JP4941477B2 - Alloying furnace for hot dip galvanizing - Google Patents

Alloying furnace for hot dip galvanizing Download PDF

Info

Publication number
JP4941477B2
JP4941477B2 JP2009019139A JP2009019139A JP4941477B2 JP 4941477 B2 JP4941477 B2 JP 4941477B2 JP 2009019139 A JP2009019139 A JP 2009019139A JP 2009019139 A JP2009019139 A JP 2009019139A JP 4941477 B2 JP4941477 B2 JP 4941477B2
Authority
JP
Japan
Prior art keywords
steel strip
zone
gas
static pressure
hot dip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009019139A
Other languages
Japanese (ja)
Other versions
JP2009084705A (en
Inventor
賢 福島
秀行 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009019139A priority Critical patent/JP4941477B2/en
Publication of JP2009084705A publication Critical patent/JP2009084705A/en
Application granted granted Critical
Publication of JP4941477B2 publication Critical patent/JP4941477B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、合金化溶融亜鉛めっきラインで用いられる合金化炉に係り、特に、その雰囲気の制御方法に関する。   The present invention relates to an alloying furnace used in an alloying hot dip galvanizing line, and more particularly to a method for controlling the atmosphere.

一般に、鋼帯の連続溶融亜鉛めっき設備においては、表面洗浄が終わった鋼帯を連続的に焼鈍し、次いで、所定温度まで冷却した後、溶融亜鉛めっき浴に浸漬して亜鉛めっきを施している。通常、この焼鈍冷却工程は還元雰囲気下で行われる。このため、鋼帯をめっき浴に浸漬するまでの間、還元雰囲気が常時確保されるように、焼鈍及び冷却を行う炉設備とめっき槽との間に、スナウトと呼ばれる矩形断面の装置を設け、炉内を大気から遮断している。   Generally, in continuous hot dip galvanizing equipment for steel strip, the steel strip after surface cleaning is continuously annealed, then cooled to a predetermined temperature, and then immersed in a hot dip galvanizing bath for galvanization. . Usually, this annealing cooling process is performed in a reducing atmosphere. For this reason, until the steel strip is immersed in the plating bath, a rectangular cross-section device called a snout is provided between the furnace equipment for annealing and cooling and the plating tank so that a reducing atmosphere is always secured, The furnace is shut off from the atmosphere.

めっき槽内にはシンクロールが設置されており、このシンクロールで鋼帯の走行方向を転換させ、鋼帯を鉛直方向に引き上げる。鋼帯をめっき浴から引き出した後、そのめっき厚をガス・ワイピングノズルで所定の値に調整する。その後、鋼帯を合金化炉に導入し、そこで鋼帯を所定温度まで加熱し、それを一定時間保持することにより下地の鉄を亜鉛めっき層の中に拡散させ、その後、冷却することにより所望のFe−Zn合金層を成長させている。   A sink roll is installed in the plating tank. The sink roll changes the traveling direction of the steel strip and pulls the steel strip in the vertical direction. After the steel strip is pulled out of the plating bath, the plating thickness is adjusted to a predetermined value with a gas wiping nozzle. Thereafter, the steel strip is introduced into an alloying furnace, where the steel strip is heated to a predetermined temperature and held for a certain period of time to diffuse the underlying iron into the galvanized layer and then cooled to obtain the desired value. The Fe—Zn alloy layer is grown.

ここで、合金化炉の内部は、加熱帯、保温帯及び冷却帯に区分けされ、それらは、めっき浴の上方に順に配置される。加熱帯でガス加熱方式が用いられている場合には、炉内の高温ガスのドラフト効果により上昇流が形成され、多量の外気が加熱帯の下部から保温帯に浸入し、保温帯内の温度が低下し、Fe−Zn合金層の成長が阻害される。一方、加熱帯で誘導加熱方式が用いられている場合には、ドラフト効果による上昇気流が弱く、冷却帯からその下側の保温帯へ冷風が流入し、保温帯の温度が低下する。   Here, the inside of the alloying furnace is divided into a heating zone, a heat-retaining zone, and a cooling zone, which are sequentially arranged above the plating bath. When the gas heating method is used in the heating zone, an upward flow is formed due to the draft effect of the hot gas in the furnace, and a large amount of outside air enters the thermal insulation zone from the lower part of the heating zone, and the temperature in the thermal insulation zone Decreases and the growth of the Fe—Zn alloy layer is inhibited. On the other hand, when the induction heating method is used in the heating zone, the ascending airflow due to the draft effect is weak, and cool air flows from the cooling zone to the lower temperature holding zone, and the temperature of the temperature holding zone decreases.

溶融亜鉛めっき鋼帯に合金化処理を施す際に、保温帯への外気の流入を防止するための方法が従来から多数提案されている。   Many methods for preventing the inflow of outside air into the heat retaining zone when the alloying treatment is performed on the hot dip galvanized steel strip have been proposed.

特開平4−048059号公報には、合金化炉上端部の鋼板排出口に静圧パッドを配置し、この静圧パッドの圧力を調整することにより、炉内への外気の浸入を防止するとともに、合金化炉出側の鋼板温度を所定の値に保持することが記載されている。しかしながら、この方法では、静圧パッドの制御が、均熱帯出側の鋼板温度を所定の値に保持するように行われるため、これを実行した場合、目標とする鋼板温度によっては、均熱帯上部並びに下部の圧力が無制御状態となり、均熱帯へ外気が流入するおそれがある。また、均熱帯出側の鋼板放射率は、鋼種、操業条件により大幅に変わるので、この部分での温度測定は、事実上非常に困難である。   In JP-A-4-048059, a static pressure pad is arranged at a steel plate discharge port at the upper end of the alloying furnace, and by adjusting the pressure of the static pressure pad, intrusion of outside air into the furnace is prevented. Further, it is described that the steel plate temperature on the alloying furnace outlet side is maintained at a predetermined value. However, in this method, since the control of the static pressure pad is performed so as to maintain the steel plate temperature on the soaking zone at a predetermined value, depending on the target steel plate temperature, In addition, the pressure in the lower part becomes uncontrolled, and there is a possibility that outside air flows into the soaking zone. In addition, since the emissivity of the steel sheet on the soaking side varies greatly depending on the steel type and operating conditions, it is practically very difficult to measure the temperature in this part.

特開平6−212387号公報には、合金化炉出側の排気ダクトに設けられたダンパの開度を変化させることにより、合金化炉上部の圧力をコントロールするとともに、合金化炉の直火加熱帯と均熱帯の境界部分に鋼帯に対向させて静圧パッドを配置し、これら静圧パッドと鋼帯との距離を変化させることにより、合金化炉入口部の圧力をコントロールすることが記載されている。この方法では、合金化炉入口部及び出口部の圧力を独立に制御することが可能であるが、加熱帯直後に静圧パッドを配置すると、加熱帯で昇温された鋼板に、静圧パッドからの噴射ガスが衝突することにより、鋼板が冷却される問題がある。   In JP-A-6-212387, the pressure of the upper part of the alloying furnace is controlled by changing the opening degree of the damper provided in the exhaust duct on the outlet side of the alloying furnace, and the direct heating of the alloying furnace is also disclosed. Describes that the pressure at the inlet of the alloying furnace is controlled by changing the distance between the static pressure pad and the steel strip by placing a static pressure pad opposite the steel strip at the boundary between the tropical zone and the soaking zone. Has been. In this method, the pressure at the inlet and outlet of the alloying furnace can be controlled independently. However, if a static pressure pad is placed immediately after the heating zone, the static pressure pad is placed on the steel plate heated in the heating zone. There is a problem that the steel sheet is cooled by the collision of the injection gas from the steel plate.

特開平4−048059号公報JP-A-4-048059 特開平6−212387号公報JP-A-6-212387

本発明は、従来の溶融亜鉛めっき用合金化炉における炉内への空気侵入防止方法に関する問題点に鑑み成されたものであり、本発明の目的は、合金化炉の保温帯への外気の流入を防ぎ、それによって、保温帯の温度分布の安定性の向上を図ることにある。   The present invention has been made in view of the problems related to the method of preventing air intrusion into a conventional galvanizing alloying furnace, and the object of the present invention is to prevent the outside air from flowing into the heat insulation zone of the alloying furnace. The inflow is prevented, thereby improving the stability of the temperature distribution in the warm zone.

