JPS6128747B2 - - Google Patents
Info
- Publication number
- JPS6128747B2 JPS6128747B2 JP56122238A JP12223881A JPS6128747B2 JP S6128747 B2 JPS6128747 B2 JP S6128747B2 JP 56122238 A JP56122238 A JP 56122238A JP 12223881 A JP12223881 A JP 12223881A JP S6128747 B2 JPS6128747 B2 JP S6128747B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- furnace
- zone
- steel strip
- melt plating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000007747 plating Methods 0.000 claims description 22
- 238000001816 cooling Methods 0.000 claims description 19
- 229910000831 Steel Inorganic materials 0.000 claims description 18
- 239000010959 steel Substances 0.000 claims description 18
- 230000007246 mechanism Effects 0.000 claims description 14
- 238000000137 annealing Methods 0.000 claims description 8
- 238000004891 communication Methods 0.000 claims description 8
- 238000007789 sealing Methods 0.000 claims description 8
- 230000001590 oxidative effect Effects 0.000 claims description 6
- 238000009413 insulation Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 39
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000005275 alloying Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 241000221535 Pucciniales Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/003—Apparatus
- C23C2/0036—Crucibles
- C23C2/00361—Crucibles characterised by structures including means for immersing or extracting the substrate through confining wall area
- C23C2/00362—Details related to seals, e.g. magnetic means
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/006—Pattern or selective deposits
- C23C2/0062—Pattern or selective deposits without pre-treatment of the material to be coated, e.g. using masking elements such as casings, shields, fixtures or blocking elements
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Coating With Molten Metal (AREA)
Description
【発明の詳細な説明】
本発明は片面溶融メツキ設備に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to single-sided melt plating equipment.
従来、連続焼鈍炉、片面溶融メツキ装置、ガル
バニール炉、保熱帯と冷却帯とからなる片面溶融
メツキ設備にあつては、前記ガルバニール炉、保
熱帯・冷却帯の全てが酸化性雰囲気となつてお
り、また、熱サイクル的にも高温にさらされるば
かりか、冷却帯から取出されたときの鋼帯温度は
300〜350℃であるため、非メツキ面に強固な酸化
膜が形成される。この酸化膜は強酸かつ電解でな
ければ除去することが困難である。また、除去後
の非メツキ面は、非常に活性化されているため錆
易く、化成性、塗装性を阻害するという欠点を有
する。 Conventionally, in the case of single-sided melt plating equipment consisting of a continuous annealing furnace, single-sided melt plating equipment, galvaneal furnace, storage zone, and cooling zone, the galvaneal furnace, heat retention zone, and cooling zone are all in an oxidizing atmosphere. In addition, not only is the steel strip exposed to high temperatures in terms of thermal cycles, but the temperature of the steel strip when taken out from the cooling zone is
Since the temperature is 300 to 350°C, a strong oxide film is formed on the unplated surface. This oxide film is difficult to remove without strong acid and electrolysis. In addition, the unplated surface after removal is highly activated and therefore easily rusts, which has the disadvantage of inhibiting chemical conversion and paintability.
さらに、片面溶融メツキ装置と焼鈍炉間、片面
溶融メツキ装置とガルバニール炉間および保熱帯
と冷却帯間にシールロールを設けてそれぞれの雰
囲気ガスが互いに混合し合わないようにしてい
る。しかしながら、これらシールロールは鋼帯を
ピンチするため、鋼帯に傷が付き易い。特に、焼
鈍炉と片面溶融メツキ装置間、片面溶融メツキ装
置とガルバニール炉間に配置するシールロールに
はメツキ浴からの亜鉛ダストが付着し、鋼帯に傷
が付き易いものである。 Further, seal rolls are provided between the single-sided melt plating device and the annealing furnace, between the single-side melt plating device and the galvaneal furnace, and between the storage zone and the cooling zone to prevent the respective atmospheric gases from mixing with each other. However, since these seal rolls pinch the steel strip, the steel strip is easily damaged. In particular, zinc dust from the plating bath adheres to seal rolls disposed between the annealing furnace and the one-sided melt plating device, and between the one-side melt plating device and the galvanil furnace, and the steel strip is likely to be damaged.
