JPH0554812A - Ion source - Google Patents

Ion source

Info

Publication number
JPH0554812A
JPH0554812A JP23696891A JP23696891A JPH0554812A JP H0554812 A JPH0554812 A JP H0554812A JP 23696891 A JP23696891 A JP 23696891A JP 23696891 A JP23696891 A JP 23696891A JP H0554812 A JPH0554812 A JP H0554812A
Authority
JP
Japan
Prior art keywords
discharge chamber
plasma
discharge
electrode
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23696891A
Other languages
Japanese (ja)
Inventor
Hiroshi Inami
宏 稲実
Takatoshi Yamashita
貴敏 山下
Shuichi Fujiwara
修一 藤原
Yasuhiro Matsuda
恭博 松田
Koji Matsunaga
幸二 松永
Yutaka Inai
裕 井内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP23696891A priority Critical patent/JPH0554812A/en
Publication of JPH0554812A publication Critical patent/JPH0554812A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the maintainance and inspection work for an ion source by providing a plasma-generating electrode for high-frequency discharge. CONSTITUTION:A discharge chamber 1 is formed by a cylindrical side plate 2 and a side-plate blocking lid plate 3. A plasma-generating electrode 4 is provided at approximately the center of the chamber 1 in such a manner as passing the center of the lid plate 3. A radiation shield 22 is located immediately in front of the plasma electrode 8 of a take out electrode system 11 and a columnar space is defined by a radiation shield 5 located on the inner periphery of the chamber 1 and by an intermediate radiation shield 6. Plasma is generated within the space. A cathode filament 7 heats the plasma space. The side shield 5 and the intermediate shield 6 are at the same anode potential as the chamber 1. High-frequency power is fed among the chamber 1, the electrode 4 and the shields 5,6 and thereby high-frequency discharge is generated between the electrode 4 and each of the shields 6,5 and excites and converts a vapor into plasma.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は融点の高い物質のイオ
ンビ−ムを作るのに適した高温で機能することのできる
イオン源に関する。
FIELD OF THE INVENTION This invention relates to an ion source capable of functioning at elevated temperatures suitable for producing ion beams of high melting point materials.

【0002】[0002]

【従来の技術】イオン源は従来放電室に導入された原料
ガスを放電によってプラズマとしこれを引出電極によっ
てイオンビ−ムとして引き出すものであった。放電室の
何れかにガス導入口がある。放電室の内部は真空に引く
ことができる。内部にはカソ−ドフィラメントがありこ
れはフィラメント電源で加熱される。これはまた陰極と
なり放電室が陽極となって直流のア−ク放電がその間に
引き起こされる。フィラメントから熱電子が放出され加
速されガス分子と衝突するのでこれをイオン化しプラズ
マを形成する。放電室の外周には永久磁石が設けられプ
ラズマを放電室の中央部に閉じ込めるようになってい
る。放電室の出口には多孔金属板である引出電極があり
内部のプラズマをイオンビ−ムとして引き出すことがで
きる。従来は原料ガスの状態のものを扱っていたのでそ
のようなイオン源でよかった。しかしイオン源の用途が
拡がると伴に融点の高い金属等のイオンビ−ムに対する
要求が出てきた。例えばSi、Al、Cr、P等であ
る。
2. Description of the Related Art Conventionally, an ion source has been one in which a raw material gas introduced into a discharge chamber is converted into plasma by discharge and extracted as an ion beam by an extraction electrode. There is a gas inlet in either of the discharge chambers. The inside of the discharge chamber can be evacuated. Inside, there is a cathode filament which is heated by the filament power supply. This also serves as a cathode and the discharge chamber as an anode, during which a direct current arc discharge is generated. Thermionic electrons are emitted from the filament and are accelerated and collide with gas molecules, which are ionized to form plasma. A permanent magnet is provided on the outer periphery of the discharge chamber so that plasma is confined in the center of the discharge chamber. At the outlet of the discharge chamber, there is an extraction electrode which is a porous metal plate, and the plasma inside can be extracted as an ion beam. In the past, such a source of gas was used, so such an ion source was acceptable. However, as the use of ion sources has expanded, there has been a demand for ion beams such as metals having a high melting point. For example, Si, Al, Cr, P or the like.