本発明の溶融亜鉛めっき用合金化炉は、
溶融亜鉛めっき浴の上方に加熱帯及び保温帯が順に配置された溶融亜鉛めっき用合金化炉において、
保温帯の出側に、鋼帯を挟んで配置された静圧パッドと、
これらの静圧パッドに供給されるガス量を調整する流量調整装置と、
保温帯の内部に配置され、保温帯の内部のガス流速を検出するガス流速計と、
このガス流速計の出力に基づいて、保温帯の内部のガス流速が予め設定された目標値以下に維持されるように前記流量調整装置を制御する制御装置と、
を備えたことを特徴とする。
The alloying furnace for hot dip galvanizing of the present invention is
In an alloying furnace for hot dip galvanization in which a heating zone and a heat insulation zone are sequentially arranged above the hot dip galvanizing bath,
On the exit side of the heat insulation zone, a static pressure pad arranged across the steel strip,
A flow rate adjusting device for adjusting the amount of gas supplied to these static pressure pads;
A gas anemometer that is located inside the thermal zone and detects the gas flow rate inside the thermal zone;
Based on the output of the gas flow velocity meter, a control device that controls the flow rate adjusting device so that the gas flow velocity inside the heat retention zone is maintained below a preset target value;
It is provided with.

好ましくは、前記静圧パッドは、鋼帯の一方の側に少なくとも1個、他方の側に少なくとも2個、千鳥状に配置される。あるいは、好ましくは、前記静圧パッドは、鋼帯を挟んで2対以上対向させて配置される。   Preferably, the static pressure pads are arranged in a staggered manner at least one on one side of the steel strip and at least two on the other side. Alternatively, preferably, the static pressure pads are arranged so as to be opposed to each other in two pairs or more with a steel strip interposed therebetween.

なお、上記のように全ての静圧パッドについてそのガス量を制御する代わりに、静圧パッドの内、鋼帯の一方の側及び他方の側でそれぞれ保温帯に最も近い位置に配置された静圧パッドのガス量のみを制御してもよい。   In addition, instead of controlling the gas amount of all the static pressure pads as described above, the static pressure pads arranged on the one side and the other side of the steel strip at the positions closest to the heat retaining zone respectively. Only the gas amount of the pressure pad may be controlled.

その場合、前記静圧パッドの内、鋼帯の一方の側及び他方の側でそれぞれ保温帯に最も近い位置に配置された静圧パッドに対して流量調整装置を設け、これらの静圧パッドに供給されるガス量をこの流量調整装置で調整する。また、この流量調整装置を、前記ガス流速計の出力に基づいて、保温帯の内部のガス流速が予め設定された目標値以下に維持されるように制御装置で制御する。   In that case, a flow rate adjusting device is provided for each of the static pressure pads disposed on the one side of the steel strip and the other side at the position closest to the heat retaining zone, and these static pressure pads are provided with these static pressure pads. The amount of gas to be supplied is adjusted by this flow rate adjusting device. Further, the flow rate adjusting device is controlled by the control device so that the gas flow rate inside the heat insulation zone is maintained below a preset target value based on the output of the gas flow rate meter.

本発明の溶融亜鉛めっき用合金化炉によれば、保温帯の出側に静圧パッドを配置し、それらに供給されるガス量を上記のように制御することにより、鋼帯と静圧パッドの間に静圧を発生させて、その前後のガスの流れをせき止めることができる。なお、静圧パッドは、単なるスリットノズルと比べてガスの流量が少ないので、静圧パッドから保温帯に侵入するガスの量も少ない。これにより、保温帯の温度を安定させることができる。更に、静圧パッドの間に鋼帯が拘束されることによって、鋼帯の振動及びC反りを防止することもできる。   According to the alloying furnace for hot dip galvanizing of the present invention, the steel strip and the static pressure pad are provided by arranging the static pressure pad on the exit side of the heat insulation zone and controlling the amount of gas supplied to them as described above. During this period, static pressure can be generated to stop the gas flow before and after the static pressure. Since the static pressure pad has a smaller gas flow rate than a simple slit nozzle, the amount of gas entering the heat retaining zone from the static pressure pad is also small. Thereby, the temperature of a heat retention zone can be stabilized. Furthermore, by restraining the steel strip between the static pressure pads, it is possible to prevent vibration and C warpage of the steel strip.

なお、上記の構成(第一の態様と呼ぶ)の一部を変形し、保温帯の内部のガス流速を監視する代わりに保温帯の内部の圧力を測定し、その測定値に基づいて静圧パッドのガス量を制御しても良い。   It should be noted that a part of the above-described configuration (referred to as the first aspect) is deformed, and instead of monitoring the gas flow rate inside the warm zone, the pressure inside the warm zone is measured, and the static pressure is based on the measured value. The gas amount of the pad may be controlled.

即ち、本発明の第二の態様によれば、溶融亜鉛めっき用合金化炉は、前記ガス流速計及び前記制御装置の代わりに、
保温帯の内部に配置され、保温帯の内部の圧力を測定する圧力計と、
この圧力計の出力に基づいて、保温帯の内部の圧力が予め設定された値で維持されるように前記流量調整装置を制御する制御装置とを備える。
That is, according to the second aspect of the present invention, an alloying furnace for hot dip galvanizing is used instead of the gas velocity meter and the control device.
A pressure gauge that is placed inside the thermal zone and measures the pressure inside the thermal zone;
And a control device that controls the flow rate adjusting device so that the pressure inside the heat insulation zone is maintained at a preset value based on the output of the pressure gauge.

なお、これらの第二の態様の場合にも、第一の態様の場合と同様に、全ての静圧パッドのガス量を制御する代わりに、静圧パッドの内、鋼帯の一方の側及び他方の側でそれぞれ保温帯に最も近い位置に配置された静圧パッドに供給されるガス量のみを制御しても良い。   In the case of these second modes, as in the case of the first mode, instead of controlling the gas amount of all the static pressure pads, one side of the steel strip and You may control only the gas amount supplied to the static pressure pad arrange | positioned in the position nearest to a heat retention zone on the other side.

更に、本発明の第三の態様として、各静圧パッドに供給されるガス量を、鋼帯の温度、鋼帯速度、鋼帯サイズ、及び保持帯の長さに基づき制御することもできる。その場合、各静圧パッドに供給されるガス量(Q)は、次式により与えられる:

Figure 0004941477
Furthermore, as a third aspect of the present invention, the amount of gas supplied to each hydrostatic pad can be controlled based on the steel strip temperature, steel strip speed, steel strip size, and holding strip length. In that case, the amount of gas (Q) supplied to each static pressure pad is given by:
Figure 0004941477

但し、
A=1−Pr+(1/3)Pr
B=1/(60Pr)−1/(15Pr)+1/(12Pr
C=β・g・(Ts−T
M:形状係数
z:鋼帯表面からの距離[m]
y:保温帯入側からの高さ[m]
wall:鋼帯表面から保温帯壁までの距離[m]
Pr:雰囲気ガスのプラントル数[−]
g:重力加速度[m/s
Ts:鋼帯の温度[K]
:境界層外の雰囲気ガスの温度[K]
T:境界層内の雰囲気ガスの温度[K]
ρ:境界層外の雰囲気ガスの密度[kg/m
LS:ラインスピード[m/s]
W:鋼帯の幅[m]
ρ:境界層内の雰囲気ガスの密度[kg/m
なお、上記数式中の形状係数“M”は、静圧パッドの形状、設置位置、保温帯の形状により決まる係数であり、事前に各条件下で測定することによって求められる。
However,
A = 1−Pr + (1/3) Pr 2
B = 1 / (60Pr 4 ) −1 / (15Pr 3 ) + 1 / (12Pr 2 )
C = β · g · (Ts−T )
M: Shape factor z: Distance from steel strip surface [m]
y: Height from the entrance side of the warm zone [m]
z wall : distance from the surface of the steel strip to the insulation wall [m]
Pr: Prandtl number of atmospheric gas [-]
g: Gravity acceleration [m / s 2 ]
Ts: Steel strip temperature [K]
T : temperature of the ambient gas outside the boundary layer [K]
T: temperature of the ambient gas in the boundary layer [K]
ρ : density of atmospheric gas outside the boundary layer [kg / m 3 ]
LS: Line speed [m / s]
W: width of steel strip [m]
ρ: density of atmospheric gas in the boundary layer [kg / m 3 ]
In addition, the shape factor “M” in the above formula is a factor determined by the shape of the static pressure pad, the installation position, and the shape of the heat insulation zone, and is obtained by measuring in advance under each condition.