これを防止するために、ロール間のギヤツプを
大にする方法もあるが、このシールロール方式で
は、一対のシールロールを二対、シールロールボ
ツクスに設け、シールロールボツクスの内圧を高
めてシールを行なうものであり、前記のように、
ロール間ギヤツプを大にすると、内圧を所定に保
持するには大量の、例えば、N2ガスを必要とす
るとともに、このガスが一方側に流入して雰囲気
バランスがくずれ、種々の不具合を生じるという
欠点を有する。 To prevent this, there is a method of increasing the gap between the rolls, but in this seal roll method, two pairs of seal rolls are installed in a seal roll box, and the internal pressure of the seal roll box is increased to achieve sealing. As mentioned above,
When the gap between the rolls is increased, a large amount of N2 gas, for example, is required to maintain the internal pressure at a specified level, and this gas flows into one side, disrupting the atmosphere balance and causing various problems. It has its drawbacks.
本発明は前記従来の欠点を除去するためになさ
れたもので、前記ガルバニール炉、保熱帯および
冷却帯を非酸化性雰囲気とするとともに、冷却帯
を250℃以下として非メツキ面の酸化を防ぎ、か
つ、各シール機構を気体噴出シールとすることに
より鋼帯の傷防止を図る片面溶融メツキ設備を提
供することを目的とする。 The present invention has been made to eliminate the above-mentioned conventional drawbacks, and includes creating a non-oxidizing atmosphere in the galvanil furnace, storage zone, and cooling zone, and setting the cooling zone at 250°C or lower to prevent oxidation of the non-plated surface. Another object of the present invention is to provide single-sided melt plating equipment that prevents scratches on the steel strip by using gas jet seals as each seal mechanism.
つぎに、本発明を一実施例である図面にしたが
つて説明する。 Next, the present invention will be explained with reference to the drawings which are one embodiment.
図において、1は雰囲気ガスとしてHNガスが
供給されている焼鈍炉、3は片面溶融メツキ装
置、9は直火式バーナ10を備えたガルバニール
炉、11は保熱帯、13は冷却手段14を有する
冷却帯で、鋼帯Wは前記焼鈍炉1の後部室から連
通部2を経て片面溶融メツキ装置3に至り、ここ
で、ポンプ4で加圧された溶融メツキ金属6を噴
出手段5によつて鋼帯Wの下面に吹き付けられて
メツキされ、連通部8を経てガルバニール炉9に
至り合金化処理され、第3図に示す合金化処理サ
イクルにしたがつて、保熱帯11、連通部12、
冷却帯13に至り、炉外へ取出されるものであ
る。なお、15はシールロールである。 In the figure, 1 is an annealing furnace to which HN gas is supplied as an atmospheric gas, 3 is a single-sided melt plating device, 9 is a galvaneal furnace equipped with a direct-fired burner 10, 11 is a storage zone, and 13 is a cooling means 14. In the cooling zone, the steel strip W passes from the rear chamber of the annealing furnace 1 through the communication section 2 to the single-sided molten plating device 3, where the molten plating metal 6 pressurized by the pump 4 is pumped by the jetting means 5. The lower surface of the steel strip W is sprayed and plated, and then passed through the communication section 8 to the galvanil furnace 9 where it is alloyed.According to the alloying treatment cycle shown in FIG.
It reaches the cooling zone 13 and is taken out of the furnace. In addition, 15 is a seal roll.
そして、前記連通部2,8,12には気体シー
ル機構A1,A2,A3が設けてある。この気体シー
ル機構はいずれも同一構成からなるため、A1に
ついて説明する。 The communication portions 2, 8, and 12 are provided with gas seal mechanisms A 1 , A 2 , and A 3 . Since all of these gas seal mechanisms have the same configuration, only A1 will be explained.
この気体シール機構A1は、第2図に示すよう
に、連通部12の対向する部分にわたる2室1
6,17と循環フアン18とからなり、前記室1
6の連通部12側には多数の吸引孔19が穿設さ
れる一方、室17の連通部12側に前記室16側
に向けて傾斜した、連通部全巾にわたる噴出ノズ
ル20を設けたものである。 As shown in FIG .
