JPS61288048A - Fe-base amorphous alloy with low core loss - Google Patents

Fe-base amorphous alloy with low core loss

Info

Publication number
JPS61288048A
JPS61288048A JP60127179A JP12717985A JPS61288048A JP S61288048 A JPS61288048 A JP S61288048A JP 60127179 A JP60127179 A JP 60127179A JP 12717985 A JP12717985 A JP 12717985A JP S61288048 A JPS61288048 A JP S61288048A
Authority
JP
Japan
Prior art keywords
amorphous alloy
present
alloy
iron loss
based amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60127179A
Other languages
Japanese (ja)
Inventor
Katsuto Yoshizawa
克仁 吉沢
Susumu Nakajima
晋 中島
Kiyotaka Yamauchi
山内 清隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP60127179A priority Critical patent/JPS61288048A/en
Priority to DE19863619659 priority patent/DE3619659C2/en
Priority to JP61215031A priority patent/JPS62167851A/en
Publication of JPS61288048A publication Critical patent/JPS61288048A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain an Fe-base amorphous alloy with low core losses fitted for use in high-frequency transformers and common mode choke magnetic cores for high-frequency use or the like by adding Cu to an (Fe-M)-Si-B amorphous alloy. CONSTITUTION:The Fe-base amorphous alloy has a composition represented by a formula, where M means 1 or >=2 elements among Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn and Ni, 0.001<=a<=0.1, 0.1<=x<=3, y<=19, 5<=z<=25 and 15<=y+z<=30. The above amorphous alloy is manufactured by the known liquid rapid cooling method such as single roll, double roll, or other methods.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非晶質合金の改良に関するものであり、特に
20kHz以上の高い周波数において使用される高周波
トランス、コモンモートチ1−りその他の電子部品の磁
心材料として好適なFe基非晶質合金に係るものである
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to the improvement of amorphous alloys, and particularly to high frequency transformers, common motor chains, and other electronic components used at high frequencies of 20 kHz or higher. The present invention relates to an Fe-based amorphous alloy suitable as a magnetic core material.

〔従来の技術〕[Conventional technology]

従来、高周波用のトランス、チ層−り等の磁心材料とし
では、高抵抗であってうず電流積が少ない等の利点を有
するため、フェライトが主に用いられでいた。しかし、
7エライトは飽和磁束密度が低く、温度特性も悪いため
、磁心を小形化することが困難であるという欠点があっ
た。
Conventionally, ferrite has been mainly used as a magnetic core material for high-frequency transformers, chi layers, etc. because it has advantages such as high resistance and low eddy current product. but,
7-elite has a low saturation magnetic flux density and poor temperature characteristics, so it has the disadvantage that it is difficult to miniaturize the magnetic core.

近年、従来の磁心材料に対抗できる可能性力1あるもの
として非晶質磁性合金は高い飽和磁束密度を有するため
、優れた磁心材料として有望視されている。しかしなが
ら、Fe系の非晶質合金は一般的に高周波の鉄損が大き
いという問題点がある。
In recent years, amorphous magnetic alloys have been viewed as promising as excellent magnetic core materials because they have a high saturation magnetic flux density that has the potential to compete with conventional magnetic core materials. However, Fe-based amorphous alloys generally have a problem of large iron loss at high frequencies.

このため、Nb等を添加することにより磁歪定数を小さ
くシ、低損失化を図ることが行なわれている。しかし、
従来から知られているNb普を添加し低損失化を図った
ものは必ずしも十分な特性を有せず、Co系の非晶質合
金に比べると鉄損が大きいという問題点がある。
For this reason, efforts are being made to reduce the magnetostriction constant and reduce the loss by adding Nb or the like. but,
Conventionally known alloys in which Nb alloys are added to reduce loss do not necessarily have sufficient properties, and there is a problem in that iron loss is larger than in Co-based amorphous alloys.

一方、Co系の非晶質合金は初期の鉄損は小さいものの
、一般に鉄損の経時変化が大きいため実用上問題が多い
On the other hand, although Co-based amorphous alloys have a small initial core loss, they generally have a large change in core loss over time, which causes many practical problems.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述したごと(、Fe系非晶質合金はCo系非晶質合金
に比べで経時変化が小さいという特長を有するものの、
高周波における鉄損がG。
As mentioned above (although Fe-based amorphous alloys have the feature of less change over time compared to Co-based amorphous alloys,
Iron loss at high frequency is G.

系の合金に比べて大きいため、高周波になるに鶴っで鉄
損の増加による磁るの温度上昇が目角つでくる。このた
めFe系の合金はできる限り鉄損を低くすることが重要
な課題である。
Because it is larger than the alloys in the system, the temperature of the magnet increases significantly at higher frequencies due to increased iron loss. Therefore, it is important to reduce the iron loss of Fe-based alloys as much as possible.

また、Fe系非晶質合金は透磁率についでもCo系非晶
質合金に比べると劣っている。
Furthermore, Fe-based amorphous alloys are inferior to Co-based amorphous alloys in terms of magnetic permeability.

