード電極4に直流電圧を印加し、カソード3
の熱電子により上記ガスを電離することでプラズマを作
る。このプラズマから引き出し電極5,6によりイオン
ビームを引き出し、被加工物に照射するものである。
In such a configuration, a gas containing a compound gas such as CF4 or a mixed gas of CF and Ar is introduced from the gas inlet 1, and a DC voltage is applied to the cathode 3 made of a tungsten filament and the anode electrode 4. 3
Plasma is created by ionizing the gas with thermionic electrons. An ion beam is extracted from this plasma by extraction electrodes 5 and 6 and irradiated onto the workpiece.

従って、上述した如く、プラズマ発生容器2Aの内側に
アノード電極4を設ければ、このアノード電極4はプラ
ズマ発生容器2Aと電気的に接続されているため、熱的
には冷却されずアノード電極4とプラズマの間で加速さ
れた電子が流入し、アノード電極4を加熱するので、プ
ラズマ発生容器2よりかなり高温で動作する。このため
、アノード電極4には化合物ガスの放電に伴って生成し
た絶縁性の高分子物質が付着するようなことはなく、放
電が不安定になったり、あるいは放電しなくなる等イオ
ン源装置の基本的な動作上の問題がなくなり、化合物ガ
スに対しても安定な放電が維持できる。また、アノード
電極4は磁気を利用し固定しているため、7ノード電極
4自身の交換、清掃等の保守作業が容易であると共に、
アノード電極4を支持する磁性材9の一部を絶縁すると
、プラズマ発生容器2Aと別の電位をアノード電極4に
与えることができ、電子、又はイオンの閉じ込めを改良
できる効果がある。更に、イオン源に通電して運転を開
始した当初は、アノード電極4は室温であるため、プラ
ズマにより作られた絶縁性の高分子生成物が付着し放電
が不安定になる恐れがあるので、この場合には、Arガ
スやH2ガスでプラズマを作リアノード電極4を予熱し
て、高温にした後、CF、等の化合物ガスに切り換える
ことにより安定な放電を継続できる。尚、この際には、
アノード電極4に熱電対等の温度センサを設けることに
より、アノード電極4が150℃〜200℃以上になっ
た時に、安定した放電できることを確認した。更に、ア
ノード電極4を高温に保つことにより、絶縁性の高分子
生成物の堆積を防止できるが、カーボン等の低分子の固
体は堆積してしまうので、アノード電極4の交換、清掃
等の保守作業は頻繁に行う必要がある。この時には、水
素プラズマを利用すると、この水素イオンの還元作用に
よりアノード電極4に堆積した弗素や塩素等の高分子が
分解されるので、カーボン中に含まれている弗素等を揮
発分として真空ポンプで系外に排出することにより、安
定な放電を回復すると同時に、アノード電極4の交換、
清掃等の保守作業が繁雑でなくなる効果がある。
Therefore, as described above, if the anode electrode 4 is provided inside the plasma generation container 2A, the anode electrode 4 is not thermally cooled because it is electrically connected to the plasma generation container 2A. Accelerated electrons flow between the anode electrode 4 and the plasma and heat the anode electrode 4, so that the anode electrode 4 operates at a considerably higher temperature than the plasma generation container 2. Therefore, the anode electrode 4 will not have any insulating polymer substances generated due to the discharge of the compound gas attached to it, and this will prevent the discharge from becoming unstable or no longer occurring. There are no operational problems, and stable discharge can be maintained even with compound gases. In addition, since the anode electrode 4 is fixed using magnetism, maintenance work such as replacing and cleaning the 7-node electrode 4 itself is easy, and
If a part of the magnetic material 9 supporting the anode electrode 4 is insulated, a potential different from that of the plasma generation container 2A can be applied to the anode electrode 4, which has the effect of improving the confinement of electrons or ions. Furthermore, since the anode electrode 4 is at room temperature when the ion source is initially energized and started operating, there is a risk that insulating polymer products produced by the plasma will adhere and the discharge will become unstable. In this case, stable discharge can be continued by creating plasma with Ar gas or H2 gas, preheating the anode electrode 4 to a high temperature, and then switching to a compound gas such as CF. In addition, in this case,
It has been confirmed that by providing a temperature sensor such as a thermocouple on the anode electrode 4, stable discharge can be performed when the temperature of the anode electrode 4 reaches 150° C. to 200° C. or higher. Furthermore, by keeping the anode electrode 4 at a high temperature, it is possible to prevent the deposition of insulating polymer products, but low-molecular solids such as carbon will accumulate, so maintenance such as replacement and cleaning of the anode electrode 4 is required. Work must be done frequently. At this time, if hydrogen plasma is used, polymers such as fluorine and chlorine deposited on the anode electrode 4 will be decomposed by the reduction action of the hydrogen ions, so the fluorine etc. contained in the carbon will be converted into volatile matter and pumped into the vacuum pump. By discharging it out of the system, stable discharge can be restored, and at the same time, the anode electrode 4 can be replaced,
This has the effect of making maintenance work such as cleaning less complicated.