上記数式により与えられるガス量“Q”の値は、走行する鋼帯による雰囲気ガスの随伴流及び自然対流が保温帯内に流入するのを防止するためのガス流量にほぼ相当している。   The value of the gas amount “Q” given by the above equation substantially corresponds to the gas flow rate for preventing the accompanying flow and natural convection of the atmospheric gas from the traveling steel strip from flowing into the thermal insulation zone.

本発明によれば、保温帯の内部の状態を監視し、そのデータに基づいて静圧パッドに供給されるガス量を制御することによって、保温帯の温度分布を安定させることができる。   According to the present invention, the temperature distribution in the warm zone can be stabilized by monitoring the internal state of the warm zone and controlling the amount of gas supplied to the static pressure pad based on the data.

本発明の溶融亜鉛めっき用合金化炉で使用される静圧パッドの概略的な断面図、及び静圧パッドと鋼帯で挟まれる部分の圧力分布を示す図。The schematic sectional drawing of the static pressure pad used with the alloying furnace for hot dip galvanization of this invention, and the figure which shows the pressure distribution of the part pinched | interposed by a static pressure pad and a steel strip. 本発明の溶融亜鉛めっき用合金化炉を含む溶融めっきラインの概略図。The schematic of the hot dipping line containing the alloying furnace for hot dip galvanization of this invention. 本発明の溶融亜鉛めっき用合金化炉の主要部を示す図。The figure which shows the principal part of the alloying furnace for hot dip galvanization of this invention. 保温帯の出側における静圧パッドの周囲のガスの流れについて説明する図。The figure explaining the flow of the gas around the static pressure pad in the exit side of a heat retention zone.

(静圧パッドについて)
先ず、本発明の技術的背景について説明する。
(About static pressure pad)
First, the technical background of the present invention will be described.

溶融亜鉛めっき用合金化炉の保温帯の温度分布は、保温帯に流入する外気の影響を大きく受ける。本願発明者らが調査したところによれば、ガス加熱方式による加熱帯の場合、炉内の高温ガスのドラフト効果に起因する上昇流により、多量の外気が保温帯に浸入し、保温帯内の温度が降下する。一方、誘導加熱方式による加熱帯の場合、上昇気流が弱く、冷却帯からその下側の保護帯へ冷風が流入し、保温帯の温度が降下する。従って、保温帯への外気の流入を防ぐことにより、保温帯の温度分布を安定させることができる。本願発明者らが見出したところによると、保温帯の出側に静圧パッドを設置し、この静圧パッドの流量を加熱帯からの上昇流と同程度の流量となるように調整することが、保温帯の温度分布を安定させるために有効である。   The temperature distribution in the heat insulation zone of the galvanizing alloying furnace is greatly affected by the outside air flowing into the heat insulation zone. According to the investigation by the inventors of the present application, in the case of the heating zone by the gas heating method, a large amount of outside air permeates the warm zone due to the upward flow caused by the draft effect of the hot gas in the furnace, The temperature drops. On the other hand, in the heating zone by the induction heating method, the ascending air current is weak, the cold air flows from the cooling zone to the protective zone below the cooling zone, and the temperature of the thermal insulation zone drops. Therefore, the temperature distribution in the warm zone can be stabilized by preventing the inflow of outside air into the warm zone. According to the finding of the inventors of the present application, a static pressure pad is installed on the exit side of the heat insulation zone, and the flow rate of the static pressure pad can be adjusted to be the same as the flow rate from the heating zone. It is effective for stabilizing the temperature distribution in the heat insulation zone.

ここで静圧パッドとは、鋼帯の走行方向に距離を開けて配置した2箇所のスリットノズルから、空気または窒素などのガスを噴出させて、そのガス流れでスリットノズル間に静圧の高い部分を作り出すものである。その特長として以下の点が挙げられる。   Here, the static pressure pad means that a gas such as air or nitrogen is ejected from two slit nozzles arranged at a distance in the running direction of the steel strip, and the static pressure is high between the slit nozzles by the gas flow. Create a part. The following points are mentioned as the features.

(1)静圧パッド〜鋼帯間に形成された高い静圧部分により、制振効果及びC反り矯正効果を有する。   (1) Due to the high static pressure portion formed between the static pressure pad and the steel strip, it has a vibration damping effect and a C warp correction effect.

(2)従来のスリットノズルと比較して少ない流量でC反り矯正及び制振が可能なため、ガス噴射部の上下方向への流れに対する影響が少ない。   (2) Since the C warpage correction and vibration suppression can be performed with a small flow rate compared with the conventional slit nozzle, the influence on the flow in the vertical direction of the gas injection unit is small.

(3)高い静圧部分により、静圧パッドの上下からの流れを遮断する効果を有する。   (3) The high static pressure portion has an effect of blocking the flow from above and below the static pressure pad.

図1に、静圧パッドの概略的な断面図、及び静圧パッドと鋼帯で挟まれる部分の鋼帯の走行方向の圧力分布を示す。静圧パッド2には、鋼帯1に対向する側の上下(走行方向)2箇所にスリットノズル3a、3bが設けられている。配管5から静圧パッドのチャンバ4に送られた加圧空気は、スリットノズル3a、3bから噴射される。右側の圧力分布図に示すように、スリットノズル3a、3b間の鋼帯1と静圧パッド2のパッド部6で挟まれる部分に圧力の高い領域(エアクッション部分7)が形成される。スリットノズル3a、3bから噴射された空気が鋼帯1に衝突する部分が、特に高圧になる。   FIG. 1 shows a schematic sectional view of a static pressure pad and a pressure distribution in a running direction of a steel strip at a portion sandwiched between the static pressure pad and the steel strip. The static pressure pad 2 is provided with slit nozzles 3a and 3b at two locations on the side facing the steel strip 1 in the upper and lower sides (traveling direction). Pressurized air sent from the pipe 5 to the chamber 4 of the static pressure pad is jetted from the slit nozzles 3a and 3b. As shown in the pressure distribution diagram on the right side, a high pressure region (air cushion portion 7) is formed in a portion sandwiched between the steel strip 1 between the slit nozzles 3a and 3b and the pad portion 6 of the static pressure pad 2. The part where the air jetted from the slit nozzles 3a and 3b collides with the steel strip 1 becomes particularly high pressure.

静圧パッド2が、上記のように圧力の高い領域を形成する原理は、コアンダー効果と呼ばれる付着噴流により、スリットノズル3a、3bのスリット部分からノズルスリット〜スリット間の本体部分6に付着した流れが、外向きの流れ(静圧パッドから離れる流れ)に方向転換することによる運動量で、エアクッション7の部分の空気を封じ込めることによる。鋼帯1を静圧パッド2で挟み、鋼帯1が保温帯内へ持ち込む随伴流及び自然対流と同じ流量を静圧パッド2から噴射するように、静圧パッドのダンパ開度を調整することにより、冷たい随伴流及び自然対流の保温帯への流入を防ぐとともに、保温帯からの高温ガスの流出を防ぐことができる。更に、保温帯内部への冷却帯噴射ガスの流入もシャットアウトすることができ、保温帯の温度分布を安定させることできる。   The principle that the static pressure pad 2 forms the high pressure region as described above is that the flow adhered from the slit portion of the slit nozzles 3a and 3b to the main body portion 6 between the nozzle slit and the slit by an adhesion jet called the Counder effect. However, it is the momentum by turning to the outward flow (flow away from the hydrostatic pad), and by confining the air in the portion of the air cushion 7. The damper opening of the static pressure pad is adjusted so that the steel flow 1 is sandwiched by the static pressure pad 2 and the same flow rate as the accompanying flow and natural convection that the steel strip 1 brings into the heat insulation zone is injected from the static pressure pad 2. Thus, it is possible to prevent the cold accompanying flow and natural convection from flowing into the heat retaining zone and to prevent the hot gas from flowing out from the heat retaining zone. Furthermore, the inflow of the cooling zone injection gas into the heat insulation zone can be shut out, and the temperature distribution in the heat insulation zone can be stabilized.