本発明は、上記従来技術の問題点を解消し、高周波特に
50kHz以上の周波数の用途に用いる高周波トランス
やコモンモートチ1−り用磁る普に好適な低損失のFe
系非晶質合金を提供することを目的とするものである。
The present invention solves the above-mentioned problems of the prior art, and provides low-loss Fe magnets that are generally suitable for high-frequency transformers and common motor circuits used in high-frequency applications, particularly at frequencies of 50 kHz or higher.
The purpose of the present invention is to provide a non-crystalline alloy.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために本発明は、(Fe−M)−8
i−B系非晶質合金にCuを添加し、Co系非晶質合金
と同響程度の低損失特性を有するFe系非晶質合金とし
たことを特徴とするものである。
In order to achieve the above object, the present invention provides (Fe-M)-8
It is characterized in that Cu is added to an i-B based amorphous alloy to create an Fe based amorphous alloy which has low loss characteristics comparable to those of a Co based amorphous alloy.

すなわち、本発明の非晶質合金は次の組成式で表わされ
ることを特徴とするものである。    ゛(Fe1 
aMaLoo x y z Cu x Si y B 
zここで、MはTi%Zrs Hls V、 Nb%T
a5C1r、 MO% W、 Mn、 Niの群から選
ばれる少な1(とも1種の元素であり、aは 0・00
1″″0゜1、Xは0.1〜3、yは19以下、2は5
〜25、y十zは15〜30である。
That is, the amorphous alloy of the present invention is characterized by being represented by the following compositional formula.゛(Fe1
aMaLoo x y z Cu x Si y B
zHere, M is Ti%Zrs Hls V, Nb%T
a5C1r, MO% A small amount of 1 selected from the group of W, Mn, and Ni (both are one type of element, and a is 0.00
1″″0°1, X is 0.1 to 3, y is 19 or less, 2 is 5
~25, y10z is 15-30.

〔作 用〕[For production]

本発明において、Cuは必須の元素であり、その含有量
Xを0.1〜3原子%に限定したのは、0.1原子%よ
り小さいとCu添加による鉄損減少の効果がほとんどな
く、一方3原子%より大きいと鉄損が未添加のものより
大軽くなるからである。また本発明においで特に好まし
いXの範囲は0.1〜2j1子%であり、この範囲では
鉄損が特に小さい。
In the present invention, Cu is an essential element, and the reason why the content X is limited to 0.1 to 3 atomic % is because if it is less than 0.1 atomic %, Cu addition has almost no effect on reducing iron loss. On the other hand, if the content is greater than 3 atomic %, the iron loss will be much lower than that without the addition. Further, in the present invention, a particularly preferable range of X is 0.1 to 2j1%, and in this range, the iron loss is particularly small.

また本発明におけるyお上り2についての限定理由は、
主として前記y19原子%以下、z5〜25原子%のI
ll!Iを外れると会食の非晶質化が困難となるためで
ある。しかして、本発明において、yのより好ましい範
囲は8〜19原子%であり、2のより好ましい範囲は7
〜10原子%であって、y + zの範囲が18〜21
6原子%範囲内であることが望ましい、二の範囲である
と鉄損が小さく、またその経時変化も小さい、特に2が
8〜9.5原子%の範囲の場合は鉄損の経時変化が着し
く小さい。
In addition, the reason for limiting y-up 2 in the present invention is as follows:
Mainly the above y19 at% or less, z5 to 25 at% I
ll! This is because if it deviates from I, it becomes difficult to make the dinner amorphous. Therefore, in the present invention, a more preferable range of y is 8 to 19 at%, and a more preferable range of 2 is 7
~10 atom%, and y + z ranges from 18 to 21
It is desirable that it is within the range of 6 at%.If it is in the range of 2, the iron loss will be small and its change over time will also be small.In particular, if 2 is in the range of 8 to 9.5 at%, the change over time of iron loss will be small. Comfy and small.

また本発明において、Feの一部を置換する添加成分M
の量aを o、ooi〜0.1に限定したの−は、o、
ooiより小さいとMを添加したことによる鉄損減少の
効−果がほとんどなく、0.1より大きいと飽和磁束密
度の着しい低下を招くとともi二脆化しやすくなり、リ
ボン作製が困難となるためである。
Further, in the present invention, an additional component M that replaces a part of Fe
By limiting the amount a to o,ooi~0.1, - is o,
If it is smaller than ooi, there is almost no effect of reducing iron loss by adding M, and if it is larger than 0.1, the saturation magnetic flux density will be severely reduced and embrittlement will occur easily, making ribbon production difficult. To become.

またMがCrあるいはMnの場合は、低角形比で恒速磁
率特性に優れ、かつ飽和磁界が大軽い磁気特性となるた
め、7オワードコンパータ用の高周波トランスや、高電
圧のパルス状ノイズに対して優れた特性を示すコモンモ
ートチa−り用磁心に適する。
In addition, when M is Cr or Mn, it has a low squareness ratio, excellent constant velocity magnetic properties, and a very light saturation magnetic field, so it can be used for high frequency transformers for 7-ward converters, and for high voltage pulse noise. Suitable for common motor chirping magnetic cores that exhibit excellent properties against.

またMがMoあるいはNbの場合は、低損失であるだけ
でな(Co基の高透磁率材料差の高い透磁率を示す、こ
のため、高周波トランスだけlでな(、通常のコモンモ
ートチ層−り用磁会に適する。*た低周波領域での透磁
率も高いためMCカートリック用外圧トランス等にも適
している。
Furthermore, when M is Mo or Nb, it not only has low loss but also exhibits high magnetic permeability due to the difference between Co-based high magnetic permeability materials. Suitable for magnetic fields. *It also has high magnetic permeability in the low frequency range, so it is also suitable for external pressure transformers for MC cartridges.