次に、第2図、及び第3図に本発明の応用例を示す。Next, an application example of the present invention is shown in FIGS. 2 and 3.

第2図に示す応用例は、上述したカソードとしてのタン
グステンフイラメン小の代わりに、高周波プラズマやマ
イクロ波プラズマ等の無電極放電によるプラズマから引
き出した電子、ホローカソード等を利用したものである
。このため、第2図に示す例では、永久磁石7Bを有す
るプラズマ発生容器上蓋2Bに、ガス導入口10bを有
すると共に、R1にRFコイル11を備えているガラス
筒10aを、電子引き出し電極12.絶縁スペーサ13
を介して設けて、電子の発生源としている。
The application example shown in FIG. 2 uses electrons extracted from plasma by electrodeless discharge such as high frequency plasma or microwave plasma, or a hollow cathode, instead of the small tungsten filament as the cathode described above. For this reason, in the example shown in FIG. 2, a glass cylinder 10a having a gas inlet 10b and an RF coil 11 at R1 is attached to an upper lid 2B of the plasma generation container having a permanent magnet 7B, and an electron extraction electrode 12. Insulating spacer 13
It is provided through a 300° C. to serve as a source of electrons.

他の構成は第1図に示した実施例と同一である。The other configurations are the same as the embodiment shown in FIG.

このような構成とすることにより、安定した放電を維持
できると共に、フィラメントがないので、フィラメント
交換の保守作業を省略できる効果もある6 次に、第3図に示す応用例は、第1図に示した構成のイ
オン源装置における引き出し電極5,6の位置に、被加
工物15を置き、この被加工物15をプラズマに直接さ
らすことによりエツチングを可能としたもので、第1図
と同様な効果が得られることは勿論、イオンビーム衝撃
による被加工物の損傷を小さくできる効果もある。
With this configuration, stable discharge can be maintained, and since there is no filament, maintenance work such as filament replacement can be omitted.6 Next, the application example shown in Figure 3 is similar to that shown in Figure 1. A workpiece 15 is placed at the positions of extraction electrodes 5 and 6 in the ion source device having the configuration shown, and etching is made possible by directly exposing the workpiece 15 to plasma, similar to that shown in FIG. Of course, this method has the effect of reducing damage to the workpiece due to ion beam impact.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明のイオン源装置によれば、アノード
を兼ね、かつ、その外周に複数の永久磁石を有するプラ
ズマ発生容器の内周にアノード電極を設けたものである
から、アノード電極を高温に保つことができるため、絶
縁性の高分子生成物が付着することはなく、放電の不安
定化を防止でき、化合物ガスに対しても安定な放電を維
持することができるので、此種イオン源装置には非常に
有効である。
According to the ion source device of the present invention described above, since the anode electrode is provided on the inner periphery of the plasma generation container which also serves as an anode and has a plurality of permanent magnets on the outer periphery, it is possible to heat the anode electrode to a high temperature. This type of ion source can be It is very effective for equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のイオン源装置の一実施例を示す断面図
、第2図、及び第3図はそれぞれ本発明の応用例を示す
断面図である。 1.10b・・・ガス導入口、2A・・・プラズマ発生
容器、2B・・・プラズマ発生容器上蓋、3・・・カソ
ード、4・・・アノード電極、5,6・・・引き出し電
極、7A。 7B・・・永久磁石、8・・・水冷パイプ、9・・・磁
性材、10a・・・ガラス筒、11・・・RFコイル、
12・・・電子引き出し電極、13・・・絶縁スペーサ
、15・・・被羊 ! 図 第 2m
FIG. 1 is a cross-sectional view showing one embodiment of the ion source device of the present invention, and FIGS. 2 and 3 are cross-sectional views showing application examples of the present invention, respectively. 1.10b... Gas inlet, 2A... Plasma generation container, 2B... Plasma generation container top lid, 3... Cathode, 4... Anode electrode, 5, 6... Extraction electrode, 7A . 7B... Permanent magnet, 8... Water cooling pipe, 9... Magnetic material, 10a... Glass cylinder, 11... RF coil,
12...Electron extraction electrode, 13...Insulating spacer, 15...Sheep! Figure No. 2m

Claims (1)