【0003】もちろんこれらの物質を化合物として含む
ガス物質を原料として熱分解してこれらのイオンを作る
ということが可能である。その場合は様々のイオンが発
生するから所望のイオンだけを取り出すための質量分析
が必要になる。大口径イオンビ−ムを欲しいという場合
質量分析器自体が大きくなる。質量分析をしないで所望
のイオンを得たいという要求もある。この場合は単体金
属固体を原料として出発しなければならない。固体原料
の場合は、別に設けられたオ−ブンのなかで加熱蒸発さ
せたものを放電室内に導く形態のものがある。そうでな
くて原料固体を入れたるつぼを放電室に内蔵するという
こともありうる。いずれにしても放電室の内部は従来に
ない高温になる。高温を保持するために放電室の内壁に
沿ってTa、W等の輻射シ−ルドを設ける必要がある。
さらに固体原料を高熱に加熱するためにアノ−ド電位の
フィラメントを設けて抵抗加熱することもある。
Of course, it is possible to produce these ions by thermally decomposing a gas substance containing these substances as a compound as a raw material. In that case, various ions are generated, so mass spectrometry is required to extract only desired ions. When a large-diameter ion beam is desired, the mass spectrometer itself becomes large. There is also a demand for obtaining desired ions without mass spectrometry. In this case, a single metal solid must be used as the starting material. In the case of a solid raw material, there is a form in which a separately heated oven is heated and evaporated to be introduced into the discharge chamber. Alternatively, the crucible containing the raw material solid may be built in the discharge chamber. In any case, the inside of the discharge chamber will have an unprecedentedly high temperature. It is necessary to provide a radiation shield of Ta, W, etc. along the inner wall of the discharge chamber in order to maintain the high temperature.
Further, in order to heat the solid raw material to high heat, a filament having an anodic potential may be provided for resistance heating.

【0004】[0004]

【発明が解決しようとする課題】図3に従来例にかかる
イオン源の例を示す。これは Y.Inouchi,H.Tanaka,H.Inam
i,F.Fukumaru,and K.Matsun
aga:”High−current metalio
n beam extraction from a
multicusp ion source”Rev.
Sci.Instrum.61(1),Jan.199
0,p538 に所載のものである。固体原料を気化するために別に蒸
発源を持つ。アノ−ドフィラメントAFがあってこれに
通電して加熱する。この熱で輻射シ−ルドRSを金属蒸
気の保持に必要な温度に加熱する。カソ−ドフィラメン
トCFがありこれは陰極となって放電室との間にア−ク
放電を発生させる。カソ−ドフィラメントは従来よりも
高温になり熱電子の発生量も多いのでスパッタが増え
る。金属蒸気との反応による消耗もある。またもともと
カソ−ドフィラメントは細長い線である。こういうわけ
で従来よりカソ−ドフィラメントの消耗が激しい。カソ
−ドフィラメントの寿命が短く従ってカソ−ドフィラメ
ントを頻繁に交換しなければならず保守点検が煩労であ
る。本発明はカソ−ドフィラメント交換を不要とするこ
とによってこのような難点を克服し保守点検の労を軽減
した高融点物質用のイオン源を提供する事を目的とす
る。
FIG. 3 shows an example of a conventional ion source. This is Y. Inouchi, H .; Tanaka, H .; Inam
i, F. Fukumaru, and K.K. Matsun
aga: "High-current metalio"
n beam extraction from a
multispion source "Rev.
Sci. Instrum. 61 (1), Jan. 199
0, p538. A separate evaporation source is provided to vaporize the solid raw material. There is an anodic filament AF which is energized and heated. This heat heats the radiation shield RS to the temperature required to hold the metal vapor. There is a cathode filament CF, which serves as a cathode to generate an arc discharge with the discharge chamber. Since the cathode filament has a higher temperature than the conventional one and a large amount of thermoelectrons are generated, spatter is increased. There is also consumption due to reaction with metal vapor. Originally, the cathode filament is an elongated wire. For this reason, the consumption of cathode filament is more intense than in the past. Since the life of the cathode filament is short, the cathode filament must be replaced frequently, and maintenance and inspection is troublesome. It is an object of the present invention to provide an ion source for high melting point substances by eliminating the need for a cathode filament replacement and overcoming such difficulties and reducing maintenance work.