なお、本発明の非晶質合金は完全な非晶質である必要は
なく、高周波磁気特性を劣化させない程度の結晶を含ん
でいてもよい、また不可避不純物が含まれでいても本発
明の効果を十分得ることができることは勿論である。
Note that the amorphous alloy of the present invention does not need to be completely amorphous, and may contain crystals to the extent that it does not deteriorate high-frequency magnetic properties, and even if it contains unavoidable impurities, the effects of the present invention will still be achieved. Of course, it is possible to obtain a sufficient amount of

また、本発明の非晶質合金は、片ロール法・双ロール法
・その他の公知の液体急冷法により製造することができ
るものである1通常、片ロール法簿により災遺される非
晶質合金リボンの板厚は8〜100μ−程度であるが、
板厚が25μ−以下のものが高周波において使用される
磁る材料としてはより適している。
In addition, the amorphous alloy of the present invention can be produced by a single roll method, a twin roll method, or other known liquid quenching methods. The thickness of the alloy ribbon is about 8 to 100 μ-,
A plate having a thickness of 25 μm or less is more suitable as a magnetic material used at high frequencies.

〔実施例〕〔Example〕

以下、本発明を実施例に基づいて詳細に説明する。 Hereinafter, the present invention will be explained in detail based on examples.

(実施例1) 1第1表は、本発明によるFe基非晶質合金と1、第 
   1    表(その1) 第    1    表(その2) 第    1     表(その3) 従来の磁心材料であるFe基非晶質合金、C。
(Example 1) Table 1 shows the Fe-based amorphous alloy according to the present invention and
1 Table (Part 1) Table 1 (Part 2) Table 1 (Part 3) Fe-based amorphous alloy, C, which is a conventional magnetic core material.

基非晶質合金およびMn−Zn7エフイトの鉄損を比較
した表である。
It is a table comparing the iron loss of a base amorphous alloy and Mn-Zn7 E-FIT.

本実施例において、非晶質−合金リボンは片ロール法に
おいて作製した。リボン幅は51111%厚さ約18μ
−である6作製した非晶質合金リボンを巻き回し、内径
15箇鵠、外径19−一の巻磁番とした後窒素ガス雰囲
気中で熱処理を行ない、■函数肚により磁束密度の波高
値Bmが2KG。
In this example, the amorphous-alloy ribbon was made in a single roll process. Ribbon width is 51111% thickness approximately 18μ
- The amorphous alloy ribbon prepared in 6 was wound to have an inner diameter of 15 and an outer diameter of 19. After that, heat treatment was performed in a nitrogen gas atmosphere, and the peak value of the magnetic flux density was determined by the function phase. Bm is 2KG.

周波数fが100kHzでの鉄損W、/1゜。kを測定
した。
Iron loss W, /1° when frequency f is 100kHz. k was measured.

ts1表かられかるように本発明非晶質合金の鉄損は、
従来のFe基非晶質舎金や7エライト等に比べて鉄損が
小さく優れている。
As seen from the ts1 table, the iron loss of the amorphous alloy of the present invention is:
It has lower iron loss and is superior to conventional Fe-based amorphous metals and 7-elite metals.

(実施例2) 第1図は本発明による( Fe @、** Cr 11
m。、)yess−x Cu x S Ls** Bs
非晶質合金A、(Fe*、ssMoo*o*) yes
s−x Cu x S its、sB*Bs非晶質合金
BびFe yy、s−x Cu x 5ils、sB、
I非晶質合金Cについて、磁束密度の波高位Bm=2K
G、周波数f=100kHzでの鉄損Wi/z+*にの
Cu含有量Xが0.1−3原子、%の範囲の組成におい
て無添加のものより鉄損が低く良好な特性を示すことが
明らかであり、また、Cr4’Moを添加した合金A%
Bの方がさらに低い鉄損の、より好ましい特性が得られ
ることがわかる。
(Example 2) FIG. 1 shows the structure according to the present invention (Fe @, ** Cr 11
m. , ) yes-x Cu x S Ls** Bs
Amorphous alloy A, (Fe*, ssMoo*o*) yes
s-x Cu x Sits, sB*Bs amorphous alloy B and Fe yy, s-x Cu x 5ils, sB,
I For amorphous alloy C, wave height of magnetic flux density Bm = 2K
G, iron loss at frequency f = 100 kHz Wi / z + * In a composition where the Cu content X is in the range of 0.1-3 atoms, %, the iron loss is lower than that without additives and it shows good characteristics. It is clear that alloy A% with addition of Cr4'Mo
It can be seen that B provides more preferable characteristics with even lower iron loss.

(実施例3) 第2図は(Fel−aMa) rams Cu IS!
 13e!B、非晶質合金についで、磁束密度の波高値
Bs−2KG、周波数f =100kHzにおける鉄損
W1/1゜。kのM量a依存性を示した図である。
(Example 3) Figure 2 shows (Fel-aMa) rams Cu IS!
13e! B, amorphous alloy, magnetic flux density peak value Bs-2KG, iron loss W1/1° at frequency f = 100kHz. FIG. 3 is a diagram showing the dependence of k on the M amount a.