なお、保温帯の出側において、鋼帯の表裏に走行方向に沿って静圧パッドを千鳥状に配置すると、鋼帯の走行方向に若干の曲げ変形が付与され、張力変動による鋼帯の板面方向の変位が減少するため、鋼帯の走行を安定させることが可能になる。また、いわゆる耳波、中延びと呼ばれるような板形状不良があっても、曲率の小さな曲げ変形を繰り返して弾性変形を鋼帯に付加することになるため、鋼帯の位置を安定させることが可能になる。   When the static pressure pads are arranged in a staggered manner along the running direction on the front and back of the steel strip on the exit side of the heat insulation zone, a slight bending deformation is imparted in the running direction of the steel strip, and the plate of the steel strip due to tension fluctuations Since the displacement in the surface direction is reduced, the traveling of the steel strip can be stabilized. In addition, even if there is a plate shape defect called so-called ear wave or extension, elastic deformation is added to the steel strip by repeating bending deformation with a small curvature, so that the position of the steel strip can be stabilized. It becomes possible.

これに対して、保温帯の出側に、互いに対向する静圧パッドを一対のみ設置した場合には、保温帯への外気の流入を遮断するために静圧パッドのダンパ開度調整を行う必要があるので、それにより、鋼帯のC反り矯正及び制振効果が低下するおそれがある。そこで、保温帯の出側に、互いに対向する静圧パッドを二対以上設置し、保温帯の出側に最も近い一対の静圧パッドからの流量を調整することにより、保温帯内への外気の流入を防止すると同時に、それ以外の静圧パッドによって、鋼帯のC反り矯正及び制振効果を維持することが可能になる。更に、静圧パッドは、保温帯を出た後の鋼帯を冷却する効果も備えているため、冷却帯での鋼帯冷却の補助としても使用することができる。   On the other hand, when only one pair of opposed static pressure pads is installed on the exit side of the heat insulation zone, it is necessary to adjust the damper opening of the static pressure pad to block the inflow of outside air to the heat insulation zone Therefore, there is a risk that the C-warp correction and damping effect of the steel strip may be reduced. Therefore, two or more pairs of static pressure pads facing each other are installed on the exit side of the warm zone, and the outside air into the warm zone is adjusted by adjusting the flow rate from the pair of static pressure pads closest to the exit side of the warm zone. In addition to preventing the inflow of the steel strip, the other static pressure pads can maintain the C-warp correction and damping effect of the steel strip. Furthermore, since the static pressure pad also has an effect of cooling the steel strip after leaving the heat insulation zone, it can be used as an aid for cooling the steel strip in the cooling zone.

ガス加熱方式の加熱帯の場合、静圧パッドのダンパ開度を調整することにより、保温帯の出側からの高温ガスの流出を防ぎ、炉圧を保つことで、炉内の高温ガスのドラフト効果に起因する多量の外気の上昇流が保温帯内に流入するのを防止する。   In the case of gas heating type heating zones, adjusting the damper opening of the static pressure pad prevents outflow of hot gas from the exit side of the warming zone and maintains the furnace pressure, thereby drafting the hot gas in the furnace. Prevents a large amount of outside air from flowing into the heat insulation zone due to the effect.

他方、誘導加熱方式の加熱帯の場合、静圧パッドの設置により冷却帯からの冷風の流入を遮断することができる。しかも、静圧パッドのダンパ開度を調整することにより、保温帯の出側からの高温ガスの流出を防ぎ、炉圧を保つことで、鋼帯が持ち込む随伴流及び自然対流の上昇流が保温帯内に流入するのを防止する。   On the other hand, in the case of the induction heating type heating zone, the inflow of cold air from the cooling zone can be blocked by installing a static pressure pad. Moreover, by adjusting the damper opening of the static pressure pad, the outflow of hot gas from the exit side of the heat insulation zone is prevented and the furnace pressure is maintained, so that the accompanying flow brought in by the steel belt and the upward flow of natural convection are kept warm. Prevents inflow into the belt.

(本発明の第一の態様)
本発明の第一の態様によれば、保温帯の内部のガス流速を測定し、その値が予め設定された目標値以下に維持されるように、コントローラから静圧パッドのダンパに指令信号を送り、ダンパの開度を調整する。
(First embodiment of the present invention)
According to the first aspect of the present invention, the gas flow rate inside the warm zone is measured, and a command signal is sent from the controller to the damper of the static pressure pad so that the value is maintained below a preset target value. Adjust the opening of the feed and damper.

ここで、保温帯の内部でのガス流速計の設置位置(Z:Y)は、次式の条件を満たす範囲で設定される:
δ<Z<b,且つ,0<Y<L
但し、
δ=C・Z1/4
=[ν/(A・B・C)・(16/(189B))+8/3]1/4
A=1−Pr+(1/3)Pr
B=1/(60Pr)−1/(15Pr)+1/(12Pr
C=β・g・(Ts−T
β=(−1/ρ)・(ρ−ρ)/(T−T)
Z:鋼帯の表面からガス流速計までの距離[m]
Y:鋼帯の走行方向のガス流速計の設置位置[m]
b:鋼帯から保温帯の壁までの距離[m]
L:保温帯の長さ[m]
ν:雰囲気ガスの動粘性係数[m/sc]
Pr:雰囲気ガスのプラントル数[−]
g:重力加速度[m/s
Ts:鋼帯の温度[K]
:境界層外の雰囲気ガスの温度[K]
T:境界層内の雰囲気ガスの温度[K]
ρ:境界層外の雰囲気ガスの密度[kg/m
ρ:境界層内の雰囲気ガスの密度[kg/m
なお、上記の式により与えられる“Z”の値は、ガス流速計を鋼帯の表面から速度境界層の外側に相当する距離以上離して設置することを意味している。これによって、保温帯内の雰囲気ガス流速を安定的に測定することができる。また、鋼帯の走行方向の位置(Y)に関しては、好ましくは、ガス流速計を保温帯の中間付近に設置する。
Here, the installation position (Z: Y) of the gas velocimeter inside the heat insulation zone is set within a range that satisfies the following equation:
δ <Z <b and 0 <Y <L
However,
δ = C 2 · Z 1/4
C 2 = [ν 2 / (A · B · C) · (16 / (189B)) + 8/3] 1/4
A = 1−Pr + (1/3) Pr 2
B = 1 / (60Pr 4 ) −1 / (15Pr 3 ) + 1 / (12Pr 2 )
C = β · g · (Ts−T )
β = (− 1 / ρ) · (ρ −ρ) / (T −T)
Z: Distance from steel strip surface to gas anemometer [m]
Y: Installation position of the gas anemometer in the running direction of the steel strip [m]
b: Distance from steel strip to thermal insulation wall [m]
L: Insulation length [m]
ν: Kinematic viscosity coefficient of ambient gas [m 2 / sc]
Pr: Prandtl number of atmospheric gas [-]
g: Gravity acceleration [m / s 2 ]
Ts: Steel strip temperature [K]
T : temperature of the ambient gas outside the boundary layer [K]
T: temperature of the ambient gas in the boundary layer [K]
ρ : density of atmospheric gas outside the boundary layer [kg / m 3 ]
ρ: density of atmospheric gas in the boundary layer [kg / m 3 ]
In addition, the value of “Z” given by the above formula means that the gas anemometer is set apart from the surface of the steel strip by a distance corresponding to the outside of the velocity boundary layer or more. Thereby, the atmospheric gas flow rate in the heat retention zone can be stably measured. Regarding the position (Y) of the steel strip in the traveling direction, a gas anemometer is preferably installed near the middle of the heat insulation zone.