【0005】[0005]

【課題を解決するための手段】本発明のイオン源は、真
空に引くことができ内部に放電を起こさせることにより
ガス物質をプラズマに励起する放電室と、放電室内壁に
沿って設けられる輻射シ−ルドと、放電室の外周に設け
られプラズマを閉じ込めるための磁石と、放電室の出口
に設けられ多孔金属板よりなる引出電極系と、放電室の
内部に設けられ放電室と絶縁されたプラズマ発生電極
と、放電室とプラズマ発生電極の間に高周波電力を供給
する高周波電源とを含み、放電室とプラズマ発生電極の
間で高周波放電を起こさせこれによって中性粒子蒸気を
励起してプラズマとし引き出し電極からイオンビ−ムと
して引き出すようにしたことを特徴とする。つまりカソ
−ドフィラメントがなく、これとは別に 新しくプラズ
マ発生電極を放電室の内部に設ける。そしてプラズマ発
生電極と放電室の間で高周波放電を起こさせる。又プラ
ズマ発生電極を設ける代わりに一つの輻射シ−ルドを電
極としてこれと放電室の間に高周波放電を起こさせるよ
うにしても良い。さらに金属蒸気を生成するためにイオ
ン源とは別に蒸発源を設けても良いし、或はイオン源の
中に固体原料をいれたるつぼを置いても良い。
SUMMARY OF THE INVENTION The ion source of the present invention is a discharge chamber which can be evacuated to a vacuum to excite a gas substance into plasma by causing an electric discharge inside, and a radiation provided along the inner wall of the discharge chamber. A shield, a magnet provided on the outer periphery of the discharge chamber for confining plasma, an extraction electrode system made of a porous metal plate provided at the outlet of the discharge chamber, and provided inside the discharge chamber and insulated from the discharge chamber. A plasma generating electrode and a high frequency power supply for supplying high frequency power between the discharge chamber and the plasma generating electrode are included, and a high frequency discharge is generated between the discharge chamber and the plasma generating electrode to excite neutral particle vapor and thereby generate plasma. The extraction electrode is characterized as being extracted as an ion beam. In other words, there is no cathode filament, and a new plasma generating electrode is installed inside the discharge chamber in addition to this. Then, a high frequency discharge is generated between the plasma generating electrode and the discharge chamber. Further, instead of providing the plasma generating electrode, one radiation shield may be used as an electrode to cause high frequency discharge between this and the discharge chamber. Further, in order to generate the metal vapor, an evaporation source may be provided separately from the ion source, or a crucible containing a solid raw material may be placed in the ion source.

【0006】[0006]