図において、DはM −Crの場合、EはM=Moの場
合、FはM=Nbの場合、GはM=Mnの場合である。
In the figure, D is M-Cr, E is M=Mo, F is M=Nb, and G is M=Mn.

図かられかるように、aが0.001原子%以上におい
て鉄損が小さくなI)M添加の効果が認められることが
わかる。
As can be seen from the figure, the effect of I)M addition, which reduces iron loss, is observed when a is 0.001 atomic % or more.

なお、aが0.1を履えると非晶質合金リボhの脆化が
着しくなり、非晶質合金リボンの作製が困難となる。こ
のため々本発明における楓の範囲は0.001〜0.1
とした。
Note that if a exceeds 0.1, the amorphous alloy rib h becomes more likely to become brittle, making it difficult to produce an amorphous alloy ribbon. Therefore, the range of maple in the present invention is 0.001 to 0.1
And so.

(実施例4) 第3図は本発明による各種組成のFe基非晶質介金の直
流B−Hカーブと、B曽=2KG、f=100kHzで
の鉄損W*/+oak と、1kHzの実効透磁率μe
1kを比較した図である。
(Example 4) Figure 3 shows the DC B-H curves of Fe-based amorphous metals of various compositions according to the present invention, the iron loss W*/+oak at Bso = 2KG, f = 100kHz, and the iron loss at 1kHz. Effective magnetic permeability μe
1k is a comparison diagram.

図において、Hは(F e @*I@ Cr @eaり
?l5iCu l 5its、sBsBs非晶質合金は
(Feo**<Mo asss) ?@@l Cu I
S jts++sBw非晶質合金1Jは(Fe *@@
I Mn oeo*)yess Cu t SLs、i
B、非晶質合金、Kは(Fe o、*< Nb O,@
@ )yess Cu + SL**s Bs非晶質合
金の場合である。
In the figure, H is (F e @*I@ Cr @ea ?l5iCu l 5its, and sBsBs amorphous alloy is (Feo**<Mo asss)?@@l Cu I
S jts++sBw amorphous alloy 1J is (Fe *@@
I Mn oeo*) yes Cut SLs,i
B, amorphous alloy, K is (Fe o, *< Nb O, @
@ ) yes Cu + SL**s This is the case of Bs amorphous alloy.

CrまたはMnを添加したHまたはJ合金は、B−Hカ
ーブの角形比が低(飽和しに(いB−Hカーブを示し、
慣通磁率特性に優れるため、7オワードコンパータ用の
高周波トランスの磁るや、高電圧のパルス状ノイズに対
して優れた極性を示すコモンモートチ■−り用の磁心に
好適である。。
H or J alloys to which Cr or Mn is added show a B-H curve with a low squareness ratio (not saturated);
Because of its excellent permeability characteristics, it is suitable for magnetic cores in high-frequency transformers for 7-ward converters and for common motor circuits that exhibit excellent polarity against high-voltage pulse noise. .

また、MoまたはNbを添加したIまたはに合金は飽和
磁束密度がCo基非晶質合金よりも高く、かつ該合金並
の高い透磁率を示すため、高周波トランスの磁心材料と
してだけでなく、通常のコモンモードノイズに対して優
れた特性を示すコモンモートチ1−り用磁心や、MCカ
ートリッジ用昇圧トランスの磁心等に適する。
In addition, I alloys containing Mo or Nb have a saturation magnetic flux density higher than that of Co-based amorphous alloys, and exhibit magnetic permeability as high as that of these alloys, so they are used not only as magnetic core materials for high-frequency transformers but also as ordinary It is suitable for magnetic cores for common motor circuits, which exhibit excellent characteristics against common mode noise, and magnetic cores for step-up transformers for MC cartridges.

(実施例5) 12表は本発明のFe基非晶質合金(Fe −Cr −
Cu −8i−B合金)により高周波トランスを作製り
、100kHzスイツチング電源に実装した場合の磁心
の温度上昇を、Co基非晶質会金およびMn−Zn系7
エライトで作製してトランスを実装した場合と比較した
表である。
(Example 5) Table 12 shows the Fe-based amorphous alloy of the present invention (Fe-Cr-
The temperature rise of the magnetic core when a high-frequency transformer is fabricated using Cu-8i-B alloy and mounted in a 100kHz switching power supply is calculated using Co-based amorphous alloy and Mn-Zn-based 7
This is a table comparing a case where a transformer is mounted using Elite.

第2表 本発明合金を用いた磁心の温度上昇は、従来の7エフイ
トを用いた場合に比べてかなり低くなっており、Co基
非晶質合金を用いた場合よりやや低い。
Table 2 The temperature rise in the magnetic core using the alloy of the present invention is considerably lower than when using the conventional 7-E-Fite, and slightly lower than when using the Co-based amorphous alloy.