(本発明の第二の態様)
本発明の第二の態様によれば、保温帯の内部の圧力を測定し、その値が予め設定された目標値以下で維持されるように、静圧パッドに供給されるガス量を制御する。
(Second embodiment of the present invention)
According to the second aspect of the present invention, the pressure inside the heat insulation zone is measured, and the amount of gas supplied to the static pressure pad is controlled so that the value is maintained below a preset target value. .

保温帯の圧力がゲージ圧で正の値をとっている場合、外気の流入など保温帯内に流れが生じているため、圧力の測定値が最小値となるように、静圧パッドへ供給されるガス量を制御する。   When the pressure in the heat insulation zone is a positive value in the gauge pressure, there is a flow in the heat insulation zone such as the inflow of outside air, so the pressure measurement value is supplied to the static pressure pad so that it becomes the minimum value. Control the amount of gas generated.

ここで、保温帯の内部での圧力計の設置位置(Z:Y)は、先のガス流速計と同様に次式の条件を満たす範囲で定められる:
δ<Z<b,且つ,0<Y<L
なお、δ、b及びL等は、先にガス流速計について示したものと同一である。また、鋼帯の走行方向の位置(Y)に関しては、好ましくは、ガス流速計を保温帯の中間付近に設置する。
Here, the installation position (Z: Y) of the pressure gauge inside the heat retaining zone is determined within a range that satisfies the following equation, as in the case of the gas velocity meter:
δ <Z <b and 0 <Y <L
Note that δ, b, L, and the like are the same as those described above for the gas anemometer. Regarding the position (Y) of the steel strip in the traveling direction, a gas anemometer is preferably installed near the middle of the heat insulation zone.

(本発明の第三の態様)
本発明の第三の態様によれば、各静圧パッドに供給されるガス量(Q)を、次式で算出される値となるように制御する:

Figure 0004941477
(Third embodiment of the present invention)
According to the third aspect of the present invention, the gas amount (Q) supplied to each static pressure pad is controlled to be a value calculated by the following equation:
Figure 0004941477

但し、M(形状係数)は、静圧パッドの形状、設置位置、保持帯の形状により決まる係数であり、本発明による設備を設置するラインにより、事前に測定し算出する必要がある。   However, M (shape factor) is a factor determined by the shape of the static pressure pad, the installation position, and the shape of the holding band, and needs to be measured and calculated in advance by the line on which the facility according to the present invention is installed.

また、z、y、 wall 、g、Ts、T∞、T、ρ、ρ、A、B、C、等は、先に定義したものと同じである。
Further, z, y, Z wall, g, Ts, T ∞, T, ρ ∞, ρ, A, B, C, etc. are the same as defined above.

なお、上記のガス量(Q)は、全ての静圧パッドにそれぞれ供給されるか、あるいは、静圧パッドの内、鋼帯の一方の側及び他方の側でそれぞれ保温帯に最も近い位置に配置された静圧パッドにそれぞれ供給される。   In addition, said gas amount (Q) is supplied to all the static pressure pads, respectively, or, in the static pressure pad, on one side and the other side of the steel strip, respectively, at the position closest to the heat insulation zone. Each is supplied to the arranged static pressure pad.

(溶融亜鉛めっき用合金化炉の全体構成)
次に、本発明に基づく溶融亜鉛めっき用合金化炉の全体構成について説明する。
(Overall structure of galvanizing alloying furnace)
Next, the whole structure of the galvanizing alloying furnace based on this invention is demonstrated.

図2に、鋼帯の溶融亜鉛めっきラインの全体構成の一例を示す。図中、18は溶融亜鉛メッキ浴、20は加熱帯、21は保温帯、22a、22bは冷却帯を表わす。なお、溶融亜鉛めっきライン(18〜24)は連続焼鈍ライン(9〜17)の後段に連続的に設けられる。   In FIG. 2, an example of the whole structure of the hot dip galvanizing line of a steel strip is shown. In the figure, 18 represents a hot dip galvanizing bath, 20 represents a heating zone, 21 represents a heat retaining zone, and 22a and 22b represent cooling zones. In addition, the hot dip galvanizing line (18-24) is continuously provided in the back | latter stage of a continuous annealing line (9-17).

鋼帯1は、ペイオフリール9a(または9b)から引き出され、溶接機10、アルカリ洗浄装置11、及びルーパ12を経て、連続焼鈍炉(13〜17)に連続的に送られるようになっている。連続焼鈍炉は、上流側から順に、予熱炉13、直火加熱炉(DFF)14、ラジアントチューブ加熱炉(RTF)15、ガスジェット冷却帯16、及び調整冷却帯17を配置することにより構成されている。ガスジェット冷却帯16は、ガス噴射クーリングチューブ方式を用いており、鋼帯1を所定の温度に急冷することができるようになっている。調整冷却帯17は、連続焼鈍炉の最後の1パスに位置しており、循環冷却ファンにより鋼帯1を弱冷却し、最終的な表面温度調整を行うことができるようになっている。   The steel strip 1 is pulled out from the payoff reel 9a (or 9b), and is continuously sent to the continuous annealing furnace (13 to 17) through the welding machine 10, the alkali cleaning device 11, and the looper 12. . The continuous annealing furnace is configured by arranging a preheating furnace 13, a direct fire heating furnace (DFF) 14, a radiant tube heating furnace (RTF) 15, a gas jet cooling zone 16, and a regulated cooling zone 17 in order from the upstream side. ing. The gas jet cooling zone 16 uses a gas injection cooling tube system so that the steel strip 1 can be rapidly cooled to a predetermined temperature. The adjustment cooling zone 17 is located in the last one pass of the continuous annealing furnace, and the steel strip 1 is weakly cooled by a circulating cooling fan so that the final surface temperature adjustment can be performed.

連続焼鈍炉(13〜17)の後段側に溶融亜鉛メッキ浴18が設けられている。溶融亜鉛メッキ浴18は、溶融状態の亜鉛で満たされており、その出側に気体絞り装置19が設けられている。気体絞り装置19は、溶融亜鉛メッキ浴から引き上げられた鋼帯1に気体を吹き付けて、亜鉛の付着量を適正量に調整する。   A hot dip galvanizing bath 18 is provided on the rear side of the continuous annealing furnace (13-17). The hot dip galvanizing bath 18 is filled with molten zinc, and a gas throttle device 19 is provided on the outlet side thereof. The gas throttle device 19 sprays gas onto the steel strip 1 pulled up from the hot dip galvanizing bath, and adjusts the amount of zinc adhered to an appropriate amount.

気体絞り装置19の直上に合金化炉の加熱帯20が設けられている。加熱帯20には誘導加熱装置が設けられている。加熱帯20の上方に保温帯21が続き、更にその上方に冷却帯22aが設けられている。冷却帯22a(及び22b)では鋼帯1にエアを吹き付けて冷却する。トップエリア23を挟み、冷却帯22bにおいて鋼帯1の搬送方向が上昇から下降に変わり、鋼帯1は水冷部24を経てスキンパスミル(図示せず)に送られるようになっている。   A heating zone 20 for the alloying furnace is provided immediately above the gas expansion device 19. The heating zone 20 is provided with an induction heating device. A heat retaining zone 21 continues above the heating zone 20, and a cooling zone 22 a is further provided thereabove. In the cooling zone 22a (and 22b), air is blown onto the steel strip 1 to cool it. The conveying direction of the steel strip 1 changes from rising to lowering in the cooling zone 22b across the top area 23, and the steel strip 1 is sent to a skin pass mill (not shown) through the water cooling section 24.