【作用】従来のイオン源は、カソ−ドフィラメントに通
電し熱電子を発生させ、カソ−ドフィラメントと放電室
壁の間に直流を流して直流ア−ク放電を形成する。高融
点材料を対象とする場合、カソ−ドフィラメントの温度
は2800℃〜3000℃という高温になる。ところが
本発明の場合はカソ−ドフィラメントが存在しない。代
わりに高周波放電のためのプラズマ発生電極がある。こ
れはフィラメントではなく自ら発熱しない。それゆえ周
囲の輻射シ−ルドとほぼ同程度の温度にしか上がらな
い。つまり1800℃程度である。しかもプラズマ発生
電極はフィラメントのように抵抗値を上げるため線状に
する必要がなく面積の大きい板状のものとすることがで
きる。より低温で体積も大きいので従来のカソ−ドフィ
ラメントに比べて消耗が殆ど起こらず長寿命である。
In the conventional ion source, the cathode filament is energized to generate thermoelectrons, and a direct current is caused to flow between the cathode filament and the wall of the discharge chamber to form a direct current arc discharge. When targeting high melting point materials, the temperature of the cathode filament is as high as 2800 ° C to 3000 ° C. However, in the case of the present invention, no cathode filament exists. Instead, there is a plasma generating electrode for high frequency discharge. This is not a filament and does not generate heat by itself. Therefore, the temperature rises to about the same level as the surrounding radiation shield. That is, it is about 1800 ° C. Moreover, the plasma generating electrode does not need to be linear like a filament to increase the resistance value and can be a plate having a large area. Since it has a lower temperature and a larger volume, it has a longer life and consumes less than conventional cathode filaments.

【0007】[0007]

【実施例】図1によって本発明の実施例を説明する。放
電室1は真空に引くことのできる容器であり、円筒状の
側板2と側板の一方を閉塞する蓋板3とで形成される。
蓋板3の中央を貫いてプラズマ発生電極4が放電室1の
ほぼ真中に設けられる。側板2の内周にはTaまたはW
よりなる薄板の円筒状輻射シ−ルド5が設けられる。さ
らに放電室の中央より少し蓋板3によった所に軸方向に
直角な円板状の輻射シ−ルド6が設けられる。蓋板3か
ら直角にアノ−ドフィラメント7がいくつか突出してい
る。これはアノ−ド電位であって放電室内部を加熱する
ためのヒ−タになっている。タングステン等の細線より
なるヒ−タであるが陽極電位であるからプラズマ中のイ
オンによるスパッタリングを受けないので消耗が少な
い。蓋板に平行な輻射シ−ルド6をこれらのプラズマ発
生電極4、アノ−ドフィラメント7が貫いている。放電
室1の蓋板3と反対側には多孔電極板であるプラズマ電
極8、引出電極9、接地電極10よりなる引出電極系1
1が設けられる。これらはイオン源のなかからプラズマ
をイオンビ−ムとして引き出すためのものである。放電
室1の外周には磁石12が幾つか設けられる。これはカ
スプ磁場を形成することにより放電室1の壁面にプラズ
マが接触しないようにする。磁化方向は半径方向で隣接
磁石間で磁化方向が反転するよう配置される。プラズマ
電極4と放電室1の間に高周波電源13が接続される。
これはプラズマ発生電極4と放電室1の間に高周波電界
を印加し高周波放電を起こさせるためのものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. The discharge chamber 1 is a container that can be evacuated to a vacuum, and is formed by a cylindrical side plate 2 and a lid plate 3 that closes one of the side plates.
A plasma generating electrode 4 is provided almost in the center of the discharge chamber 1 so as to penetrate the center of the lid plate 3. Ta or W is provided on the inner circumference of the side plate 2.
A thin cylindrical cylindrical radiation shield 5 is provided. Further, a disk-shaped radiation shield 6 which is perpendicular to the axial direction is provided at a position slightly closer to the lid plate 3 than the center of the discharge chamber. Several anodic filaments 7 project at right angles from the cover plate 3. This is an anode potential and serves as a heater for heating the inside of the discharge chamber. Although it is a heater made of a thin wire such as tungsten, it is not consumed because it is not subjected to sputtering by ions in the plasma because it has an anode potential. These plasma generating electrode 4 and anode filament 7 penetrate a radiation shield 6 parallel to the cover plate. An extraction electrode system 1 including a plasma electrode 8 which is a porous electrode plate, an extraction electrode 9, and a ground electrode 10 on the side opposite to the cover plate 3 of the discharge chamber 1.
1 is provided. These are for extracting plasma as an ion beam from the ion source. Several magnets 12 are provided on the outer circumference of the discharge chamber 1. This prevents the plasma from contacting the wall surface of the discharge chamber 1 by forming a cusp magnetic field. The magnetizing direction is the radial direction, and the magnetizing directions are arranged to be reversed between the adjacent magnets. A high frequency power supply 13 is connected between the plasma electrode 4 and the discharge chamber 1.
This is for applying a high frequency electric field between the plasma generating electrode 4 and the discharge chamber 1 to cause a high frequency discharge.