6, 17 and a circulation fan 18,
A large number of suction holes 19 are bored on the side of the communication section 12 of the chamber 17, and a jet nozzle 20 is provided on the side of the communication section 12 of the chamber 17, which is inclined toward the chamber 16 side and spans the entire width of the communication section. It is.
したがつて、片面溶融メツキ装置3内のN2ガ
スは循環フアン18により前記孔19から吸引さ
れ、噴出ノズル20から片面溶融メツキ装置3側
に噴出し循環する。 Therefore, the N 2 gas in the one-sided melt plating device 3 is sucked through the hole 19 by the circulation fan 18, and is ejected from the jet nozzle 20 toward the one-sided melt plating device 3 and circulated.
つまり、噴出ガスは気体シール機構A1付近の
N2ガスを常に押戻すように作用するから、N2ガ
スのガルバニール炉9側への漏出を極力防止する
ことになる。また、シール気体である噴出ガスは
循環使用されるため、前記漏出量の少ないことと
相俟つて消費量も少なく経済的である。 In other words, the ejected gas is near the gas seal mechanism A1 .
Since it always acts to push back the N 2 gas, leakage of the N 2 gas to the galvanil furnace 9 side is prevented as much as possible. Further, since the ejected gas, which is a sealing gas, is recycled and used, the leakage amount is small, and the consumption amount is also small, making it economical.
このことは、気体シール機構A2においても全
く同様であり、気体シール機構A3においては、
焼鈍炉1の雰囲気ガスであるHNガスと片面溶融
メツキ装置3の雰囲気ガスであるN2ガスが互い
に混合するのを防止するため、2個の気体シール
機構を併設したものである。このように、シール
機構は気体噴出方式であるから鋼帯Wに傷を付け
ることはない。 This is exactly the same in gas seal mechanism A2 , and in gas seal mechanism A3 ,
In order to prevent the HN gas, which is the atmospheric gas of the annealing furnace 1, and the N2 gas, which is the atmospheric gas of the single-sided melt plating device 3, from mixing with each other, two gas sealing mechanisms are provided. In this way, since the sealing mechanism is of the gas jetting type, the steel strip W is not damaged.
前記ガルバニール炉9における直火式バーナ1
0は、空燃比を0.8〜1.0としたもので、その燃焼
生成ガスを雰囲気ガスとするとともに、この高温
燃焼生成ガスは保熱帯11の後部から熱交換器2
1,22を経て、排気フアン23により炉外に排
出され、前記熱交換器21で片面溶融メツキ装置
3への雰囲気ガス(N2)を、熱交換器22で目付
量調節ノズル7へのN2ガスをそれぞれ予熱し
て、排ガスの保有熱を有効利用している。また、
ガルバニール炉9には気体シール機構A1から若
干N2ガスが入るが、このガスは非酸化性である
から、非メツキ面の酸化防止を何ら阻害すること
はない。 Direct-fired burner 1 in the galvanic furnace 9
0 has an air-fuel ratio of 0.8 to 1.0, and the combustion generated gas is used as the atmosphere gas, and this high temperature combustion generated gas is passed from the rear of the storage zone 11 to the heat exchanger 2.
1 and 22, and is discharged to the outside of the furnace by an exhaust fan 23. Atmospheric gas (N 2 ) is supplied to the single-sided melt plating device 3 by the heat exchanger 21, and N 2 is supplied to the basis weight adjustment nozzle 7 by the heat exchanger 22. The two gases are preheated and the heat retained in the exhaust gas is effectively used. Also,
A small amount of N2 gas enters the galvanil furnace 9 from the gas sealing mechanism A1 , but since this gas is non-oxidizing, it does not inhibit the prevention of oxidation of the non-plated surface in any way.