(実施例6) 第4図は本発明による(Feo、as Nbo、os)
ytCu+Si+313s非晶質合金L1(Feo、s
s Moo、oi)yycu+si+sBs非晶質舎金
Mと従来のFe基茜晶質合金(F ety、ss i+
3.sB s) N 、 Co11tQ品質合金(Go
==F ess 1liB toMO+) Oの実効透
磁率μeの周波数f依存性を示した図である。
(Example 6) Figure 4 is according to the present invention (Feo, as Nbo, os)
ytCu+Si+313s amorphous alloy L1 (Feo, s
s Moo, oi) yycu+si+sBs amorphous metal M and conventional Fe-based madder crystalline alloy (F ety, ss i+
3. sB s) N, Co11tQ quality alloy (Go
==F ess 1liB toMO+) It is a diagram showing the frequency f dependence of the effective magnetic permeability μe of O.

Mo%Nbを添加した本発明合金り、Mの透磁率は従来
のFe基非晶質合金Nよりかなり大きく、Co基非晶質
舎金0と比較しでも同等以上の値を示す。
The magnetic permeability of M, the alloy of the present invention to which Mo%Nb is added, is considerably higher than that of the conventional Fe-based amorphous alloy N, and even when compared with Co-based amorphous metal 0, it exhibits a value equal to or higher than that of the Co-based amorphous alloy N.

(51E施例7) 第5図は本発明による( F egr、ss N t+
+*o@)yyCutSi+3B*非晶質合會P 1(
F ells’@ Cro++oz)yscu+sLJ
*非晶質合会Qと従来のFety*iSI+s、sB−
非晶質合金R% Coy*Fe、S i、、B。
(51E Example 7) FIG.
+*o@)yyCutSi+3B*Amorphous composite P 1(
Fells'@Cro++oz)yscu+sLJ
*Amorphous association Q and conventional Fety*iSI+s, sB-
Amorphous alloy R% Coy*Fe, Si,,B.

Mat非晶質合金Sの1kHzでの実効透磁率fie1
にの励磁磁場Ha依存性を示した図である。
Effective magnetic permeability fie1 at 1kHz of Mat amorphous alloy S
FIG. 3 is a diagram showing the dependence of the excitation magnetic field on Ha.

本発明によるNbを添加した合金Pはμetkが大きく
、従来のCo基非晶質合金Sより励磁磁場依存性が優れ
ている。
The Nb-added alloy P according to the present invention has a large μetk and is superior in excitation magnetic field dependence to the conventional Co-based amorphous alloy S.

また、本発明によるCrを添加したQは、Fe1にの励
磁磁場依存性が小さく、従来のFe基非晶質合金Rより
恒速磁率特性に優れている。
In addition, the Cr-added Q according to the present invention has less dependence on the excitation magnetic field on Fe1, and is superior to the conventional Fe-based amorphous alloy R in constant velocity magnetic properties.

(軍施例8) 第6図は本発明による(F eoess N b*、o
s)ytCu lS i ls B s非晶質合金によ
り作製したコモンモートチ層−りTと、従来の7エフイ
Fにより作製したコモンモートチ、−りUのインピーダ
ンスIZ1の周波数依存性を示した図である。
(Military Example 8) FIG.
s) ytCulSilsBs It is a diagram showing the frequency dependence of the impedance IZ1 of a common moat layer T made of an amorphous alloy and a common mote layer U made of a conventional 7F.

巻線は40ターン0.7−とした。The winding was 40 turns and 0.7-.

特に低周波側と高周波側で本発明の合金を用いたチa−
りのインピーダンス121が7エライトより大きく優れ
ており、コモンモートチ層−り用磁心に適していること
がわかる。
Especially in the low frequency side and the high frequency side, the alloy using the present invention is used.
It can be seen that the impedance 121 of this material is much superior to that of 7-elite, and that it is suitable for a common mote layered magnetic core.

(実施例9) 第7図は本発明による(Fe、、、□Cr、、、、)マ
マCu+Si+sBs非晶質合金Xと従来の7エライ)
Y、Co基非晶質会合金oyoF e@5itsB l
o合合金金用いたコモンモートチ1−りのパルス幅1μ
secでのパルス電圧特性を示した図である。
(Example 9) Figure 7 shows (Fe, , □Cr, ,,,) mother Cu+Si+sBs amorphous alloy X according to the present invention and the conventional 7 elements)
Y, Co-based amorphous associated gold oyoF e@5itsB l
o Pulse width of 1 μ of common motor chip using alloy
It is a figure which showed the pulse voltage characteristic in sec.

本発明による合金を用いたものは、7エライトやCo基
非晶質合金を用いたものに比べかなり高電圧まで減衰効
果が大きい、このため高電凪のパルス状ノイズに対して
優れた効果を得ることがで終る。
The alloy according to the present invention has a much greater damping effect up to high voltages than those using 7-elite or Co-based amorphous alloys, and therefore has an excellent effect on pulse-like noise at high voltage lulls. It ends with getting.

(実施例10) 第8図は本発明によるFe基非晶質合金(Feo、ss
 N homes)ttc 11 S 1taB *を
用いたコモンモートチ層−りVをスイッチング電源に5
1!装した場合のスイッチング電源入力端子漏出コモン
モードノイズレベル特性を、従来の7エフイトを用いた
コモンモートチ層−りWの場合と比較しで示した図であ
る。
(Example 10) Figure 8 shows an Fe-based amorphous alloy (Feo, ss) according to the present invention.
N homes) ttc 11 S 1taB
1! FIG. 3 is a diagram showing the leakage common mode noise level characteristics of the switching power supply input terminal when equipped with a conventional common mode multi-layer W using 7 effect units.