【0008】この例では放電室1の外部に蒸発源14が
あり、高融点の固体を加熱して蒸気にしている。蒸発源
14は原料の固体を収容するべきるつぼ15と、ヒ−タ
16、オ−ブン17とを有する。これらが外套管18で
囲まれている。ヒ−タ16によって原料を加熱して蒸気
とする。外部との熱交換を遮断するために輻射シ−ルド
がいくつか設けられる。蒸発源14と放電室1とは連絡
管19によって連結される。蒸気が通る経路は輻射シ−
ルドで囲まれたフィ−ドパイプ20となっている。イオ
ン源の先には絶縁物21で囲まれた領域がありその先は
多様な処理装置につながっている。
In this example, an evaporation source 14 is provided outside the discharge chamber 1 and heats a solid having a high melting point to form vapor. The evaporation source 14 has a crucible 15 for containing a solid material, a heater 16 and an oven 17. These are surrounded by a mantle tube 18. The raw material is heated by the heater 16 to form steam. Some radiation shields are provided to block heat exchange with the outside. The evaporation source 14 and the discharge chamber 1 are connected by a connecting pipe 19. The route through which the steam passes is the radiation
It is a feed pipe 20 surrounded by a rud. There is a region surrounded by the insulator 21 at the tip of the ion source, and the tip is connected to various processing devices.

【0009】引出電極系11のプラズマ電極8の直前に
も輻射シ−ルド22があり、放電室1内周の輻射シ−ル
ド5と、中間の輻射シ−ルド6とによって円柱状の空間
が仕切られる。この内部でプラズマが発生する。前記の
アノ−ドフィラメント7とプラズマ発生電極4はこのプ
ラズマ空間の内部にある。カソ−ドフィラメントは輻射
熱を発生しプラズマ空間を加熱する。側面の輻射シ−ル
ド5と中間の輻射シ−ルド6は放電室1と同じアノ−ド
電位である。放電室1とプラズマ発生電極4の間に高周
波電力が供給されるからプラズマ発生電極4と輻射シ−
ルド6、5との間に高周波放電が発生しこれが蒸気を励
起してプラズマとする。高周波電源はイオン源の寸法や
材料によって適当に周波数、パワ−が選ばれるべきであ
る。例えば13MHz、1kWのものを使うことができ
る。プラズマが引出電極系11によってイオンビ−ムに
なって引き出される。
There is a radiation shield 22 immediately before the plasma electrode 8 of the extraction electrode system 11, and a cylindrical space is formed by the radiation shield 5 at the inner circumference of the discharge chamber 1 and the intermediate radiation shield 6. Partitioned. Plasma is generated inside this. The anode filament 7 and the plasma generating electrode 4 are inside the plasma space. The cathode filament generates radiant heat to heat the plasma space. The radiation shield 5 on the side surface and the radiation shield 6 in the middle have the same anode potential as the discharge chamber 1. Since high frequency power is supplied between the discharge chamber 1 and the plasma generation electrode 4, the plasma generation electrode 4 and the radiation shield are connected.
A high-frequency discharge is generated between the contacts 6 and 5, and this excites vapor to form plasma. The frequency and power of the high frequency power source should be appropriately selected depending on the size and material of the ion source. For example, one with 13 MHz and 1 kW can be used. The plasma is extracted as an ion beam by the extraction electrode system 11.