図3に、溶融亜鉛めっき用合金化炉の加熱帯20から冷却帯22までの部分拡大図を示す。図中、20は加熱帯、21は保温帯、22は冷却帯、2は静圧パッド、25はブロワ、26はダンパ(流量調整装置)、27はガス流速計、28はコントローラ(制御装置)を表わす。   In FIG. 3, the elements on larger scale from the heating zone 20 to the cooling zone 22 of the galvanizing alloying furnace are shown. In the figure, 20 is a heating zone, 21 is a warming zone, 22 is a cooling zone, 2 is a static pressure pad, 25 is a blower, 26 is a damper (flow rate adjusting device), 27 is a gas anemometer, and 28 is a controller (control device). Represents.

図に示すように、静圧パッド2のノズルへのガス導入経路は、配管及びダンパ26を介して、ブロワ25のエア吹き出し口に接続されている。ガス流速計27の検出端が保温帯の出口近傍に設けられている。このガス流速計27の出力はコントローラ28の入力部に接続されている。コントローラ28の出力部は、ダンパ26の開閉スイッチに接続されている。コントローラ28は、ガス流速計27によって検出される保温帯の出口近傍の流速が最小値の近くで維持されるように、ダンパ26に指令信号を送る。   As shown in the figure, the gas introduction path to the nozzle of the static pressure pad 2 is connected to the air outlet of the blower 25 via a pipe and a damper 26. The detection end of the gas anemometer 27 is provided in the vicinity of the exit of the heat insulation zone. The output of this gas velocimeter 27 is connected to the input part of the controller 28. The output section of the controller 28 is connected to the open / close switch of the damper 26. The controller 28 sends a command signal to the damper 26 so that the flow velocity in the vicinity of the warm zone outlet detected by the gas anemometer 27 is maintained near the minimum value.

図4に示すように、この例では、静圧パッド2が、鋼帯の一方の側に1個、他方の側に2個、千鳥状に配置されている。パッド部(6:図1)から鋼帯1まで距離(h)は、可能な限り小さくすることが好ましいが、ノズル先端を鋼帯1のパスラインに接近させ過ぎると、鋼帯1がこれに衝突して表面疵となるので、30mm以上とすることが好ましく、通常は50mm程度とすることが望ましい。   As shown in FIG. 4, in this example, the static pressure pads 2 are arranged in a staggered manner, one on one side of the steel strip and two on the other side. The distance (h) from the pad portion (6: FIG. 1) to the steel strip 1 is preferably as small as possible, but if the nozzle tip is too close to the pass line of the steel strip 1, the steel strip 1 Since it will collide and become a surface defect, it is preferable to set it as 30 mm or more, and it is usually desirable to set it as about 50 mm.

(合金化処理のプロセス)
次に、図2〜図4に示した溶融亜鉛めっき用合金化炉を用いて、めっき浴浸漬後の鋼帯に合金化処理を施すプロセスの一例について説明する。
(Alloying process)
Next, an example of a process for alloying the steel strip after immersion in the plating bath using the galvanizing alloying furnace shown in FIGS. 2 to 4 will be described.

鋼帯1をペイオフリール9a(または9b)から毎分約120mの速度で引き出し、焼鈍炉(13〜17)に送る。鋼帯1を予熱炉13で所定の温度に予熱した後に、直火加熱炉14に導入する。直火加熱炉14内で鋼帯1の両面にバーナ火炎を吹き付け、鋼帯1を加熱する。直火加熱炉14の燃焼生成ガスは、廃熱回収装置の集合チャンバに集められ、ここで未燃ガス成分を二次燃焼させ、予熱炉の熱源の一部とする。鋼帯1を、直火加熱炉14で、最高720℃まで表面酸化を生じさせることなく、急速加熱する。垂直パスの直火加熱炉14内で再結晶温度以上の温度まで鋼帯1が加熱されるため、下部のロール室においては鋼帯1の形状が良好となり、鋼帯1の高速走行性が確保される。   The steel strip 1 is pulled out from the payoff reel 9a (or 9b) at a speed of about 120 m / min and sent to the annealing furnace (13-17). The steel strip 1 is preheated to a predetermined temperature by the preheating furnace 13 and then introduced into the direct fire heating furnace 14. A burner flame is sprayed on both surfaces of the steel strip 1 in the direct-fired heating furnace 14 to heat the steel strip 1. The combustion product gas of the direct-fired heating furnace 14 is collected in the collecting chamber of the waste heat recovery device, where the unburned gas component is secondarily burned and becomes a part of the heat source of the preheating furnace. The steel strip 1 is rapidly heated in a direct-fired heating furnace 14 without causing surface oxidation up to 720 ° C. Since the steel strip 1 is heated to a temperature equal to or higher than the recrystallization temperature in the direct-fired heating furnace 14 in the vertical path, the shape of the steel strip 1 becomes good in the lower roll chamber, and the high-speed traveling property of the steel strip 1 is ensured. Is done.

ラジアントチューブ加熱炉15では、鋼帯1に高温の還元性ガスを吹き付け、還元性雰囲気下で鋼帯を所定の温度に加熱し次いで均熱する。ガスジェット冷却帯16及び調整冷却帯17で鋼帯1の温度を所定の値に調整した後、鋼帯1を溶融亜鉛メッキ浴18に浸漬する。溶融亜鉛メッキ浴18から引き上げられた直後に、気体絞り装置19から鋼帯1の両面にガスを吹き付けて、付着した亜鉛の余剰分を除去する。   In the radiant tube heating furnace 15, a high-temperature reducing gas is sprayed on the steel strip 1, the steel strip is heated to a predetermined temperature in a reducing atmosphere, and then soaked. After adjusting the temperature of the steel strip 1 to a predetermined value by the gas jet cooling zone 16 and the adjustment cooling zone 17, the steel strip 1 is immersed in a hot dip galvanizing bath 18. Immediately after being pulled out from the hot dip galvanizing bath 18, gas is blown from the gas throttle device 19 to both surfaces of the steel strip 1 to remove the excess zinc adhering.

加熱帯20で誘導加熱装置を用いて鋼帯1を所定の温度に加熱した後、保温帯21に送る。鋼帯1は数秒間で保温帯21を通過する。この間に、鋼帯1の表面に所定の厚さのFe−Zn合金層が形成される。   After heating the steel strip 1 to a predetermined temperature using an induction heating device in the heating zone 20, the steel strip 1 is sent to the thermal insulation zone 21. The steel strip 1 passes through the heat insulation zone 21 in a few seconds. During this time, an Fe—Zn alloy layer having a predetermined thickness is formed on the surface of the steel strip 1.

なお、操業中は、ブロワ25を常時稼働状態にしておき、ダンパ26の開度を調節することにより静圧パッド2からの流量を調整する。ガス流速計27により保温帯21の出口近傍のガス流速を検出し、ガス流速が最小値の近くで維持されるようにコントローラ28からダンパ26に指令信号を送り、エアの吹き付け量を調節する。なお、保温帯21の温度分布を安定させるには、好ましくは、上記のガス流速を2m/s以下となるよう制御する。   During operation, the flow rate from the static pressure pad 2 is adjusted by keeping the blower 25 in an always operating state and adjusting the opening of the damper 26. The gas flow velocity near the outlet of the heat retaining zone 21 is detected by the gas flow velocity meter 27, and a command signal is sent from the controller 28 to the damper 26 so that the gas flow velocity is maintained near the minimum value, thereby adjusting the amount of air blown. In order to stabilize the temperature distribution of the heat retaining zone 21, it is preferable to control the gas flow rate to be 2 m / s or less.