【特許請求の範囲】 1、アノードを兼ね、かつ、その外周に複数の永久磁石
を有するプラズマ発生容器内でカソードとアノード間の
直流放電により化合物ガスを電離してプラズマを作るイ
オン源装置において、前記プラズマ発生容器の内周にア
ノード電極を設けたことを特徴とするイオン源装置。 2、前記アノード電極は、磁性材を介して前記プラズマ
発生容器の内周に固定されていることを特徴とする特許
請求の範囲第1項記載のイオン源装置。 3、前記磁性材の一部が絶縁されていることを特徴とす
る特許請求の範囲第2項記載のイオン源装置。 4、前記カソードは、プラズマ発生容器内に設けられた
フィラメントから成ることを特徴とする特許請求の範囲
第1項記載のイオン源装置。 5、前記カソードとして高周波プラズマ源、又はマイク
ロ波プラズマ源等の高周波無電極放電によるプラズマを
用いたことを特徴とする特許請求の範囲第1項記載のイ
オン源装置。 6、前記カソードとアノード間の直流放電により化合物
ガスを電離して作られたプラズマからイオンビームを引
き出すための複数の引き出し電極を設け、該引き出し電
極により引き出されたイオンビームを被加工物に照射す
ることを特徴とする特許請求の範囲第1項記載のイオン
源装置。 7、前記カソードとアノード間の直流放電により化合物
ガスを電離して作られたプラズマを被加工物に照射する
ことを特徴とする特許請求の範囲第1項記載のイオン源
装置。
[Claims] 1. An ion source device that generates plasma by ionizing a compound gas by direct current discharge between a cathode and an anode in a plasma generation container that also serves as an anode and has a plurality of permanent magnets around its outer periphery, An ion source device characterized in that an anode electrode is provided on the inner periphery of the plasma generation container. 2. The ion source device according to claim 1, wherein the anode electrode is fixed to the inner periphery of the plasma generation container via a magnetic material. 3. The ion source device according to claim 2, wherein a part of the magnetic material is insulated. 4. The ion source device according to claim 1, wherein the cathode is comprised of a filament provided within a plasma generation container. 5. The ion source device according to claim 1, wherein plasma generated by high frequency electrodeless discharge such as a high frequency plasma source or a microwave plasma source is used as the cathode. 6. A plurality of extraction electrodes are provided for extracting ion beams from the plasma created by ionizing the compound gas by DC discharge between the cathode and the anode, and the workpiece is irradiated with the ion beam extracted by the extraction electrodes. An ion source device according to claim 1, characterized in that: 7. The ion source device according to claim 1, wherein the workpiece is irradiated with plasma generated by ionizing a compound gas by direct current discharge between the cathode and the anode.
JP60129847A 1985-06-17 1985-06-17 Ion source device and operating method thereof Expired - Lifetime JPH0740469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60129847A JPH0740469B2 (en) 1985-06-17 1985-06-17 Ion source device and operating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60129847A JPH0740469B2 (en) 1985-06-17 1985-06-17 Ion source device and operating method thereof

Publications (2)

Publication Number Publication Date
JPS61288348A true JPS61288348A (en) 1986-12-18
JPH0740469B2 JPH0740469B2 (en) 1995-05-01

Family

ID=15019708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60129847A Expired - Lifetime JPH0740469B2 (en) 1985-06-17 1985-06-17 Ion source device and operating method thereof

Country Status (1)

Country Link
JP (1) JPH0740469B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165839A (en) * 1986-01-16 1987-07-22 Nissin Electric Co Ltd Arc chamber device for ion source
EP0286132A2 (en) 1987-04-08 1988-10-12 Hitachi, Ltd. Plasma generating apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5790900A (en) * 1980-11-27 1982-06-05 Hitachi Ltd Neutral particle incident device ion source

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5790900A (en) * 1980-11-27 1982-06-05 Hitachi Ltd Neutral particle incident device ion source

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165839A (en) * 1986-01-16 1987-07-22 Nissin Electric Co Ltd Arc chamber device for ion source
EP0286132A2 (en) 1987-04-08 1988-10-12 Hitachi, Ltd. Plasma generating apparatus
US5133825A (en) * 1987-04-08 1992-07-28 Hi Tachi, Ltd. Plasma generating apparatus

Also Published As

Publication number Publication date
JPH0740469B2 (en) 1995-05-01

Similar Documents

Publication Publication Date Title
US5908602A (en) Apparatus for generation of a linear arc discharge for plasma processing
US4407713A (en) Cylindrical magnetron sputtering cathode and apparatus
US6812648B2 (en) Method of cleaning ion source, and corresponding apparatus/system
US6254745B1 (en) Ionized physical vapor deposition method and apparatus with magnetic bucket and concentric plasma and material source
Oks et al. Development of plasma cathode electron guns
US6246059B1 (en) Ion-beam source with virtual anode
JP2002117780A (en) Ion source for ion implantation device and repeller for it
US4847476A (en) Ion source device
US6870164B1 (en) Pulsed operation of hall-current ion sources
JPS61288348A (en) Ion source device
JPH08102278A (en) Device and method for generating ion beam
JPH0746586B2 (en) Ion source
JP4029495B2 (en) Ion source
JPH07201831A (en) Surface processor
KR20220019827A (en) Ion gun and ion milling device
JPS6298542A (en) Ion source
JPH0554812A (en) Ion source
JPS5820090B2 (en) Magnetron type ion generator using electron impact heating method
JPH0378954A (en) Ion source
JPH10106478A (en) Ion implanting device
RU2248064C1 (en) Ion source
JPH06349430A (en) Ion source
JPH03219541A (en) Plasma processing device
CN111031652A (en) Low-pressure long-pulse high-energy plasma electron beam generating device and method
JPS6231924A (en) Ion source for reactive ion beam etching device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term