【0010】プラズマ発生電極は陰極でなく熱電子を発
生しないから比較的低温である。先述のようにこれは1
800℃程度である。厚い面積の大きい電極板にできる
からスパッタによる損傷が少ない。逆にプラズマ発生電
極は輻射シ−ルドで囲まれた高温のプラズマ空間にある
からこれに金属蒸気等が堆積するということがない。た
とえ一時的に付着しても高温であるので再び蒸発する。
従ってプラズマ発生電極は常に正常でしかも消耗もしな
いから交換の必要性が殆どない。
Since the plasma generating electrode is not a cathode and does not generate thermoelectrons, it has a relatively low temperature. As mentioned earlier, this is 1
It is about 800 ° C. Since it is possible to form a thick electrode plate with a large area, damage due to sputtering is small. On the contrary, since the plasma generating electrode is located in the high temperature plasma space surrounded by the radiation shield, metal vapor or the like will not be deposited on it. Even if it adheres temporarily, the temperature is high, so it evaporates again.
Therefore, the plasma generating electrode is always normal and does not wear out, so there is almost no need to replace it.

【0011】図2に本発明の他の実施例を示す。これは
独立のプラズマ発生電極4を設ける代わりにもともと存
在する中間部の輻射シ−ルド6の一つをプラズマ発生電
極24に転用するものである。この場合、この輻射シ−
ルドと他の輻射シ−ルド6、5とは絶縁しなければなら
ない。このようにすると部材を一つ節減でき構造を単純
化できる。さらに放電の起こる範囲が広くなるのでプラ
ズマ発生がより盛んになるという長所もある。さらにこ
の例では蒸発源を別に設けず放電室1の内部に固体原料
25を入れたるつぼ26を置いてある。カソ−ドフィラ
メント7の熱によって固体原料が蒸気になる。これは蒸
発源を不要とするので装置が簡略化されるという利点が
ある。
FIG. 2 shows another embodiment of the present invention. This is to divert one of the existing radiation shields 6 in the intermediate portion to the plasma generating electrode 24 instead of providing the independent plasma generating electrode 4. In this case, this radiation
The field and other radiation shields 6, 5 must be insulated. By doing so, one member can be saved and the structure can be simplified. Further, since the range where the discharge occurs becomes wider, there is an advantage that plasma generation becomes more active. Further, in this example, a crucible 26 containing the solid raw material 25 is placed inside the discharge chamber 1 without separately providing an evaporation source. The solid raw material becomes vapor due to the heat of the cathode filament 7. This has the advantage that the device is simplified because no evaporation source is required.

【0012】[0012]

【発明の効果】本発明で用いるプラズマ発生電極はカソ
−ドフィラメントより温度が低いし抵抗値を上げる必要
がないので幾何学的にも熱に強い構造にできる。高融点
の材料をプラズマにするイオン源は一層高温にせざるを
えないが、本発明は寿命の短いカソ−ドフィラメントを
用いないので保守点検の労が軽減されメンテナンスが容
易になる。
The plasma generating electrode used in the present invention has a temperature lower than that of the cathode filament and it is not necessary to increase the resistance value, so that the structure can be geometrically resistant to heat. The ion source that uses a high melting point material as a plasma must be heated to a higher temperature. However, since the present invention does not use a cathode filament having a short life, the labor for maintenance and inspection is reduced and the maintenance becomes easier.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例にかかるイオン源の概略断面
図。
FIG. 1 is a schematic sectional view of an ion source according to an embodiment of the present invention.

【図2】本発明の他の実施例に係るイオン源の概略断面
図。
FIG. 2 is a schematic sectional view of an ion source according to another embodiment of the present invention.

【図3】従来例に係るイオン源の概略断面図。FIG. 3 is a schematic sectional view of an ion source according to a conventional example.