本発明による合金を用いたものは、低周波側および高周
波側においで7エフイトを用いたものに比べてノイズレ
ベルが低くなっており、本発明による合金を用いたもの
は、コモンモートチ層−りとしで優れでいることがわか
る。
The one using the alloy according to the present invention has a lower noise level on the low frequency side and the high frequency side compared to the one using 7-Eight. I know I'm good at it.

(実施例11) 第9図は本発明によるFe (Feo、si Nbo−
as)1!++i −z Cu1S 113jBzの鉄
損の経時変化率(W*4−we)/WeとB含有量2と
の関係を示した図である。
(Example 11) FIG. 9 shows Fe (Feo, si Nbo-
as)1! ++i −z It is a figure showing the relationship between the rate of change over time of iron loss (W*4−we)/We and B content 2 of Cu1S 113jBz.

ここでW24は150℃で24時間保持した後の100
kHz、2KGの鉄損を表わし、W、は保持前の100
kHz、2KGの鉄損を表わす。
Here, W24 is 100% after being held at 150℃ for 24 hours.
kHz, represents the iron loss of 2KG, and W is 100 before holding.
Represents iron loss at kHz and 2KG.

図かられかるように、B含有量が変化しでも鉄損の経時
変化率は大きく変動せず、特に8〜9.5′原子%のa
ll!lでは経時変化率はほとんど0である。
As can be seen from the figure, even if the B content changes, the rate of change in iron loss over time does not change significantly, especially when the B content is 8 to 9.5' at%
ll! At l, the rate of change over time is almost 0.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明のFe基非晶質合金は、従来の
Fe基非晶質合金より高周波における損失が低(透磁率
等が優れでいるため、高周波シランス、コモンモートチ
1−り等に用いた場合優れた特性が得られるものである
As mentioned above, the Fe-based amorphous alloy of the present invention has lower loss at high frequencies (excellent magnetic permeability, etc.) than conventional Fe-based amorphous alloys, so it can be used for high-frequency silance, common motor transmission, etc. Excellent properties can be obtained if

【図面の簡単な説明】[Brief explanation of drawings]

#11図は本発明非晶質合金における鉄損W。 /鵞・・にのCu含有量×依存性を示した図、第gl!
fは本発明非晶質合金における鉄I W x/ l。。 kのM量a依存性を示した図、第3図は本発明非晶質合
金の直流B−Hカーブ、鉄損Wx/1・ek−1kHz
の実効透磁率μe、kを比較した図1、第4図は本発明
非晶質合金L%Mと従来の1非晶質合金N、Oの実効透
磁率μeの周波数f依存性を示した図、 第5図は本発
明非晶質合金P、Qと従来の非晶質合金R,Sの励磁磁
場Hm依存性を示した図、第6図は本発明非晶質合金に
より作憂したコモンモートチ1−りTと従来のフェライ
トにより作製したコモンモートチ層−りUのインピーダ
ンスIZ1の周波数f依存性を示した図、第7図は本発
明非晶質合金を用いたコモンモートチ1−りXと従来の
7エフイトおよびCo基非晶質合金を用いたY、 Zの
パルス電圧特性を示した図、第8図は本発明非晶質合金
を用いたコモンモートチ1−りWと従来の7エフイ)を
用いたコモンモートチ」−クのスイッチング電源入力端
子漏出コモンモードノイズレベル特性を比較した図、第
9図は本発明非晶質合金の鉄損の経時変化率(W t 
4− W o )/W・と B含有量2との関係を示し
た図である。 1代理人 弁理士  本  間     崇第1図 Ct14贋量X(原子層 v−2図 H量α %3図 第4回 側浪教f (km) 第5 図     − 励處磁矯H惰(慴θε〕 第 6 図 間浪教f(楯) $7m 入力覧圧(V) #8図 側?ILeCf (MHz) 第 q 図 B舎臂量l(原子%) 手続補正書(白側 昭和61年9月13日 特許庁長官 黒 1)明 雄 殿 事件の表示 昭和60年 特許願 第127179 号発明の名称 補正をする者 事件との関係  特許出願人 住 所 東京都千代田区丸の内二丁目1番2号電 話 
東京284−4642 名称 (508)日立金属株式会社 代表者松野浩二
Figure #11 shows the iron loss W in the amorphous alloy of the present invention. /Diagram showing the dependence of Cu content on... gl!
f is iron I W x/l in the amorphous alloy of the present invention. . Figure 3 is a diagram showing the dependence of k on M amount a, and Figure 3 is a DC B-H curve of the amorphous alloy of the present invention, iron loss Wx/1・ek-1kHz
Figures 1 and 4, which compare the effective magnetic permeability μe, k, show the frequency f dependence of the effective magnetic permeability μe of the amorphous alloy L%M of the present invention and the conventional 1 amorphous alloys N and O. Figure 5 is a diagram showing the excitation magnetic field Hm dependence of the amorphous alloys P and Q of the present invention and conventional amorphous alloys R and S, and Figure 6 is a diagram showing the dependence of the excitation magnetic field Hm on the amorphous alloys P and Q of the present invention and the conventional amorphous alloys R and S. A diagram showing the frequency f dependence of the impedance IZ1 of the common moat layer T made of common mote layer T and the conventional common mote layer U made of ferrite. Figure 8 shows the pulse voltage characteristics of Y and Z using the 7F and the Co-based amorphous alloy. Figure 9 is a diagram comparing the leakage common mode noise level characteristics of the switching power supply input terminals of the common mode chips used.
FIG. 4 is a diagram showing the relationship between 4-W o )/W· and B content 2. 1 Agent Patent Attorney Takashi Honma Figure 1 Ct14 Amount of counterfeiting θε〕 No. 6 Fig. Ma Rōkyō f (shield) $7m Input viewing pressure (V) #8 Fig. side? ILeCf (MHz) No. q Fig. B armrest amount l (atomic %) Procedural amendment (white side 1986) September 13th, Commissioner of the Japan Patent Office Kuro 1) Indication of the Akio case 1985 Patent application No. 127179 Relationship with the case of the person amending the name of the invention Patent applicant address 2-1-2 Marunouchi, Chiyoda-ku, Tokyo Phone number
Tokyo 284-4642 Name (508) Hitachi Metals Co., Ltd. Representative Koji Matsuno