一方、冷却帯13には、鋼帯Wを挾んで、冷却
手段であるノズルヘツダ14が設けられ、このヘ
ツダから冷凍機24で冷却されたN2ガスが噴出
し、片面メツキを施された鋼帯Wを250℃以下に
急冷し、鋼帯Wの非メツキ面の酸化を防ぎ、良好
な片面メツキ鋼帯とするものである。 On the other hand, the cooling zone 13 is provided with a nozzle header 14 serving as a cooling means, sandwiching the steel strip W. From this header, N 2 gas cooled by a refrigerator 24 is ejected, and the steel strip W is plated on one side. The W is rapidly cooled to 250° C. or lower to prevent oxidation of the non-plated surface of the steel strip W, thereby producing a good single-sided plated steel strip.
なお、前記ノズルヘツダ14から噴出したN2
ガスは循環使用されるものであり、25はブロア
である。 Note that the N 2 spouted from the nozzle header 14
The gas is used for circulation, and 25 is a blower.
以上の説明から明らかなように、本発明によれ
ば、ガルバニール炉、保熱帯および冷却帯を非酸
化性雰囲気とするとともに、冷却帯で鋼帯を250
℃以下に急冷するため、非メツキ面を酸化するこ
となく、メツキ面を良好な合金とすることができ
るとともに、従来のように、非メツキ面の酸化膜
除去のための酸洗設備を必要としない。 As is clear from the above description, according to the present invention, the galvanic furnace, the storage zone, and the cooling zone are made into a non-oxidizing atmosphere, and the steel strip is
Because it is rapidly cooled to below ℃, the plated surface can be made into a good alloy without oxidizing the non-plated surface, and unlike conventional methods, pickling equipment is not required to remove the oxide film on the non-plated surface. do not.
また、シール機構として、気体噴出式を採用し
たため鋼帯に傷を付けることがなく良好なメツキ
鋼帯を得ることができる。 Furthermore, since a gas jet type sealing mechanism is adopted, a good plated steel strip can be obtained without damaging the steel strip.
なお、気体シール機構としては、前記実施例の
ものに限定されないが、実施例のように構成する
と、従来のシールロール方式で傷防止のためにロ
ール間のギヤツプを若干大にするものに較べて、
例えば、片面溶融メツキ装置内への供給雰囲気ガ
ス量を約1/3低減することができる。 Although the gas sealing mechanism is not limited to that of the above embodiment, if it is configured as in the embodiment, it will be more effective than the conventional seal roll system in which the gap between the rolls is slightly larger to prevent scratches. ,
For example, the amount of atmospheric gas supplied into the single-sided melt plating apparatus can be reduced by about 1/3.
第1図は本発明にかかる片面溶融メツキ設備の
該略説明図、第2図は気体シール機構の拡大図
で、第3図は合金化のサイクルを示すグラフであ
る。
1……焼鈍炉、3……片面溶融メツキ装置、9
……ガルバニール炉、11……保熱帯、13……
冷却帯、14……冷却手段、2,8,12……連
通部、A1,A2,A3……気体シール機構、16,
17……室、18……循環フアン、19……吸引
孔、20……噴出ノズル、W……鋼帯。
FIG. 1 is a schematic illustration of the single-sided melt plating equipment according to the present invention, FIG. 2 is an enlarged view of the gas seal mechanism, and FIG. 3 is a graph showing the alloying cycle. 1...Annealing furnace, 3...One-sided melt plating device, 9
... Galvanil furnace, 11 ... Insulation zone, 13 ...
Cooling zone, 14...Cooling means, 2, 8, 12...Communication section, A1 , A2 , A3 ...Gas seal mechanism, 16,
17... Chamber, 18... Circulation fan, 19... Suction hole, 20... Spout nozzle, W... Steel strip.