【符号の説明】[Explanation of symbols]

1 放電室 2 側板 3 蓋板 4 プラズマ発生電極 5 輻射シ−ルド 6 輻射シ−ルド 7 アノ−ドフィラメント 8 プラズマ電極 9 引出電極 10 接地電極 11 引出電極系 12 磁石 13 高周波電源 14 蒸発源 15 るつぼ 16 ヒ−タ 17 オ−ブン 18 外套部 19 連絡管 20 フィ−ドパイプ 21 絶縁物 22 輻射シ−ルド 1 Discharge Chamber 2 Side Plate 3 Lid Plate 4 Plasma Generation Electrode 5 Radiation Shield 6 Radiation Shield 7 Anode Filament 8 Plasma Electrode 9 Extraction Electrode 10 Grounding Electrode 11 Extraction Electrode System 12 Magnet 13 High Frequency Power Supply 14 Evaporation Source 15 Crucible 16 Heater 17 Oven 18 Overcoat 19 Communication Pipe 20 Feed Pipe 21 Insulator 22 Radiation Shield

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松田 恭博 京都市右京区梅津高畝町47番地日新電機株 式会社内 (72)発明者 松永 幸二 京都市右京区梅津高畝町47番地日新電機株 式会社内 (72)発明者 井内 裕 京都市右京区梅津高畝町47番地日新電機株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yasuhiro Matsuda 47 Umezu Takaunecho, Ukyo-ku, Kyoto City Nissin Electric Co., Ltd. (72) Inventor Yu Inouchi 47 Umezu Takaunecho, Ukyo-ku, Kyoto Nissin Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】真空に引くことができ内部に放電を起こさ
せることによりガス物質をプラズマに励起する放電室
と、放電室内壁に沿って設けられる輻射シ−ルドと、放
電室の外周に設けられプラズマを閉じ込めるための磁石
と、放電室の内部に設けられ放電室と同一またはほぼ同
電位のヒ−タであるアノ−ドフィラメントと、放電室の
出口に設けられ多孔金属板よりなる引出電極系と、放電
室の内部に設けられ放電室と絶縁されたプラズマ発生電
極と、放電室とプラズマ発生電極の間に高周波電力を供
給する高周波電源とを含み、放電室とプラズマ発生電極
の間で高周波放電を起こさせこれによってガスを励起し
てプラズマとし引き出し電極からイオンビ−ムとして引
き出すようにしたことを特徴とするイオン源。
1. A discharge chamber which can be evacuated to a vacuum to excite a gas substance into plasma by causing an electric discharge inside, a radiation shield provided along the inner wall of the discharge chamber, and an outer periphery of the discharge chamber. And a magnet for confining the plasma, an anode filament provided inside the discharge chamber, which is a heater having the same or substantially the same potential as the discharge chamber, and an extraction electrode made of a porous metal plate provided at the outlet of the discharge chamber. A system, a plasma generating electrode provided inside the discharge chamber and insulated from the discharge chamber, and a high-frequency power source for supplying high-frequency power between the discharge chamber and the plasma generating electrode, and between the discharge chamber and the plasma generating electrode. An ion source characterized in that a high frequency discharge is caused to excite a gas to generate a plasma, which is then extracted as an ion beam from an extraction electrode.
【請求項2】真空に引くことができ内部に放電を起こさ
せることによりガス物質をプラズマに励起する放電室
と、放電室内壁に沿って設けられる輻射シ−ルドと、放
電室の外周に設けられプラズマを閉じ込めるための磁石
と、放電室の内部に設けられ放電室と同一またはほぼ同
電位のヒ−タであるアノ−ドフィラメントと、放電室の
出口に設けられ多孔金属板よりなる引出電極系と、放電
室の内部に設けられ放電室及び他の輻射シ−ルドと絶縁
された面積の広い電極用輻射シ−ルドと、放電室と電極
用輻射シ−ルドの間に高周波電力を供給する高周波電源
とを含み、放電室と電極用輻射シ−ルドの間で高周波放
電を起こさせこれによってガスを励起してプラズマとし
引き出し電極からイオンビ−ムとして引き出すようにし
たことを特徴とするイオン源。
2. A discharge chamber which can be evacuated to a vacuum to excite a gas substance into plasma by causing an electric discharge inside, a radiation shield provided along the inner wall of the discharge chamber, and an outer periphery of the discharge chamber. And a magnet for confining the plasma, an anode filament provided inside the discharge chamber, which is a heater having the same or substantially the same potential as the discharge chamber, and an extraction electrode made of a porous metal plate provided at the outlet of the discharge chamber. High-frequency power is supplied between the discharge chamber and the radiation shield for electrodes, which has a large area and is insulated from the discharge chamber and other radiation shields provided inside the system and the discharge chamber. And a high-frequency power source for generating a high-frequency discharge between the discharge chamber and the radiation shield for electrodes to excite the gas to generate plasma, which is extracted as an ion beam from the extraction electrode. On source.
JP23696891A 1991-08-22 1991-08-22 Ion source Pending JPH0554812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23696891A JPH0554812A (en) 1991-08-22 1991-08-22 Ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23696891A JPH0554812A (en) 1991-08-22 1991-08-22 Ion source

Publications (1)

Publication Number Publication Date
JPH0554812A true JPH0554812A (en) 1993-03-05

Family

ID=17008436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23696891A Pending JPH0554812A (en) 1991-08-22 1991-08-22 Ion source

Country Status (1)

Country Link
JP (1) JPH0554812A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100418317B1 (en) * 1994-12-22 2004-05-24 더 세크러터리 오브 스테이트 포 디펜스 Radio frequency source
JP2019525381A (en) * 2016-06-21 2019-09-05 アクセリス テクノロジーズ, インコーポレイテッド Implantation with solid aluminum iodide (ALI3) to generate aluminum atomic ions and in situ cleaning of aluminum iodide and its associated by-products
WO2020197938A1 (en) * 2019-03-22 2020-10-01 Axcelis Technologies, Inc. Liquid metal ion source

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100418317B1 (en) * 1994-12-22 2004-05-24 더 세크러터리 오브 스테이트 포 디펜스 Radio frequency source
JP2019525381A (en) * 2016-06-21 2019-09-05 アクセリス テクノロジーズ, インコーポレイテッド Implantation with solid aluminum iodide (ALI3) to generate aluminum atomic ions and in situ cleaning of aluminum iodide and its associated by-products
WO2020197938A1 (en) * 2019-03-22 2020-10-01 Axcelis Technologies, Inc. Liquid metal ion source
US11170967B2 (en) 2019-03-22 2021-11-09 Axcelis Technologies, Inc. Liquid metal ion source

Similar Documents

Publication Publication Date Title
US5908602A (en) Apparatus for generation of a linear arc discharge for plasma processing
JPS63276858A (en) Ion beam generator
US4847476A (en) Ion source device
US4175029A (en) Apparatus for ion plasma coating of articles
JP3345009B2 (en) Method for ionizing material vapor produced by heating and apparatus for performing the method
EP0095311B1 (en) Ion source apparatus
JPH0554812A (en) Ion source
JP3717655B2 (en) Plasma generator and thin film forming apparatus
JPH08102278A (en) Device and method for generating ion beam
US4540868A (en) Plasma gun that reduces cathode contamination
JP7186884B2 (en) Ion gun and ion milling device
JP3156627B2 (en) Negative ion source
US2677770A (en) Ion source
JPH0554809A (en) Silicon ion source with built-in crucible
JP3021762B2 (en) Electron impact ion source
JP3905572B2 (en) High melting point material evaporator
JP2586836B2 (en) Ion source device
JPS5820090B2 (en) Magnetron type ion generator using electron impact heating method
JP2001143894A (en) Plasma generator and apparatus for producing thin film
Wolf Production, acceleration and diagnostics of high intensity beams
JP3060647B2 (en) Freeman ion source
Shimabukuro et al. Injection of atomic hydrogen from a thermal cracker cell to plasma grid surface of a H− ion source
SU529712A1 (en) Metal ion source
JPH043056B2 (en)
JPH0740469B2 (en) Ion source device and operating method thereof