Claims (4)

【特許請求の範囲】[Claims] (1)その組成が、一般式 (Fe_1_−_aM_a)_1_0_0_−_x_−
_y_−_zCu_xSi_yB_zここで、MはTi
、Zr、Hf、V、Nb、TaCr、Mo、W、Mn、
Niのうちの 1種または2種以上 で表わされ、かつ0.001≦a≦0.1、0.1≦x
≦3、y≦19、5≦z≦25、15≦y+z≦30で
あることを特徴とする低損失Fe基非晶質合金。
(1) Its composition has the general formula (Fe_1_-_aM_a)_1_0_0_-_x_-
_y_−_zCu_xSi_yB_zHere, M is Ti
, Zr, Hf, V, Nb, TaCr, Mo, W, Mn,
Represented by one or more types of Ni, and 0.001≦a≦0.1, 0.1≦x
A low-loss Fe-based amorphous alloy, characterized in that y≦3, y≦19, 5≦z≦25, and 15≦y+z≦30.
(2)上記組成式において、0.001≦a≦0.1、
0.1≦x≦2、y≦17、7≦z≦10、18≦y+
z≦26であることを特徴とする特許請求の範囲第1項
記載の低損失Fe基非晶質合金。
(2) In the above compositional formula, 0.001≦a≦0.1,
0.1≦x≦2, y≦17, 7≦z≦10, 18≦y+
The low-loss Fe-based amorphous alloy according to claim 1, characterized in that z≦26.
(3)上記MがCrおよび/またはMnであることを特
徴とする特許請求の範囲第1項または第2項記載の低損
失Fe基非晶質合金。
(3) The low-loss Fe-based amorphous alloy according to claim 1 or 2, wherein M is Cr and/or Mn.
(4)上記MがMoおよび/またはNbであることを特
徴とする特許請求の範囲第1項または第2項記載の低損
失Fe基非晶質合金。
(4) The low-loss Fe-based amorphous alloy according to claim 1 or 2, wherein M is Mo and/or Nb.
JP60127179A 1985-06-13 1985-06-13 Fe-base amorphous alloy with low core loss Pending JPS61288048A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60127179A JPS61288048A (en) 1985-06-13 1985-06-13 Fe-base amorphous alloy with low core loss
DE19863619659 DE3619659C2 (en) 1985-06-13 1986-06-11 Use of a glass-like alloy based on Fe
JP61215031A JPS62167851A (en) 1985-06-13 1986-09-13 Low loss fe-base amorphous alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60127179A JPS61288048A (en) 1985-06-13 1985-06-13 Fe-base amorphous alloy with low core loss

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP61215031A Division JPS62167851A (en) 1985-06-13 1986-09-13 Low loss fe-base amorphous alloy
JP61215032A Division JPS62167852A (en) 1986-09-13 1986-09-13 Low loss fe-base amorphous alloy

Publications (1)

Publication Number Publication Date
JPS61288048A true JPS61288048A (en) 1986-12-18

Family

ID=14953625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60127179A Pending JPS61288048A (en) 1985-06-13 1985-06-13 Fe-base amorphous alloy with low core loss

Country Status (2)

Country Link
JP (1) JPS61288048A (en)
DE (1) DE3619659C2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167852A (en) * 1986-09-13 1987-07-24 Hitachi Metals Ltd Low loss fe-base amorphous alloy
JPS62167851A (en) * 1985-06-13 1987-07-24 Hitachi Metals Ltd Low loss fe-base amorphous alloy
JPH0277105A (en) * 1987-07-14 1990-03-16 Hitachi Metals Ltd Magnetic core component and manufacture thereof
US5067991A (en) * 1988-06-13 1991-11-26 Kabushiki Kaisha Toshiba Fe-based soft magnetic alloy
JPH06163235A (en) * 1991-07-31 1994-06-10 Toshiba Corp Transformer
EP0637038A2 (en) * 1993-07-30 1995-02-01 Hitachi Metals, Ltd. Magnetic core for pulse transformer and pulse transformer made thereof
KR100544664B1 (en) * 2003-12-24 2006-01-23 재단법인 포항산업과학연구원 Fe BASE BULK AMORPHOUS ALLOY FOR MANUFACTURING METAL PLATE BY STRIP CASTING PROCESS
KR100723162B1 (en) 2005-12-24 2007-05-30 주식회사 포스코 Crystals-amorphous composite alloys with high strength and superior toughness
KR100723167B1 (en) 2005-12-24 2007-05-30 주식회사 포스코 Fe-based bulk metallic glass alloys containing misch metal
CN103060722A (en) * 2011-10-21 2013-04-24 江苏奥玛德新材料科技有限公司 Iron-based amorphous or nanocrystalline soft magnetic alloy and preparation method thereof
CN103409708A (en) * 2013-08-22 2013-11-27 青岛云路新能源科技有限公司 Iron-base amorphous alloy material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2824749A1 (en) * 1978-06-06 1979-12-13 Vacuumschmelze Gmbh INDUCTIVE COMPONENT AND PROCESS FOR ITS MANUFACTURING
US4268325A (en) * 1979-01-22 1981-05-19 Allied Chemical Corporation Magnetic glassy metal alloy sheets with improved soft magnetic properties

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167851A (en) * 1985-06-13 1987-07-24 Hitachi Metals Ltd Low loss fe-base amorphous alloy
JPH0468382B2 (en) * 1985-06-13 1992-11-02 Hitachi Metals Ltd
JPS62167852A (en) * 1986-09-13 1987-07-24 Hitachi Metals Ltd Low loss fe-base amorphous alloy
JPH0468383B2 (en) * 1986-09-13 1992-11-02 Hitachi Metals Ltd
JPH0277105A (en) * 1987-07-14 1990-03-16 Hitachi Metals Ltd Magnetic core component and manufacture thereof
US5067991A (en) * 1988-06-13 1991-11-26 Kabushiki Kaisha Toshiba Fe-based soft magnetic alloy
JPH06163235A (en) * 1991-07-31 1994-06-10 Toshiba Corp Transformer
EP0637038A2 (en) * 1993-07-30 1995-02-01 Hitachi Metals, Ltd. Magnetic core for pulse transformer and pulse transformer made thereof
EP0637038A3 (en) * 1993-07-30 1995-03-29 Hitachi Metals Ltd Magnetic core for pulse transformer and pulse transformer made thereof.
KR100544664B1 (en) * 2003-12-24 2006-01-23 재단법인 포항산업과학연구원 Fe BASE BULK AMORPHOUS ALLOY FOR MANUFACTURING METAL PLATE BY STRIP CASTING PROCESS
KR100723162B1 (en) 2005-12-24 2007-05-30 주식회사 포스코 Crystals-amorphous composite alloys with high strength and superior toughness
KR100723167B1 (en) 2005-12-24 2007-05-30 주식회사 포스코 Fe-based bulk metallic glass alloys containing misch metal
CN103060722A (en) * 2011-10-21 2013-04-24 江苏奥玛德新材料科技有限公司 Iron-based amorphous or nanocrystalline soft magnetic alloy and preparation method thereof
CN103409708A (en) * 2013-08-22 2013-11-27 青岛云路新能源科技有限公司 Iron-base amorphous alloy material

Also Published As

Publication number Publication date
DE3619659A1 (en) 1986-12-18
DE3619659C2 (en) 1993-10-14

Similar Documents

Publication Publication Date Title
JP5664934B2 (en) Soft magnetic alloy and magnetic component using the same
US4881989A (en) Fe-base soft magnetic alloy and method of producing same
JP3233313B2 (en) Manufacturing method of nanocrystalline alloy with excellent pulse attenuation characteristics
JP2008196006A (en) Fe BASED NANOCRYSTAL SOFT MAGNETIC ALLOY, AMORPHOUS ALLOY THIN STRIP, METHOD FOR PRODUCING Fe BASED NANOCRYSTAL SOFT MAGNETIC ALLOY, AND MAGNETIC COMPONENT
JP6075438B2 (en) Annular magnetic core using Fe-based nanocrystalline soft magnetic alloy, and magnetic component using the same
JP4547671B2 (en) High saturation magnetic flux density low loss magnetic alloy and magnetic parts using the same
JPH044393B2 (en)
JPS61288048A (en) Fe-base amorphous alloy with low core loss
EP0887811A1 (en) Amorphous magnetic material and magnetic core using the same
WO2021157165A1 (en) Annular magnetic body for noise control
JPH1171659A (en) Amorphous magnetic material and magnetic core using the same
JP2848667B2 (en) Method for manufacturing ultra-thin soft magnetic alloy ribbon
JP2000119821A (en) Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same
JP2000119825A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP AND Fe BASE NANOCRYSTAL SOFT MAGNETIC ALLOY THIN STRIP USING THE SAME AND MAGNETIC CORE
JP4310738B2 (en) Soft magnetic alloys and magnetic parts
JPH02183508A (en) Low-loss core
JPH0468382B2 (en)
JPH0277555A (en) Fe-base soft-magnetic alloy
JPS61295601A (en) Amorphous core for common mode choke
JPH1046301A (en) Fe base magnetic alloy thin strip and magnetic core
JPH0754108A (en) Magnetic alloy having iso-permeability, production thereof and magnetic core using the same
JPH06163235A (en) Transformer
JP2945122B2 (en) Fe-based soft magnetic alloy and method for producing the same
JPH0468383B2 (en)
JPH0693390A (en) Nanocrystal soft-magnetic alloy and magnetic core excellent in short pulse characteristic