(比較試験の結果)
本発明に基づく溶融亜鉛めっき用合金化炉による効果を確認するため、静圧パッドに供給されるガス量を上記各方式に基づいてそれぞれ制御した場合の、保温帯内のガス流速、保温帯通過前後の鋼帯の温度差ΔT、及びC反り量を比較した。更に、静圧パッドの代わりに従来のスリットノズルを使用した場合 についても、同様の比較を行った。表1に、その結果を示す。

Figure 0004941477
(Result of comparative test)
In order to confirm the effect of the alloying furnace for hot dip galvanizing according to the present invention, when the amount of gas supplied to the hydrostatic pad is controlled based on each of the above methods, the gas flow rate in the heat insulation zone, the heat insulation zone passage The temperature difference ΔT and C warpage amount of the steel strips before and after were compared. Furthermore, the same comparison was made when a conventional slit nozzle was used instead of the static pressure pad. Table 1 shows the results.
Figure 0004941477

ここで、C反り量[mm]は、基準面から鋼帯の両エッジ部の2点及び中央部の1点までの距離をそれぞれ測定し、下式により求めた:
C反り量=中央部の距離−(片側エッジ部の距離+他方エッジ部の距離)/2
また、風向の“↑”は保温帯内が上昇流であることを意味し、“↓”は保温帯内が下降流であることを意味している。
Here, the amount of C warpage [mm] was determined by measuring the distances from the reference plane to two points on both edges of the steel strip and one point on the center, respectively, and using the following formula:
C warpage amount = distance at the center portion− (distance at one edge portion + distance at the other edge portion) / 2
In addition, “↑” of the wind direction means that the warm zone is an upward flow, and “↓” means that the warm zone is a downward flow.

この表の中で、例1は、保温帯の内部のガス流速を測定し、その値が予め設定された目標値以下で維持されるように、静圧パッドに供給されるガス量を制御した場合のデータである。なお、ガス量の制御は、静圧パッドの内、鋼帯の一方の側及び他方の側でそれぞれ保温帯に最も近い位置に配置された静圧パッドのみについて行った。   In this table, Example 1 measured the gas flow rate inside the warm zone and controlled the amount of gas supplied to the static pressure pad so that the value was maintained below a preset target value. Data. In addition, control of gas amount was performed only about the static pressure pad arrange | positioned in the position nearest to a heat retention zone on one side and the other side of a steel strip among static pressure pads, respectively.

例2は、保温帯の内部の圧力を測定し、その値が予め設定された目標値以下で維持されるように、静圧パッドに供給されるガス量を制御した場合のデータである。この例では、圧力計を、保温帯の鋼帯走行方向についての中間位置に設置した。圧力(ゲージ圧)の値は、9.3Pa前後の値で維持された。なお、この場合も、ガス量の制御は、静圧パッドの内、鋼帯の一方の側及び他方の側でそれぞれ保温帯に最も近い位置に配置された静圧パッドのみについて行った。   Example 2 is data in the case where the pressure inside the heat insulation zone is measured and the amount of gas supplied to the static pressure pad is controlled so that the value is maintained below a preset target value. In this example, the pressure gauge was installed at an intermediate position in the traveling direction of the steel strip in the heat retaining zone. The value of the pressure (gauge pressure) was maintained at a value around 9.3 Pa. In this case as well, the gas amount was controlled only for the static pressure pad arranged on the one side and the other side of the steel strip at positions closest to the heat retaining zone.

例3は、各静圧パッドに供給されるガス量(Q)を、先に示した式により設定した場合のデータである。形状係数Mは、予め測定し、この例においては0.73であった。なお、この場合も、ガス量の制御は、静圧パッドの内、鋼帯の一方の側及び他方の側でそれぞれ保温帯に最も近い位置に配置された静圧パッドのみについて行った。   Example 3 is data when the gas amount (Q) supplied to each static pressure pad is set by the above-described equation. The shape factor M was measured in advance and was 0.73 in this example. In this case as well, the gas amount was controlled only for the static pressure pad arranged on the one side and the other side of the steel strip at positions closest to the heat retaining zone.

表1から分かるように、従来のスリットノズルを使用した場合には、保温帯の温度分布の均一性とC反り矯正能力がトレードオフ関係にある。一方、本発明に基づく溶融亜鉛めっき用合金化炉によれば、保温帯内のガス流速が低下し、鋼帯温度ΔTが小さくなり、保温帯の温度分布の安定性が改善されると同時に、C反り矯正能力も高まる。   As can be seen from Table 1, when a conventional slit nozzle is used, there is a trade-off relationship between the uniformity of the temperature distribution in the heat retaining zone and the C warp correction ability. On the other hand, according to the alloying furnace for hot dip galvanization according to the present invention, the gas flow rate in the heat insulation zone is reduced, the steel strip temperature ΔT is reduced, and the stability of the temperature distribution in the heat insulation zone is improved. C Warp correction ability also increases.

1・・・鋼帯、2・・・静圧パッド、3a、3b・・・スリットノズル、4・・・チャンバ、5・・・配管、6・・・パッド本体部、7・・・静圧の高い領域、8・・・保熱帯の壁、9・・・ペイオフリール、10・・・溶接機、11・・・アルカリ洗浄装置、12・・・ルーパ、13・・・予熱炉、14・・・直火加熱炉、15・・・ラジアントチューブ加熱炉、16・・・ガスジェット冷却帯、17・・・調整冷却帯、18・・・溶融亜鉛メッキ浴、19・・・気体絞り装置、20・・・加熱帯、21・・・保温帯、22、22a、22b・・・冷却帯、23・・・トップエリア、24・・・水冷部、25・・・ブロワ、26・・・ダンパ(流量調整装置)、27・・・ガス流速計、28・・・コントローラ(制御装置)。   DESCRIPTION OF SYMBOLS 1 ... Steel strip, 2 ... Static pressure pad, 3a, 3b ... Slit nozzle, 4 ... Chamber, 5 ... Piping, 6 ... Pad main-body part, 7 ... Static pressure 8 ... Hot tropical wall, 9 ... Pay-off reel, 10 ... Welding machine, 11 ... Alkaline cleaning device, 12 ... Looper, 13 ... Preheating furnace, 14. .. Direct flame heating furnace, 15 ... radiant tube heating furnace, 16 ... gas jet cooling zone, 17 ... regulation cooling zone, 18 ... hot galvanizing bath, 19 ... gas throttling device, DESCRIPTION OF SYMBOLS 20 ... Heating zone, 21 ... Insulation zone, 22, 22a, 22b ... Cooling zone, 23 ... Top area, 24 ... Water cooling part, 25 ... Blower, 26 ... Damper (Flow rate adjusting device), 27... Gas velocimeter, 28... Controller (control device).

Claims (2)