Claims (1)
ール炉、保熱帯および冷却帯を順次連設した片面
溶融メツキ設備において、連続焼鈍炉と片面溶融
メツキ装置間、片面溶融メツキ装置とガルバニー
ル炉間、および保熱帯と冷却帯間の連通部にそれ
ぞれ気体シール機構を配設して、前記ガルバニー
ル炉、保熱帯、冷却帯を非酸化性雰囲気に保持す
るとともに、前記冷却帯に鋼帯を250℃以下に急
冷する冷却手段を設けたことを特徴とする片面溶
融メツキ設備。1. In single-sided melt plating equipment in which a continuous annealing furnace, single-sided melt plating equipment, galvanil furnace, insulation zone, and cooling zone are successively installed, there are A gas sealing mechanism is installed in each communication section between the tropical zone and the cooling zone to maintain the galvanic furnace, storage zone, and cooling zone in a non-oxidizing atmosphere, and to rapidly cool the steel strip to 250°C or less in the cooling zone. Single-sided melt plating equipment characterized by being equipped with a cooling means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56122238A JPS5822371A (en) | 1981-08-04 | 1981-08-04 | One side hot dipping method and installation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56122238A JPS5822371A (en) | 1981-08-04 | 1981-08-04 | One side hot dipping method and installation |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5822371A JPS5822371A (en) | 1983-02-09 |
JPS6128747B2 true JPS6128747B2 (en) | 1986-07-02 |
Family
ID=14830999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56122238A Granted JPS5822371A (en) | 1981-08-04 | 1981-08-04 | One side hot dipping method and installation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5822371A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60174627U (en) * | 1984-04-27 | 1985-11-19 | 株式会社クボタ | Tractor power transmission system |
JP2781576B2 (en) * | 1988-12-19 | 1998-07-30 | 川崎製鉄株式会社 | Alloying furnace with floater |
JP4941477B2 (en) * | 2009-01-30 | 2012-05-30 | Jfeスチール株式会社 | Alloying furnace for hot dip galvanizing |
JP6727113B2 (en) * | 2016-12-21 | 2020-07-22 | 日鉄エンジニアリング株式会社 | Galvanized steel sheet manufacturing equipment and galvanized steel sheet manufacturing method |
-
1981
- 1981-08-04 JP JP56122238A patent/JPS5822371A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5822371A (en) | 1983-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101011897B1 (en) | Method of continous annealing/hot-dipping of steel sheet containing silicon and apparatus for continuous annealing/hot-dipping | |
US5885382A (en) | Primary cooling method in continuously annealing steel strip | |
KR910004610B1 (en) | Method for producing non-aging hot-dip galvanized steel strip | |
JPS6128747B2 (en) | ||
JP4168667B2 (en) | In-line annealing furnace for continuous hot dip galvanizing | |
JPH05247619A (en) | Vertical type galvannealing furnace for manufacturing galvannealed steel sheet | |
JPS54110143A (en) | Zinc vacuum plating method and equipment | |
WO2006112109A1 (en) | Process for cooling steel strip in the cooling zone of continuous heat treatment equipment and cooling apparatus | |
JP5086545B2 (en) | Steel strip cooling device in cooling zone of continuous heat treatment equipment | |
JP2006144104A (en) | Apparatus and method for continuously annealing steel sheet for hot dip galvanizing | |
JPS5832219B2 (en) | Cooling method of steel strip in continuous annealing line | |
JPH05179415A (en) | Alloying equipment for galvanized steel strip | |
JP2820359B2 (en) | Atmosphere adjustment method for continuous annealing furnace | |
JP2505518B2 (en) | Continuous vacuum vapor deposition plating method for strip steel | |
JPH04210430A (en) | Continuous annealing apparatus for berylium copper alloy | |
JP3233043B2 (en) | Manufacturing method of hot-dip galvanized steel sheet | |
JP3403869B2 (en) | Method for producing hot-rolled hot-dip galvanized steel sheet without blister | |
JP2003253413A (en) | Facility and method for manufacturing both cold rolled steel plate and plated steel plate | |
JP2002327256A (en) | Method and apparatus for continuous hot-dip metal plating | |
JPH0225989B2 (en) | ||
JPS58120740A (en) | Horizontal continuous annealing furnace provided with floating device | |
KR20020029094A (en) | Method and installation for hot dip galvanizing hot rolled steel strip | |
JPH07180014A (en) | Method for suppressing evaporation of zn from bath surface in snout for hot dip metal coating | |
JPH10237610A (en) | Continuous hot dip metal coating method and device therefor | |
JPH0586472A (en) | Vapor deposition plating method |