溶融亜鉛めっき浴の上方に加熱帯及び保温帯が順に配置された溶融亜鉛めっき用合金化炉において、
保温帯の出側に、鋼帯の一方の側に少なくとも1個、他方の側に少なくとも2個、千鳥状に配置され、または、鋼帯を挟んで2対以上対向させて配置された静圧パッドと、
これらの静圧パッドに供給されるガス量を調整する流量調整装置と、
これらの各静圧パッドに供給されるガス量(Q)が次式:
Figure 0004941477
但し、
A=1−Pr+(1/3)Pr
B=1/(60Pr)−1/(15Pr)+1/(12Pr
C=β・g・(Ts−T
M:形状係数
z:鋼帯表面からの距離[m]
y:保温帯入側からの高さ[m]
wall:鋼帯表面から保温帯壁までの距離[m]
Pr:雰囲気ガスのプラントル数[−]
g:重力加速度[m/s
Ts:鋼帯の温度[K]
:境界層外の雰囲気ガスの温度[K]
T:境界層内の雰囲気ガスの温度[K]
ρ:境界層外の雰囲気ガスの密度[kg/m
LS:ラインスピード[m/s]
W:鋼帯の幅[m]
ρ:境界層内の雰囲気ガスの密度[kg/m
で算出される値となるように前記流量調整装置を制御する制御装置と、
を備えたことを特徴とする溶融亜鉛めっき用合金化炉。
In an alloying furnace for hot dip galvanization in which a heating zone and a heat insulation zone are sequentially arranged above the hot dip galvanizing bath,
At least one on one side of the steel strip and at least two on the other side of the heat insulation zone, arranged in a staggered manner, or two or more pairs of static pressures across the steel strip Pad,
A flow rate adjusting device for adjusting the amount of gas supplied to these static pressure pads;
The amount of gas (Q) supplied to each of these static pressure pads is given by:
Figure 0004941477
However,
A = 1−Pr + (1/3) Pr 2
B = 1 / (60Pr 4 ) −1 / (15Pr 3 ) + 1 / (12Pr 2 )
C = β · g · (Ts−T )
M: Shape factor z: Distance from steel strip surface [m]
y: Height from the entrance side of the warm zone [m]
z wall : distance from the surface of the steel strip to the insulation wall [m]
Pr: Prandtl number of atmospheric gas [-]
g: Gravity acceleration [m / s 2 ]
Ts: Steel strip temperature [K]
T : temperature of the ambient gas outside the boundary layer [K]
T: temperature of the ambient gas in the boundary layer [K]
ρ : density of atmospheric gas outside the boundary layer [kg / m 3 ]
LS: Line speed [m / s]
W: width of steel strip [m]
ρ: density of atmospheric gas in the boundary layer [kg / m 3 ]
A control device for controlling the flow rate adjusting device so as to have a value calculated by:
An alloying furnace for hot dip galvanizing, comprising:
溶融亜鉛めっき浴の上方に加熱帯及び保温帯が順に配置された溶融亜鉛めっき用合金化炉において、
保温帯の出側に、鋼帯の一方の側に少なくとも1個、他方の側に少なくとも2個、千鳥状に配置され、または、鋼帯を挟んで2対以上対向させて配置された静圧パッドと、
前記静圧パッドの内、鋼帯の一方の側及び他方の側でそれぞれ保温帯に最も近い位置に配置された静圧パッドに対して設けられ、これらの静圧パッドに供給されるガス量を調整する流量調整装置と、
これらの各静圧パッドに供給されるガス量(Q)が次式:
Figure 0004941477
但し、
A=1−Pr+(1/3)Pr
B=1/(60Pr)−1/(15Pr)+1/(12Pr
C=β・g・(Ts−T
M:形状係数
z:鋼帯表面からの距離[m]
y:保温帯入側からの高さ[m]
wall:鋼帯表面から保温帯壁までの距離[m]
Pr:雰囲気ガスのプラントル数[−]
g:重力加速度[m/s
Ts:鋼帯の温度[K]
:境界層外の雰囲気ガスの温度[K]
T:境界層内の雰囲気ガスの温度[K]
ρ:境界層外の雰囲気ガスの密度[kg/m
LS:ラインスピード[m/s]
W:鋼帯の幅[m]
ρ:境界層内の雰囲気ガスの密度[kg/m
で算出される値となるように前記流量調整装置を制御する制御装置と、
を備えたことを特徴とする溶融亜鉛めっき用合金化炉。
In an alloying furnace for hot dip galvanization in which a heating zone and a heat insulation zone are sequentially arranged above the hot dip galvanizing bath,
At least one on one side of the steel strip and at least two on the other side of the heat insulation zone, arranged in a staggered manner, or two or more pairs of static pressures across the steel strip Pad,
Among the static pressure pads, one side of the steel strip and the other side are provided for the static pressure pads arranged at positions closest to the heat retaining zone, and the amount of gas supplied to these static pressure pads is set. A flow adjustment device to adjust;
The amount of gas (Q) supplied to each of these static pressure pads is given by:
Figure 0004941477
However,
A = 1−Pr + (1/3) Pr 2
B = 1 / (60Pr 4 ) −1 / (15Pr 3 ) + 1 / (12Pr 2 )
C = β · g · (Ts−T )
M: Shape factor z: Distance from steel strip surface [m]
y: Height from the entrance side of the warm zone [m]
z wall : distance from the surface of the steel strip to the insulation wall [m]
Pr: Prandtl number of atmospheric gas [-]
g: Gravity acceleration [m / s 2 ]
Ts: Steel strip temperature [K]
T : temperature of the ambient gas outside the boundary layer [K]
T: temperature of the ambient gas in the boundary layer [K]
ρ : density of atmospheric gas outside the boundary layer [kg / m 3 ]
LS: Line speed [m / s]
W: width of steel strip [m]
ρ: density of atmospheric gas in the boundary layer [kg / m 3 ]
A control device for controlling the flow rate adjusting device so as to have a value calculated by:
An alloying furnace for hot dip galvanizing, comprising:
JP2009019139A 2009-01-30 2009-01-30 Alloying furnace for hot dip galvanizing Expired - Fee Related JP4941477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009019139A JP4941477B2 (en) 2009-01-30 2009-01-30 Alloying furnace for hot dip galvanizing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009019139A JP4941477B2 (en) 2009-01-30 2009-01-30 Alloying furnace for hot dip galvanizing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004002898A Division JP4363189B2 (en) 2004-01-08 2004-01-08 Alloying furnace for hot dip galvanizing

Publications (2)

Publication Number Publication Date
JP2009084705A JP2009084705A (en) 2009-04-23
JP4941477B2 true JP4941477B2 (en) 2012-05-30

Family

ID=40658489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009019139A Expired - Fee Related JP4941477B2 (en) 2009-01-30 2009-01-30 Alloying furnace for hot dip galvanizing

Country Status (1)

Country Link
JP (1) JP4941477B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5704767B2 (en) * 2013-04-26 2015-04-22 日本電気硝子株式会社 Tempered glass and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822371A (en) * 1981-08-04 1983-02-09 Chugai Ro Kogyo Kaisha Ltd One side hot dipping method and installation
JPH0310054A (en) * 1989-06-08 1991-01-17 Kawasaki Steel Corp Alloying furnace for galvanizing and operating method thereof
JPH0448059A (en) * 1990-06-14 1992-02-18 Kawasaki Steel Corp Alloying furnace for hot dip galvanizing
JP2698012B2 (en) * 1993-01-12 1998-01-19 新日本製鐵株式会社 Operating method of alloying furnace for galvanizing and alloying furnace
JP2907311B2 (en) * 1993-06-29 1999-06-21 日新製鋼株式会社 Method and apparatus for controlling temperature of alloying furnace
JP3134757B2 (en) * 1996-01-08 2001-02-13 日本鋼管株式会社 Vibration prevention method for hot-dip galvanized steel strip
JP3535131B2 (en) * 2001-10-31 2004-06-07 Jfeスチール株式会社 Manufacturing method of hot dip galvanized steel strip

Also Published As

Publication number Publication date
JP2009084705A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
US8931321B2 (en) Hot rolled steel sheet cooling apparatus
JP6350663B2 (en) Steel strip cooling method and cooling equipment
TW201619411A (en) Continuous hot-dip metal plating method, hot-dip zinc-plated steel strip, and continuous hot-dip metal plating equipment
JP4604564B2 (en) Method and apparatus for controlling cooling of thick steel plate
JP2011516274A (en) Method and apparatus for controlled cooling
JP4941477B2 (en) Alloying furnace for hot dip galvanizing
JP4363189B2 (en) Alloying furnace for hot dip galvanizing
JP4858550B2 (en) Alloying furnace for hot dip galvanizing
JP6439654B2 (en) Method for producing hot-dip galvanized steel sheet
JP2015004080A (en) Vertical cooling device for steel plate, and method of manufacturing galvanized steel plate using the same
JPH05247619A (en) Vertical type galvannealing furnace for manufacturing galvannealed steel sheet
JP4835072B2 (en) Method for producing molten metal plated steel strip and continuous molten metal plating apparatus
JP4661226B2 (en) Steel plate cooling method and cooling device
JP2698012B2 (en) Operating method of alloying furnace for galvanizing and alloying furnace
JP2005194588A (en) Alloying furnace for hot dip galvanizing
JP3617473B2 (en) Method for producing hot dip galvanized steel sheet
JP5245746B2 (en) Metal strip cooling device and metal strip cooling method
CN110191969A (en) The method and apparatus of controlled sorbitizing for steel wire
JP5169080B2 (en) Production equipment and production method of alloyed hot dip galvanized steel sheet
JP5962209B2 (en) Method for producing hot-dip galvanized steel sheet
JP2003328098A (en) Method and apparatus for continuous hot dip metal plating
JP4306471B2 (en) Method for controlling temperature of metal strip entering plate to hot dipping bath
KR101353547B1 (en) Cooling device of continuous galvanizing line
JPH0533112A (en) Method and apparatus for producing galvannealed steel sheet
JP4088115B2 (en) Steel strip cooling control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees